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A summary of recent progress in Chiral Perturbation Theory (ChPT)
at the two-loop level is given. A short introduction to ChPT is included,
along with an explanation of the usefulness of developing ChPT for partially
quenched QCD. Further, our recent work in partially quenched ChPT is
reviewed, and a few comments are given on older work in mesonic ChPT
at the two-loop level. In particular, we quote the present best values for
the low-energy constants of the O(p4) chiral Lagrangian.
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1. Introduction

This talk describes some of the work done at two-loop order in mesonic
Chiral Perturbation Theory (ChPT) during the EURODAPHNE I, II and
EURIDICE networks. A more extensive review of ChPT at this order can be
found in Ref. [1]. The aim of this talk is not to provide a full introduction or
review of the two-loop work, but rather to concentrate on a few key issues.
The outline of this talk is as follows: Sect. 2 gives a short introduction to
ChPT, Sects. 3 and 4 discuss partial quenching, why it is thought to be
useful enough to warrant two-loop calculations in partially quenched ChPT
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(PQChPT), and why calculations in the PQChPT sector are much more
challenging than those in standard ChPT. Our own work in PQChPT is
also briefly reviewed, and finally Sect. 5 gives a brief summary of other
existing work at the two-loop order in ChPT.

2. Chiral Perturbation Theory

Chiral Perturbation Theory was introduced in the papers by Weinberg,
Gasser and Leutwyler [2–4] which build on earlier work within current alge-
bra and non-analytic higher order corrections. It should be noted that since
a significant number of highly detailed introductions and lectures exist [5,6],
only a few of the main aspects are given here. The QCD Lagrangian

LQCD = −
1

4
GµνGµν +

∑

q=u,d,s

[
iq̄LD/qL + iq̄RD/qR − mq (q̄RqL + q̄LqR)

]
(1)

is invariant under the chiral symmetry SU(3)L× SU(3)R when the masses of
the up, down and strange quarks are set to zero. This symmetry is expected
to be spontaneously broken by the quark–antiquark vacuum expectation
value

〈q̄q〉 = 〈q̄LqR + q̄RqL〉 6= 0 (2)

to the diagonal subgroup SU(3)V . Since this involves the spontaneous break-
ing of 8 generators of a global symmetry group, Goldstone’s theorem requires
the existence of 8 massless degrees of freedom and that their interactions van-
ish at zero momentum. ChPT is an effective field theory built on these eight
massless particles which are identified with the pions, kaons and eta. This
involves a long-distance expansion in momenta and quark masses. Such an
expansion, called power counting, is possible because the interaction van-
ishes at zero momentum, and was worked out to all orders by Weinberg [2].
An example from ChPT is shown in Fig. 1.

In order to perform the power counting expansion, higher order La-
grangians need to be constructed. This has to be done in order to know
the total number of parameters needed at a given order in the expansion.
These parameters are referred to as low-energy constants (LECs). This clas-
sification was done at O(p4) by Gasser and Leutwyler [3,4] and at O(p6) in
Ref. [7]. The number of LECs needed for the partially quenched case was
determined in Ref. [8, 9]. A summary of these results is given in Table I.
The main problem here is to determine a minimal set of LECs. No simple
and straightforward procedure is known for the determination of such a set.
Only if all of the LECs can be separately determined from “experiment”, or
more generally from QCD Green’s functions, can one be sure that the set
of LECs is indeed minimal. Heat kernel methods allow to determine the



Partially Quenched and Three Flavour ChPT at Two Loops 2779

divergence structure independently of Feynman diagram calculations. This,
done at O(p4) in [3, 4] and at O(p6) in [10], provides a very welcome check
on actual two-loop calculations.

p2

1/p2

∫
d4p p4

(p2)2 (1/p2)2 p4 = p4

(p2) (1/p2) p4 = p4

Fig. 1. Illustration of power counting in ChPT. On the left are shown: The low-

est order vertex, the meson propagator, a loop momentum integration and their

respective powers of a generic momentum p. The examples on the right show two

one-loop diagrams that count as O(p4) as compared to O(p2) for the lowest order.

TABLE I

The number of LECs (physical + contact terms) at the various orders in mesonic
ChPT.

2 flavour 3 flavour 3+3 PQ

O(p2) F, B 2 F
0
, B

0
2 F

0
, B

0
2

O(p4) lri , h
r
i 7+3 Lr

i , H
r
i 10+2 L̂r

i , Ĥ
r
i 11+2

O(p6) cr
i 53+4 Cr

i 90+4 Kr
i 112+3

3. Partially quenched QCD

One of the major applications of ChPT at present, and likely even more
so in the future, is the extrapolation of lattice QCD results to the physical
values of the light u, d quark masses. An overview of the many uses of
ChPT in lattice QCD can be found in the recent lectures by Sharpe [11].
The main emphasis here is on the partially quenched aspect, which can be
implemented in lattice gauge theory. In order to extract observables, one
typically evaluates a correlator, e.g. a two-point correlator to obtain masses
and decay constants. This correlator is evaluated in Euclidean space via the
path integral (or functional integral) formalism:
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〈0|(uγ5d)(x)(dγ5u)(0)|0〉 =

∫

[dq][dq][dG] (uγ5d)(x)(dγ5u)(0)

× exp

[

i

∫

d4y LQCD

]

, (3)

where the integral over the quarks and the anti-quarks can be performed
and one obtains, schematically,

∫

[dq][dq][dG] (uγ5d)(x)(dγ5u)(0) exp

[

i

∫

d4y LQCD

]

∝ (4)

∫

[dG] exp

[

−i

∫

d4x
GµνGµν

4

]

︸ ︷︷ ︸

gluonic

valence
︷ ︸︸ ︷

(D/ u
G)−1(x, 0)(D/ d

G)−1(0, x) det (D/ G)QCD
︸ ︷︷ ︸

sea

,

where D/ G denotes the full Dirac operator with a specific gluon field con-
figuration but including the quark masses. The remaining integral over all
the gluon degrees of freedom in Eq. (4) is performed by importance sam-
pling. The part labeled “valence” is connected to the external sources (hence
the name), while the part labeled “sea” describes the effects of closed quark
loops, not connected to any outside lines. Of course, gluons provide cou-
plings between all these fermion lines if we look at the functional integral as
a sum over Feynman diagrams.

One major problem is that the determinant labeled “sea” is extremely
CPU time consuming to evaluate. This has led to several approximations,
the most drastic of which is the quenched approximation, whereby the sea
contribution is completely neglected and only the gluonic and valence ones
retained. “Unquenched” means in this respect that the sea determinant is
included. However, the high CPU time requirements make it difficult to
vary the quark masses very much in this part, and changing quark masses
in the part labelled “valence” is indeed computationally much cheaper. In
partially quenched simulations one thus varies the sea and valence quark
masses independently of each other. There are good arguments in favour of
this approach:

• It is clearly superior to the quenched approximation.

• More systematic studies of the input parameters may be performed.

• It turns out that some quantities can be extracted from different ob-
servables in this way.
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• Unlike the quenched approximation, it is continuously connected to
the QCD case.

However, a number of drawbacks need to be remembered:

• It is not QCD as soon as quark masses are different in the valence and
sea sectors.

• It is not a bona fide Quantum Field Theory so the spin-statistics the-
orem and unitarity relations are not satisfied.

Especially the latter point might be important, since the derivation of ChPT
from QCD relies heavily on unitarity. Nonetheless, one expects that at least
close to the QCD case, PQQCD will have a low-energy effective theory
similar to ChPT.

4. Partially quenched ChPT at two loops

The central problem in PQChPT is thus to mimic, within ChPT, the
effect of treating closed quark loops and quark lines differently. This problem
is depicted schematically in Fig. 2. In some of the early calculations, the
quark flow was inferred directly from the flavour flow in the ChPT vertices.
An alternative approach, often referred to as the supersymmetric method, is
more systematic. A series of bosonic ghost quarks with spin 1/2 is added to
QCD. Due to the different statistics, these cancel the effects of closed loops
of valence quarks. This method is illustrated in Fig. 3.

Mesons

=

Quark Flow
Valence

+

Quark Flow
Sea

+ · · ·

Fig. 2. The meson loop diagram on the left has different types of quark flow, both

valence and sea quark as indicated on the right.

Mesons

=

Quark Flow
Valence

+

Quark Flow
Valence

+

Quark Flow
Sea

+

Quark Flow
Ghost

Fig. 3. The effect of adding ghost quarks to the different quark loops in the mesonic

one loop diagram shown on the left.
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The supersymmetric method was originally introduced for the quenched
case in Refs. [12–14] and later extended to the partially quenched case, see
Refs. [15–17] and references therein. Also, an instructive discussion about
ChPT in the partially quenched sector is given in Ref. [16]. For practical
purposes, the QCD chiral symmetry may be replaced by a graded symmetry
which is (assumed to be) spontaneously broken to its diagonal subgroup:

SU(nv + ns|nv)L × SU(nv + ns|nv)R → SU(nv + ns|nv)V , (5)

where nv, ns denote the number of valence and sea quark flavours. The
“Goldstone bosons” now have both fermionic and bosonic character. A large
amount of work exists at one-loop order, see the references in [11]. One
stumbling block at two-loop order was the determination of the divergence
structure and Lagrangians. Fortunately, it was realized [8,9,18,19] that the
work of [7,10] could be taken over by formally replacing traces by supertraces
and the general number of flavours by the number of sea quarks.

The final expressions at two-loop order are highly complex, which is due
in part to the larger number of independent quark masses, but mainly to
the peculiarities of the flavour neutral mesons. These do not have a simple
pole structure:

−iGn
ij(k) =

εj

k2−χij

−
1

nsea

[
Rd

i

(k2−χi)
2

+
Rc

i

k2−χi

+
Rπ

ηii

k2−χπ

+
Rη

πii

k2−χη

]

, (6)

where the various R coefficients consist of powers of ratios of differences of
quark masses [13, 16]. The presence of the many ratios leads to extremely
long expressions. The double pole in Eq. (6) is due to the fact that PQChPT
is not a full field theory. Thus the valence quark loops cannot be resummed
to all orders, as shown in Fig. 4.

Full

Quenched

Fig. 4. Schematic resummation of quark loops. Imagine gluons everywhere on top

of the quark lines drawn. Each bubble gives a lowest order meson propagator. The

full resummation exponentiates and leads to a single pole. For valence quarks only

the loops shown at the bottom appear, leading to double poles in the propagator.
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A large amount of work exists in PQChPT at two loops. The first calcu-
lation was the meson mass for the case of three sea quarks, with a common
valence mass and a common sea quark mass [8]. Since then the decay con-
stants [18] and masses [9] have been fully worked out. These quantities are
also fully known for two sea quark flavours [19]. The formulas are rather
lengthy and the number of parameters is also quite high. Analytical pro-
grams have therefore been posted by the authors on the website [6]. Methods
of dealing with the large number of parameters have been discussed exten-
sively in Refs. [19] and [9] for the two- and three-flavour cases, respectively.
It should be emphasized again that the LECs of unquenched ChPT, and
thus the full QCD results, are related to the partially quenched LECs in
a simple way via the Cayley–Hamilton relations of Ref. [7]. More recent
work has focused on the neutral mass sector of PQChPT. It was shown in
Ref. [16] how the residue D of the double pole

Gn
ij(k) =

−iZD

(k2 − M2
ch

)2
+ · · · (7)

can be measured on the lattice and used at O(p4) to extract Lr
7, which is

relevant for the η mass. In Ref. [20] the self-energy resummation was worked
out to all orders, and it was shown explicitly how to obtain the double pole
and the structure of the full propagator from the one-particle irreducible
diagrams. It was also shown that all O(p6) parameters relevant for the η
mass can be extracted using this method. The most recent work has focused
on the inclusion of dynamical photons in the partially quenched theory [21].

5. Standard ChPT at two loops

The existing work at two-loop order in mesonic ChPT is very briefly
reviewed here. A much more extensive review may be found in Ref. [1].
The oldest two-loop work in ChPT made use of dispersive techniques to
calculate the non-analytical dependence on the kinematical variables. This
was done numerically [22] and analytically [23] for the pion vector and scalar
form factors, and fully analytically for ππ scattering in Ref. [24]. The first
full two-loop calculations appeared somewhat later in the two-flavour sector,
with γγ → π0π0 [25] and γγ → π+π−, Fπ and mπ [26]. The process γγ → ππ
was recently recalculated in Ref. [27]. With ππ scattering [28], pion vector
and scalar form factors [29] and the radiative decay of the pion [30], most
processes of interest have now been worked out.

The earliest three-flavour work, on the vector two-point functions, was
by Golowich and Kambor [31], extended to all flavour cases in Refs. [32–
34]. The first calculations with proper two-loop integrals were of the meson
masses and decay constants, in Refs. [33, 35] and [36], including isospin
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violation. All scalar two point functions [37, 38] and vacuum expectation
values [39] are also known. More recent work covers the electromagnetic
form factors [40, 41], Kℓ3 [40, 42], and scalar form-factors [43]. Processes
with more external legs include Kℓ4 [39], kaon radiative decay [44], ππ [45]
and πK [46] scattering. The first results at finite volume have appeared
recently [47, 48].

A major problem in phenomenological applications of ChPT at two loops
is to find enough experimental inputs to determine the O(p6) parameters.
In practice most of them have to be estimated, which is typically done along
the lines of Ref. [49] by saturating the LECs by resonance exchange. While
this can be done at various levels of sophistication, most phenomenological
applications have used a fairly simple extension of Ref. [49], see e.g. Refs. [28,
36, 39, 41, 42, 45, 46].

Most phenomenological applications rely on the work of Refs. [36, 39].
The fitting method and the inputs used are described in detail in Ref. [36],
and the results can be found in Table II, in the columns labeled “Fit 10”.

TABLE II

The fitted optimal values of the Lr
i at O(p4) and O(p6), and convergence behaviour

of several quantities for the different fits [36, 46].

Fit 10, O(p6) Fit 10, O(p4) Fit D

103Lr
1 0.43 ± 0.12 0.38 0.44

103Lr
2 0.73 ± 0.12 1.59 0.69

103Lr
3

−2.53± 0.37 −2.91 −2.33

103Lr
4

≡ 0 ≡ 0 ≡ 0.2

103Lr
5 0.97 ± 0.11 1.46 0.88

103Lr
6

≡ 0 ≡ 0 ≡ 0

103Lr
7

−0.31± 0.14 −0.49 −0.28

103Lr
8

0.60 ± 0.18 1.00 0.54

2B
0
m̂/m2

π 0.736 0.991 0.958

m2
π: O(p4), O(p6) 0.006, 0.258 0.009, ≡ 0 −0.091, 0.133

m2

K : O(p4), O(p6) 0.007, 0.306 0.075, ≡ 0 −0.096, 0.201

m2
η: O(p4), O(p6) −0.052, 0.318 0.013, ≡ 0 −0.151, 0.197

mu/md 0.45 ± 0.05 0.52 0.50

F
0

[MeV] 87.7 81.1 80.4
FK

Fπ

: O(p4), O(p6) 0.169, 0.051 0.22, ≡ 0 0.159, 0.061
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These used the (at that time) most recent data of the BNL E865 experiment
as the main Kℓ4 input. The change compared to a fit at O(p4) is also given
in Table II. These fits assume that the 1/Nc suppressed LECs Lr

4 and Lr
6

vanish at the scale µ = 0.77 GeV. On the other hand, “Fit D” of Ref. [46]
uses all the same inputs as “Fit 10”, in addition to the dispersive results on
ππ and πK scattering from Refs. [50] and [51]. The convergence properties
of some quantities are also given in Table II. However, an update of the
fit is in order, with the new experimental results on Kℓ4 and an improved
treatment of the O(p6) constants along the lines of Ref. [52, 53].

6. Conclusions

ChPT at two-loop order is by now a very well developed field, where
a large number of two- and three-flavour calculations have been performed.
The use of the partially quenched results will hopefully allow for many of
the O(p6) LECs to be determined from Lattice QCD, thus removing a major
stumbling block in phenomenological applications.

We would like to thank Giulia Pancheri for her many years of dedicated
work of running the networks EURODAPHNE I, II and EURIDICE. It has
been a very rewarding experience scientifically as well as personally.
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