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Chiral low-energy constants incorporate short-distance information
from the dynamics involving heavier degrees of freedom not present in
the chiral Lagrangian. We have studied the contribution of the lightest
resonances to the chiral low-energy constants, up to O(p6), within a sys-
tematic procedure guided by the large-NC limit of QCD and also including
short-distance asymptotic constraints.
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1. Introduction

Chiral symmetry of massless Quantum Chromodynamics has become the
key tool in the study of the very low-energy domain of strong interactions
(typically E ∼ Mπ), where QCD turns non-perturbative. It is indeed the
guiding principle in the construction of Chiral Perturbation Theory (χPT),
the effective field theory of QCD in this energy region [1–3]. The χPT
Lagrangian has a perturbative structure guided by powers of external mo-
menta and light quark masses. It involves the multiplet of pseudoGoldstone
bosons, i.e. pseudoscalar mesons (π, K, η), and classical auxiliary fields.
The theory, up to a fixed order in the expansion O(pn), can be obtained by
a construction guided by chiral symmetry:

LχPT = LχPT
2 + LχPT

4 + LχPT
6 + . . . + LχPT

n . (1)

LχPT
2 embodies the spontaneous breaking of the chiral symmetry and de-

pends only on two parameters: F , the decay constant of the pion, and
B0F

2 = −〈0|ψψ|0〉, the vacuum expectation value of the light quarks; both
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of them in the chiral limit. Higher orders in the expansion bring in the in-
formation from short-distance contributions that have been integrated out,
for instance resonance states. As in any effective field theory (EFT) this in-
formation is incorporated into the low-energy constants (LECs) that weight
the operators of the theory:

LχPT
4 =

10∑

i=1

LiO
(4)
i , LχPT

6 =
∑90

i=1CiO
(6)
i , (2)

for SU(3). Explicit expressions for the operators can be read fromRefs. [3,4].
The scale that specifies the chiral expansion, Λχ ∼MV (being MV the mass
of the ρ(770), the lightest hadron not included in the theory), indicates that
LECs in χPT should receive contributions from the energy regime at or
above that scale [5]. The determination of the contributions of the lightest

multiplets of resonances to the O(p4) LECs in LχPT
4 [6] has shown that they

indeed saturate the values extracted from the phenomenological analyses.
As a consequence it is reasonable to think that the most important contri-
bution to the LECs is provided by the energy region immediately above the
integrated scale (E ∼ Λχ).

2. The role of resonance chiral theory

As illustrated in the O(p4) case [6, 7] a procedure to systematically de-
termine the resonance contributions to the LECs in χPT is available. Essen-
tially the idea is to construct a Lagrangian theory in terms of resonances,
pseudoscalar mesons and auxiliary fields respecting the underlying chiral
symmetry. Then, upon integration of the heavier states, the χPT Lagrangian
is recovered. The outcome of this first step is that LECs are traded by
the equally unknown couplings of the resonance Lagrangian though, at this
point, one may also notice relations between LECs. In a second stage infor-
mation on the resonance couplings is obtained, whether from phenomenol-
ogy or, more interestingly, by imposing theoretical constraints from the QCD
asymptotic behaviour of form factors or Green functions.

Contrarily to χPT, the lack of a mass gap between the spectrum of light-
flavoured resonances and the perturbative continuum prevents the construc-
tion of an appropriate EFT to describe the interaction of resonances and
pseudoscalar mesons. However there are several tools that allow us to grasp
relevant features of QCD and to implement them in an EFT-like Lagrangian
model. The two relevant basis are the following:

(i) A theoremput forward by Weinberg [1] andworked out by Leutwyler [8]
states that if one writes down the most general possible Lagrangian,
including all terms consistent with assumed symmetry principles, and
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then calculates matrix elements with this Lagrangian to any given or-
der of perturbation theory, the result will be the most general possible
S-matrix amplitude consistent with analyticity, perturbative unitarity,
cluster decomposition and the principles of symmetry that have been
required.

(ii) The inverse of the number of colours of the SU(NC) gauge group can
be taken as a perturbative expansion parameter [9]. Large-NC QCD
shows features that resemble, both qualitatively and quantitatively,
the NC = 3 case [10]. In practice, the consequences of this approach
are that meson dynamics in the large-NC limit is described by tree
diagrams of an effective local Lagrangian involving an infinite spectrum
of zero-width mesons.

Both statements can be combined by constructing a Lagrangian theory
in terms of SU(3) (pseudoGoldstone mesons) and U(3) (heavier resonances)
flavour multiplets as active degrees of freedom. This has been established
[6,7,11] systematically and devises what is known as Resonance Chiral The-
ory (RχT) that shows the following main features:

1. The construction of the operators in the Lagrangian is guided by chiral
symmetry for the pseudoGoldstone mesons and by unitary symmetry
for the resonances. The general structure of these couplings is:

O = 〈R1R2 . . . Rm χ(pn) 〉 ∈ L

m

︷ ︸︸ ︷
RR...R
(n) , (3)

where Rj indicates a resonance field and χ(pn) is a chiral structured
tensor, involving the pseudoGoldstone mesons and auxiliary fields only.
Then, the usual chiral counting in χPT [1] represented by the power
of momenta can straightforwardly be applied to χ(pn). With these
settings chiral symmetry is preserved upon integration of the reso-
nance fields and, at the same time, the low-energy behaviour of the
amplitudes is guaranteed.

2. Symmetries do not provide information on the coupling constants as
these incorporate short-distance dynamics not included explicitly in
the Lagrangian. The latter is supposed to bridge between the energy
region below resonances (E≪MV ) and the parton regime (E≫MV ).
This hypothesis indicates that it should match both regions and it sat-
isfies, by construction, the chiral constraints. To suit the high-energy
behaviour one can match, for instance, the OPE of Green functions
(that are order parameters of chiral symmetry) with the corresponding
expressions evaluated within our theory. In addition the asymptotic
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trend of form factors of QCD currents is estimated from the spectral
structure of two-point functions or the partonic make-up and it is en-
forced on the couplings. This heuristic strategy is well supported by
the phenomenology [10–14].

With this pattern the content of the theory is, schematically, given by:

LRχT = LχPT
2 +

∑

n

LGB
n>2 + LR , (4)

where LGB
n>2 has the same structure than LχPT

4 , LχPT
6 , . . . in Eq. (2) though

with different coupling constants, and LR involves terms with resonances
and their couplings to pseudoGoldstone modes.

RχT lacks an expansion parameter. There is of course the guide pro-
vided by 1/NC that translates into the loop expansion, however there is no
counting that limits the number of operators with resonances that have to be
included in the initial Lagrangian. However the number of resonance fields
to be kept relies fundamentally in the physical system that we are interested
in and the maximum order of the chiral tensor χ(pn) in Eq. (3) is very much
constrained by the required high-energy behaviour.

As commented above large-NC requires, already at NC → ∞, an infi-
nite spectrum in order to match the leading QCD logarithms, though we do
not know how to implement this in a model-independent way. The usual
approach in RχT is to include the lightest resonances because of their phe-
nomenological relevance, though there is no conceptual problem that pre-
vents the addition of a finite number of multiplets. This cut in the spectrum
may produce inconsistencies in the matching procedure outlined above [15].
To deal with this one can include more states that may delay the appearance
of that problem.

3. Resonance contributions to the O(p6) LECs

In Ref. [11] we have constructed the RχT Lagrangian needed to evalu-
ate the resonance contributions to the O(p6) LECs in Eq. (2). It has the
following structure:

LRχT = LχPT
2 + LGB

4 + LGB
6 + LR

kin + LR
(2) + LR

(4) + LRR
(2) + LRRR

(0) + Lε . (5)

The inclusion of spin-1 resonances has been performed within the antisym-
metric tensor formalism. However, there are independent contributions to
the O(p6) LECs coming from odd-intrinsic-parity couplings involving spin-1
resonances in the Proca formalism. These are included in Lε. In the above
representation it can be shown [7] that, at O(p4), all local terms in LGB

4
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have to vanish in order not to upset the asymptotic behaviour of QCD cor-
relators. A corresponding result at O(p6) is still lacking but we have also
assumed that all the couplings in LGB

6 are set to zero.
LRχT in Eq. (5) involves 6 a priori unknown couplings in LR

(2), 70 in

LR
(4), 38 in LRR

(2) , 7 in LRRR
(0) and 3 in Lε. Some additional work provides an

enormous simplification:

(i) Upon integration of resonances not all couplings appear independently
in the LECs. In general only several combinations of couplings inter-
vene and to take into account this case one can perform suitable redef-
initions of the fields. This procedure spoils in general the high-energy
behaviour of the theory but it is correct for the evaluation of the LECs.
Indeed the 70 couplings in LR

(4) reduce to 23.

(ii) The next step is to enforce additional short-distance information, i.e.

the leading behaviour at large momenta, for two and three-point func-
tions and form factors. This procedure, set in Ref. [7], relies in well-
known features of partonic scattering or asymptotic QCD [16]. Two-
current correlators and associated form-factors provide 19 new con-
straints on couplings, while the three-point Green functions studied
till now: 〈VAP〉 [13] and 〈SPP〉 [11, 14], give 6 and 5 independent
restrictions, respectively.

Hence we can already determine fully the resonance contribution to the
O(p6) couplings C78 and C89 (that appear in π → ℓνℓγ and π → ℓνℓγ

∗, re-
spectively), C87 (in 〈AµAν〉), C88 and C90 (in F π

V (q2) and the q2 dependence

of the form factors in Kℓ3), C38 (in 〈SS〉) and C12 and C34 (in F π,K
V (q2) and

fK0π−

+ (0)).
It is significant to observe that, as shown in the analysis of the 〈SPP〉

Green function, the use of a Lagrangian theory like RχT though involved [11]
brings more information (encoded in the symmetries of the Lagrangian) than
the use of a parametric ansatz [14].

4. Kℓ3 decays: determination of fK0π−

+
(0)

Kℓ3 decays have the potential to provide one of the most accurate de-
terminations of the Vus CKM element. The main uncertainty in extracting
this parameter comes from theoretical calculations of the vector form factor

fK0π−

+ (0) defined by:

〈π−(p) | sγµu |K
0(q) 〉 = fK0π−

+ (t)(q + p)µ + fK0π−

−
(t) (q − p)µ , (6)
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with t = (q − p)2. Deviations of fK0π−

+ (0) from unity (the octet symmetry
limit) are of second order in the SU(3) breaking:

fK0π−

+ (0) = 1 + fp4 + fp6 + . . . (7)

The first correction is O(p4) in χPT, through one loop calculation and no
local terms, and it gives fp4 = −0.0227, essentially without uncertainty [17].

At O(p6) two-loop, one-loop and local terms contribute and the latter make

the determination more uncertain. Loops give f loops
p6 (Mρ)=0.0093(5) [14,18].

The explicit form for the tree-level contribution is:

f tree
p6 (Mρ) = 8

(
M2

K −M2
π

)2

F 2
π

[(
Lr

5(M
2
ρ )

)2

F 2
π

− Cr
12(M

2
ρ ) − Cr

34(M
2
ρ )

]

, (8)

that involves LECs of χPT both at O(p4) and O(p6). In Ref. [14], and
using the method outlined in these proceedings, we have determined the
contribution of scalar and pseudoscalar resonances to the LECs present in
Eq. (8), and we get:

f tree
p6 (Mρ) = −

(
M2

K −M2
π

)2

2M4
S

(

1 −
M2

S

M2
P

)2

. (9)

As can be seen in Fig. 1, it produces a tiny result: f tree
p6 (Mρ) = −0.002(12)

1 1.1 1.2 1.3 1.4 1.5
-0.03

-0.02

-0.01

0

0.01

0.02

MS (GeV)

f tree
p6 (Mρ)

L5 × L5/F 2

π

−(C12 + C34)

Fig. 1. We display f tree
p6 (Mρ) as a function of MS for MP = 1.3 GeV (solid line).

We also plot the two components: the dashed line represents the term proportional

to L5×L5, while the dotted line represents the term proportional to −(C12 +C34).

The cancellation between both contributions is very large.

due to a strong cancellation between both terms. We end up with the final
result:

fK0π−

+ (0) = 0.984(12) . (10)
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In Table I we compare our result with other determinations coming from
different sources. This comparison shows a clear pattern: both quenched
and unquenched lattice results are in very good agreement with the quark
model prediction by Leutwyler and Roos [17], while our analytic determina-

tion of fK0π−

+ (0) shows a clear tension. It is also interesting to notice the
tiny modification that unquenching produces in the lattice results though,
as shown in Ref. [18], chiral logarithms are very much important in the de-

termination of fK0π−

+ (0). A better understanding is still required on this
issue.

TABLE I

Comparison of different predictions for fK0π−

+ (0). The value quoted for Ref. [18]
has been modified as explained in Ref. [14].

Reference fK0π−

+ (0)

Quark model [17] 0.961(8)
Lattice (quenched) [19] 0.960(9)
Lattice (unquenched) [20] 0.968(11)
Lattice (unquenched) [21] 0.961(5)
(Chiral + [17]) [18] 0.971(10)
Kπ scalar f.f. [22] 0.974(11)
Ours [14] 0.984(12)

5. Perspective

The study of the resonance energy region is essential for the understand-
ing of hadron phenomenology driven by non-perturbative QCD: hadronic
tau decays, final-state interactions, kaon decays, etc.

RχT is a systematic setting that allows to implement known features of
QCD into a Lagrangian framework. We have shown that it provides sensible
results but much more work is still needed to reach a better understanding
both on the phenomenology and on the underlying ideas that join together
in this formulation.
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