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CHIRAL LOGARITHMS∗
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The structure of leading logarithms in chiral perturbation theory was al-
ready studied some time ago by S. Weinberg, Physica A96, 327 (1979) and
recently by M. Buchler, G. Colangelo, Eur. Phys. J. C32, 427 (2003).
Because the leading logarithms may generate sizable numerical contribu-
tions to observables, it would be very interesting to know them or even
sum them up to every order in the chiral expansion. We investigate these
possibilities for two specific Green functions in chiral perturbation theory
with two flavours, in the chiral limit.

PACS numbers: 11.30.Rd

1. Introduction

We discuss the structure of chiral logarithms in the effective low-energy
theory of QCD, chiral perturbation theory (ChPT). To simplify the discus-
sion, we consider the case of two flavours u and d. At a given order in
the chiral expansion, the logarithm with the highest power is called leading
logarithm (LL). We want to address two questions: Is it possible

(1) to calculate the leading logarithm to every order in the chiral expan-
sion?

(2) to sum up the leading logarithms to every order, similarly to summing
up leading logarithmic singularities in renormalizable theories?

In the following, we consider the two-point function of two scalar quark
currents in the chiral limit mu = md = 0,

H(s) = i

∫

dxeipx〈0|TS0(x)S0(0)|0〉; S0 = ūu + d̄d; s = p2 ,

and the scalar form factor F (s),

〈0|S0(0)|πi(p)πk(p′)〉 = δikF (s) , s = (p + p′)2 .
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2. Chiral logarithms from unitarity, analyticity

and the Roy equations

To answer the first question, we rely on unitarity, analyticity and the Roy
equations. Once the LL of the partial wave t00 of ππ scattering is known at

chiral order p2(N−2), unitarity of the S-matrix determines the LL of the two-
point function H(s) and of the scalar form factor F (s) at chiral order p2N

and p2N−1, respectively [3]. For illustration, we note the pertinent relation
between H(s) and F (s),

discH(s) = i(2π)4
∑

n

δ(4)(Pn − p)|〈0|S0(0)|n〉|2 =
3i

16π
|F (s)|2 + · · · .

In the sum over intermediate states, only two pion intermediate states
are relevant for the LL [3]. Furthermore, once the partial waves tIℓ are
known at tree-level, invoking unitarity and the Roy equations [4] allows one
to calculate the pertinent combination of LLs of t00 used in the unitarity
relation for discF (s). The reason that the Roy equations are used is the
following: The partial waves tIℓ (s) are analytic in the complex s-plane cut
along the positive and the negative real axis and unitarity does not provide
sufficient information about the contribution generated by the left-hand cut
in tIℓ . We write the low-energy expansion of H(s) and F (s) as

H(s) =
B2

16π2

{

P0 + P1L + P2L
2 + · · ·

}

, L = ln

(

−
s

µ2

)

,

F (s) = 2B{T0 + T1L + T2L
2 + · · ·} ,

where the coefficients Pi and Ti are polynomials in N = s/(16π2F 2). Up to
five loops, the leading contributions to these polynomials are given by [3]

P1 = −6, P2 = 6N, P3 = −
61

9
N2 ,

P4 =
68

9
N3, P5 = −

140347

16200
N4, T1 = −N ,

T2 =
43

36
N2, T3 = −

143

108
N3, T4 =

15283

9720
N4 .

Higher-order terms in Ti, Pi are omitted here, because they are sup-
pressed in the chiral counting. Available one- and two-loop results [5–8]
together with the renormalization group equation [2] provide a direct check
on the polynomials Pi, Ti, with i ≤ 3.

In the chiral limit, a straightforward use of the Roy equations produces
infrared divergences, because Im tIℓ(s) behave like s4 as s → 0+ for ℓ ≥ 2.
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There appear logarithmic and arbitrary power-like divergences in 1/Mπ . In
the calculation of P5, the emerging divergence is of the form s4 ln(Mπ).
However, this divergence does not affect the five-loop LL, as we explicitly
checked using the renormalization group equations for the partial wave t00
at the order p8. Therefore we expect the method presented here to work to
all orders.

3. Renormalizable effective theory for the LLs of ChPT

Thinking about the second question, one runs into the problem that
ChPT is a nonrenormalizable theory and there exists no method at present
to sum leading logarithmic singularities.

We take the linear sigma model — which is renormalizable — as effective
theory for the LLs of ChPT and show why summation still escapes.

We rely on the fact that the generating functionals of the linear sigma
model (equipped with additional external fields) in the heavy mass limit and
ChPT agree at first nonleading order provided the low-energy constants of
ChPT are pertinent functions of the parameters of the linear sigma model [5].
In a first step, we check whether also the two-loop leading logarithm in the
linear sigma model agrees with ChPT. To that end, we have to introduce
our notation of the linear sigma model. The Lagrangian of the O(4) linear
sigma model coupled to external scalar sources reads

L =
1

2
∂µϕa∂µϕa +

m2

2
ϕaϕa −

g

4
(ϕaϕa)2 + jaϕa, a = 0, ..., 3 .

If m2 > 0, the O(4) symmetry is spontaneously broken down to O(3), leading
to three Goldstone bosons. In order to expand around the ground state
ϕG = (v,0) of the spontaneously broken theory, one rewrites the Lagrangian
with the shifted fields ϕ = (φ + v,π). To every order of the calculation,
one has to determine v such that the vacuum expectation value vanishes,
〈0|φ(x)|0〉 = 0. To one loop, the parameters have to be renormalized in the
following way:

g = µ4−dgr

[

1 − 24grλ
]

, m2 = m2
r

[

1 − 12grλ
]

, ϕ = Z
1

2 ϕR, Z = 1 ,

d = 4 − 2ε, λ = −
1

32π2

(

1

ε
+ Γ ′(1) + ln(4π) + 1

)

.

We identify the renormalized scalar two-point function

G
(2,0)
R (s) = iZ

∫

d4xeipx〈0|Tφ(x)φ(0)|0〉, s = p2 ,
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at small external momenta s as the corresponding quantity of the scalar two-
point function H(s) in ChPT. Calculating the leading logarithms to one and

two loops in the quantity G
(2,0)
R (s) yields [9]

G
(2,0)
R (s, gr,m

2
r, µ) =

1

2m2
r

[

c(0) + c(1)gr + c(2)g2
r + O(g3

r )
]

,

c(1) = −
3

16π2
ln

(

−
s

µ2

)

+ · · · , c(2) =
3

256π4

s

m2
r

ln2

(

−
s

µ2

)

+ · · · ,

where the ellipsis denote terms with a higher power of s/m2
r as well as

subleading logarithms. Note that the coefficients c(i) depend on s, mr and µ
and also contain mass logarithms. Comparing with ChPT, one finds that the
one- and two-loop leading logarithms agree exactly with ChPT [9]. Given
this strong evidence, we assume that the linear sigma model reproduces the
LLs of ChPT to every order.

Based on this assumption, we use the renormalization group equation

(RGE) for renormalized, Fourier transformed Green functions G
(k,j)
R with

k (j) sigma (pion) fields,
(

D + (k +

3
∑

t=1

jt)γ

)

G
(k,j)
R (pi, gr,m

2
r, µ) = 0; j = (j1, j2, j3) ,

D = µ
∂

∂µ
+ β

∂

∂gr

− m2
rγm

∂

∂m2
r

, β = µ
∂

∂µ
gr =

∞
∑

k=2

β(k)gk
r ,

γm = −
1

m2
r

µ
∂

∂µ
m2

r =

∞
∑

k=1

γ(k)
m gk

r , γ =
1

2
β

∂

∂gr
log Z = O(g2

r ) ,

to establish recursion relations between the coefficients of the LLs. It is
convenient to decompose the coefficients c(k) as

c(k) =

k
∑

n=0

k−n
∑

l=0

a
(k)
l,k−n−l

(

s

m2
r

)

Ll
sL

k−n−l
m , Ls =ln

(

−
s

µ2

)

, Lm =ln

(

2m2
r

µ2

)

.

As the coefficients a(k) are analytic functions in s/m2
r, we expand them in

a power series

a
(k)
k,l =

∞
∑

t=0

a
(k,t)
k,l

(

s

m2
r

)t

.

The recursion relation for the LLs following from the RGE reads [9]

−2Na
(N,t)
N,0 − 2a

(N,t)
N−1,1 +

(

(N − 1)β(2) + (1 + t)γ(1)
m

)

a
(N−1,t)
N−1,0 = 0 . (1)
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In this relation, only the leading order results for the β- and γm-functions

appear. Still, given the LL at order gN−1
r , a

(N−1,t)
N−1,0 , it is not possible to calcu-

late the LL at order gN
r , a

(N,t)
N,0 as there appears a coefficient of a subleading

logarithm, a
(N,t)
N−1,1. This troublesome coefficient a

(N,t)
N−1,1 is not accessible by

the renormalization group. Recursion relations which connect the coeffi-
cients of subleading logarithms do not provide enough information, as can
be seen in Fig. 1. Furthermore, these relations only connect the coefficients
at the same order in s/m2

r, whereas the leading logarithm at order gN
r is

proportional to (s/m2
r)

N−1.

1 2 3 4 5

1

2

3

4

5

n

k

Fig. 1. Illustration of the connections between the coefficients of the scalar two-

point function in the spontaneously broken phase of the linear sigma model at order

g3

r
. The quantity n represents the order in gr and k stands for the exponent of the

logarithm Ls. Every type of line indicates recursion relations which contain the

connected coefficients. The solid line corresponds to Eq. (1). There is one such

picture for every order in s

m
2
r

.

However, a summation of logarithms is still possible, but it is infeasible
to single out the contribution from one type of logarithm, like Ls. The
situation becomes clear by introducing a new scale ρ and splitting up all
mass- and momentum logarithms as

Ls = ln

(

−
s

ρ2

)

+ Lµ, Lm = ln

(

2m2
r

ρ2

)

+ Lµ, Lµ = ln

(

ρ2

µ2

)

.

Therefore, all terms of the form gN
r Lk

sL
l
m with k + l = N in the scalar

two-point function generate a logarithm LN
µ . At a given order gN

r , one is
left with one explicitly scale dependent logarithm Lµ with power N . These
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leading logarithms Lµ can be summed to all orders. The coefficient of the
leading Lµ-logarithm however is the sum of all coefficients of terms gN

r Lk
sL

l
m

with k + l = N .

4. Summary and conclusion

(i) Once the LLs of the partial wave t00 are given at chiral order p2N ,
unitarity and analyticity determine the LLs of the scalar form factor
F (s) and the scalar two-point function H(s) at chiral order p2(N+1)

and p2(N+2), respectively.

(ii) Given the tree-level partial waves tIℓ , unitarity and the Roy equations
allow to successively determine the pertinent combination of loga-
rithms in the partial wave t00 used in the unitarity relation mentioned
in point (i). Because the infrared singularities appearing in the Roy
equations do not alter the five-loop LL, we strongly believe that this
procedure works to all orders.

(iii) The linear sigma model reproduces the LLs of the scalar two-point
function in ChPT up to and including two loop order.

(iv) Assuming that the identity (iii) holds to all orders, we apply the RGE
to work out recursion relations for the LLs. These recursion relations,
however, also contain subleading terms and cannot be used to calculate
the LL at order gN

r if the LL at order gN−1
r is given.

(v) A summation of logarithms is possible. However, as the scalar two-
point function depends on three scales, s, mr and µ, a separation
between the leading momentum logarithms LN

s and other logarithms
to the power N like Lk

sL
l
m with k + l = N is not accessible.
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