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QUARK CONDENSATES: FLAVOUR DEPENDENCE∗
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We determine the qq condensate for quark masses from zero up to that
of the strange quark within a phenomenologically successful modelling of
continuum QCD by solving the quark Schwinger–Dyson equation. The
existence of multiple solutions to this equation is the key to an accurate and
reliable extraction of this condensate using the operator product expansion.
We explain why alternative definitions fail to give the physical condensate.
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1. Introduction

The dynamics of low energy hadrons are governed by the non-trivial
structure of the QCD vacuum and the resulting breaking of chiral symmetry.
Long-range correlations between quarks and antiquarks form condensates,
whose scale determines constituent quark masses and so the masses of all
light hadrons. Though the scale has been recently determined for the uu
and dd through experiments involving ππ interactions, confirming the ∼
−(235MeV)3 anticipated from phenomenology [1], we are yet to determine
a value of the condensate for the not-so-light quarks with any certainty.

The interest in the value of such a condensate arises in the context of
QCD sum-rules where the Operator Product Expansion (OPE) is used to
approximate the short distance behaviour of QCD. In studying currents
qiγ

µ(γ5)qj, with qi = s and qj = u, d, the VEVs of uu, dd and ss operators
naturally arise [2–4]. The qq condensate for the u and d are expected to be
close to that in the chiral limit, with even an error of 10% unimportant in
previous calculations. However, if one considers strange quarks we are left
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with the estimate of Shifman et al. [5,6] that the ss condensate be (0.8 ± 0.3)
of the uu and dd values. It is the greater precision brought about by the
studies of Refs. [2, 7, 8], for instance, that motivate the need to learn about
how the qq condensate depends on the current quark mass. Our goal here
is to illustrate a method for determining this dependence.

2. Schwinger–Dyson equations

Our aim is to calculate the mass function of the quark propagator for
a range of current masses. The starting point is the renormalized Schwinger–
Dyson equation for the quark propagator as depicted in Fig. 1:

S−1
F (p) = Z2

[

S
(0)
F (p)

]−1
− CF

Z̃1, Z2

Z̃3

g2

(2π)4

∫

d4k · · ·

×γµ SF(k)Γν(k, p)Dµν (p − k) . (1)

Fig. 1. Schwinger–Dyson equation for the quark propagator.

In the Landau gauge we note that Z̃1 = 1. The inverse propagator
S−1

F (p) is specified by two scalar functions A and M :

S−1
F (p) = A(p2, µ2)

(

p6 + M(p2)
)

, (2)

where the quark mass function M(p2) is renormalisation group invariant.

2.1. Maris–Tandy model

To solve Eq. (1) we employ some suitable ansatz for the coupling and
interaction in Eq. (1) which has sufficient integrated strength in the infrared
to achieve dynamical mass generation. Following Maris et al. [9, 10], we
employ an ansatz for g2Dµν(p − k) shown to be consistent with studies of
bound state mesons. The renormalisation scheme is one of modified mo-
mentum subtraction at point µ, taken to be 19 GeV to compare with earlier
studies [11]. We later evolve µ to the more common 2 GeV scale in the
MS-scheme. We use:

g2

4π

Z2

Z̃3

Dµν(q) → α
(

q2
)

D(0)
µν (q) , (3)
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where the coupling is described by [9, 10]:

α
(

q2
)

=
π

ω6
D q4 exp(−q2/ω2) +

2πγm

log

(

τ +
(

1 + q2/Λ2
QCD

)2
)

×
[

1 − exp
(

−q2/
[

4m2
t

])]

, (4)

with mt = 0.5 GeV, τ = e2−1, γm = 12/(33−2Nf ) and ΛQCD = 0.234 GeV.
We choose ω and D to be consistent with meson observables; a typical set
is ω = 0.4 GeV, D = 0.933 GeV2. Solutions are obtained by solving for A
and M of Eq. (2), which we may write symbolically as:

A(p2, µ) = Z2(µ,Λ) − ΣD (p,Λ) ,

M(p2)A(p2, µ) = Z2(µ,Λ)ZmmR(µ) + ΣS (p,Λ) .

The ΣS and ΣD correspond to the scalar and spinor projections of the
integral in Eq. (1). For massive quarks we obtain the solution M (later
called M+) by eliminating the renormalisation factors Z2, Zm via:

Z2(µ,Λ) = 1 + ΣD (µ,Λ) ,

Zm(µ,Λ) =
1

Z2(µ,Λ)
−

ΣS (µ,Λ)

Z2(µ,Λ)mR (µ)
.

The momentum dependence for different values of mR are shown in Fig. 2.
Our purpose is to define the value of the qq condensate for each of these.
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Fig. 2. Euclidean mass functions for different current masses, specified at µ =

19 GeV as labelled. The plot illustrates how on a log–log plot the behaviour

dramatically changes between a current mass of 0 and 3 MeV.
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3. Extracting the condensate

At very large momenta the tail of the mass function is described by the
operator product expansion so that

M(p2)asym = m
[

log
(

p2/Λ2
1

])−γm

+
2π2γm

3

C

p2

[

1

2
log
(

p2/Λ2
2

)

]γm−1

, (5)

where the first term is related to the explicit mass in the Lagrangian, mR(µ),
by some renormalisation factors. The second term gives the lowest dimension
vacuum condensate, where C = −〈qq〉. If we included the expression to all
orders then the scales Λ1 and Λ2 would both be equal to ΛQCD. However,
higher contributions to the leading order forms in Eq. (5) are differently
suppressed, and so Λ1 and Λ2 are in practice different. For large masses only
the first piece is relevant, whereas for m = 0 only the second term appears.
In this latter case, owing to the power suppression of higher orders, Λ2 is
readily determined and found to be equal to ΛQCD. Thus in the chiral limit
we can easily extract the renormalisation point independent condensate,
C ≡ −〈qq〉, from the asymptotics.

For non-zero current masses, one can attempt to fit both terms of the
OPE in Eq. (5) to the tail of the mass function, M of Fig. 2. Comparing
the full mass with mq 6= 0 with that in the chiral limit, one sees how very
small the contribution of the condensate to the tail is. So while a value for
the condensate can be extracted, this procedure is not at all reliable.

Strictly in the chiral limit, we may also extract the condensate using:

−〈qq〉µ = Z2 (µ,Λ)Zm (µ,Λ)Nc trD

Λ
∫

d4k

(2π)4
SF (k, µ) , (6)

with 〈qq〉µ the renormalisation point dependent quark condensate. At one-
loop, this is related to the renormalisation point independent one by:

〈qq〉µ =

(

1

2
log

µ2

Λ2
QCD

)γm

〈qq〉 , (7)

which we compare with the asymptotic extraction to good agreement.
However, for any non-zero quark masses, we cannot apply Eq. (6), since

it acquires a quadratic divergence, cf. Eq. (5). Indeed, it is the elimination
of this divergence that inspired the definition proposed by Chang et al. [11],
which is unfortunately not equal to the condensate of the physical mass
function and is therefore ambiguous [12]. Consequently, we need a different
definition, one close to the OPE, Eq. (5).
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3.1. Multiple solutions

The SDEs, Eq. (1), can have multiple solutions being as they are non-
linear integral equations. In the chiral limit, there exist three solutions
for SF(p) and its mass function M(p2). These correspond to the Wigner
mode, and two non-perturbative solutions of equal magnitude generated by
the dynamical breaking of chiral symmetry. These we denote by M±,W (p),
where:

M(p2) =

{

MW (p2) = 0
M±(p2) = ±M0(p2)

. (8)

Analogous solutions to these exist as we move away from the chiral limit,
with M−,W restricted to some critical domain 0 ≤ m < mcr.

Instead of one single solution, we now have three solutions to the same
model, each with identical running of the current-quark mass (the first term
in Eq. (5)) in the UV region and differing only by their values of the conden-
sate. Thus, for mR(µ) < mcr, it is possible to fit Eq. (5) simultaneously to
the three mass functions M±, MW . The scales Λ1 and Λ2 are found to be
the same for any current mass within the given model. Λ2 is equal to ΛQCD,
while Λ1 is roughly twice as big and depends upon the model parameters.
The condensates C± and CW are then determined in an accurate and stable
way. The results are shown in Figs. 3(a), 3(b) for Nf = 0, 4. The error
bars reflect the accuracy with which the mass functions represented by two
terms in the OPE expression, Eq. (5), are separable with the anomalous
dimensions specified.
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Fig. 3. Condensate extracted through simultaneous fitting of the three solutions to

the fermion mass-function in the Maris–Tandy model with ω = 0.4 GeV and (a)

Nf = 0, (b) Nf = 4. The functions of the current quark mass are evolved to 2 GeV

in a momentum subtraction scheme.
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We see that within errors the condensate is found to increase with quark
mass. This rise at small masses was anticipated by Novikov et al. [13] com-
bining a perturbative chiral expansion with QCD sum-rule arguments. That
the chiral logs relevant at very small mq are barely seen is due to the quench-
ing of the gluon and the rainbow approximation of Eq. (1).

We see in Figs. 3(a), 3(b) that the M− and MW solutions bifurcate
below mcr ≃ 43.4(44.0) MeV with ω = 0.4 GeV for Nf = 0(4) respectively.
But what about the value of the condensate for the physical solution M+

beyond the region where M− and MW exist, i.e. mR(µ) > mcr? Having
accurately determined the scales Λ1 and Λ2 in the OPE of Eq. (5) in the
region where all 3 solutions exist, we could just continue to use the same
values in fitting the physical M+ solution alone and find its condensate.
However, this would make it difficult to produce realistic errors as the quark
mass increases.

We see in Figs. 3(a), 3(b) that the M− and MW solutions bifurcate
below mcr ≃ 43.4(44.0) MeV with ω = 0.4 GeV for Nf = 0(4) respectively.
But what about the value of the condensate for the physical solution M+

beyond the region where M− and MW exist, i.e. mR(µ) > mcr? Having
accurately determined the scales Λ1 and Λ2 in the OPE of Eq. (5) in the
region where all 3 solutions exist, we could just continue to use the same
values in fitting the physical M+ solution alone and find its condensate.
However, this would make it difficult to produce realistic errors as the quark
mass increases.

Having relaxed the condition that solutions be positive definite, we in
fact find there exist noded solutions, which have also been discovered recently
in the context of a simple Yukawa theory [14]. We illustrate this within the
Maris–Tandy model, for instance with Nf = 4 and ω = 0.4, in Fig. 4(a). We
note that this noded solution is not limited to the same domain that restricts
M− and MW . Thus there exists a solution with a well-defined UV running
of the quark mass exactly as the M+ solution, as far as m = 66.3 MeV.
While at small quark masses we have all four solutions, at larger masses
there are still two. Consequently, we can accurately fix the scales Λ1 and
Λ2 of Eq. (5) at each mR(µ), and so determine the condensates as shown
in Fig. 4(b). Indeed, these fits confirm that Λ1 and Λ2 are independent of
mR(µ). We can then fit the remaining M+ solutions shown in Fig. 2 to
give the physical condensate shown in Fig. 4(b) for acceptable values of ω
as determined by [15]. In Fig. 5 we have in fact scaled the quark mass from
µ = 2 GeV in the (quark–gluon) MOM scheme by one loop running to the
MS scheme at 2 GeV using the relationship between ΛMOM and ΛMS for
4 flavours deduced by Celmaster and Gonsalves [16]. In this latter scheme
the strange quark mass is ∼ 95 MeV [17].
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Fig. 4. (a) Momentum dependence of the 4 solutions for the fermion mass-function

in the Maris–Tandy model with m = 20 MeV at µ = 19 GeV, and (b) Current

quark mass dependence of the condensates, including the noded solution. We use

Nf = 4, ω = 0.4 GeV as our parameters.
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Fig. 5. Condensate for the Maris–Tandy model with Nf = 4, ω = 0.4, 0.45, 0.5 GeV

as a function of current quark mass defined at 2 GeV in MS scheme.

4. Conclusions

For the range of parameters considered in the Maris–Tandy modelling
of strong coupling QCD, we find that the ratio of the condensates at the
strange quark mass to the chiral limit to be:

〈qq〉m(MS)=95 MeV / 〈qq〉m=0 = (1.1 ± 0.2)3 , (9)

in a world with 4 independent flavours.
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What we have shown here is that there is a robust method of determining
the value of the qq condensate beyond the chiral limit based on the Operator
Product Expansion. Of course, as the quark mass increases the contribution
of the condensate to the behaviour of the mass function, Fig. 2, becomes
relatively less important and so the errors on the extraction of the physical
condensate increases considerably. Nevertheless, the method is reliable up
to and beyond the strange quark mass. Alternative definitions are not.
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