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MIGDAL’S MODEL AND HOLOGRAPHY∗
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Migdal’s model on the spectrum of vector mesons is reassessed. We
discuss how its departure from a Padé approximant is closely linked to
the issue of quark–hadron duality breakdown. We also show that Migdal’s
model is not truly a model of large-Nc QCD.
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1. Introduction

More than 30 years ago Migdal proposed a model for hadronic resonances
based on rational approximants [1]. The final aim was to determine the spec-
trum of vector mesons in the large-Nc limit which best fulfills quark–hadron
duality. The strategy was to start from the short distance behavior of the
vector vacuum polarization function 〈V V 〉 and build the Padé approximant
thereof. Migdal further suggested to modify the continuum limit to better
ensure quark–hadron duality. The final result was a spectrum of single poles
located at zeroes of the Bessel J0 function.

Migdal’s model of resonances was recently revived [2] in the context of
the AdS–QCD holographic models. The so called hard wall model [3] was
shown to be the holographic dual of Migdal’s model. Interestingly, another
holographic model, the so called soft wall model [4], was recently identified
as the holographic dual of the large-Nc Regge model of Ref. [5].

We will reassess Migdal’s model with the help of both the 4-dimensional
large-Nc Regge model and the holographic duals. We will see that quark–
hadron duality breakdown plays a prominent role and look for its geometrical
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interpretation in holographic models. We will conclude that the modeling of
duality breakdown in Migdal’s model is not compatible with generic features
of large-Nc QCD.

2. Migdal’s model

The [N,M ] Padé approximant to a function Π V (q2) is defined as the
quotient of two polynomials PM and QN

ΠV (q2) = Π
[N,M ]
V (q2) + R[N,M ](q

2) , Π
[N,M ]
V (q2) ≡ PM (q2)

QN (q2)
, (1)

such that the firstN+M+1 derivatives of the function at a point match those
of the approximant. R[N,M ](q

2) is the residue, and convergence of the Padé
approximant means that the residue has to vanish as N,M → ∞. Migdal
chose to build the symmetric [N,N ] Padé approximant for the parton-model
logarithm around a point q2 = −µ2 in the far Euclidean axis. It is easy to
check that the Padé approximant satisfies the following 2N + 1 equations

dn

d(q2)n

[

ΠV (q2)QN (q2) − PN (q2)

]
∣

∣

∣

∣

q2=−µ2

= 0, n = 0, . . . , 2N . (2)

When n ≥ N + 1, PN (q2) cancels and the denominator QN (q2) can be
determined from the last N equations. Using that ΠV (q2) obeys a once-
substracted dispersion relation, one can show that

∞
∫

0

dt

(t+ µ2)n+1
QN (t) = 0, n = N + 1, . . . , 2N , (3)

which can be shown to lead to Legendre polynomials P
(0,0)
N ,

QN (q2) = 2F1

(

−N,−N ; 1;− q2

µ2

)

= (q2 + µ2)N P
(0,0)
N

(

µ2 − q2

µ2 + q2

)

. (4)

Eq. (4) can now be plugged back in Eq. (2) to yield [6]

Π
N
V (q2) ≃ 2

(q2 + µ2)N

N
∑

k=0

(

k
j

)2
[

HN−k −Hk

P
(0,0)
N (χ)

]

(

− q2

µ2

)k

,

χ =
µ2 − q2

µ2 + q2
, (5)

which is the Padé approximant to the logarithm, i.e., in the continuum limit
N → ∞ we recover the logarithm we started from.
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2.1. Migdal’s limit and quark–hadron duality breakdown

However, in the original approach of Migdal, the continuum limit was
taken in a more sophisticated way, namely q2 ≪ µ2, N → ∞ with N/µ fixed.
Under this correlated limit, the Legendre polynomials can be expressed as
a Bessel J0 function

lim
N→∞

P
(0,b)
N

(

1 − ξ2

2N2

)

= J0(ξ) , (6)

and the 〈V V 〉 Green function takes the form

Π
N
V (q2) = −4

3

Nc

(4π)2

[

log
q2

µ2
− π

Y0 (qΛ )

J0 (qΛ )

]

,

Λ =
2N

µ
. (7)

It is important to stress that the equation above is no longer the Padé
approximant, due to the presence of the Bessel functions. The Padé approx-
imant has the form

Π
N
V (q2) = −4

3

Nc

(4π)2
log

−q2
µ2

− RN (q2)

QN (q2)
, (8)

where the residue is a Meijer G function [6] that vanishes in the continuum
limit, thus ensuring convergence. The correlated limits taken by Migdal
freeze the residue, thereby spoiling the convergence of the rational approxi-
mant. The non-vanishing residue also explains why the resulting spectrum
has distinct resonances after N → ∞. Migdal’s original motivation behind
the correlated limits was to enforce quark–hadron duality. However, the
correlated limits actually break duality. It can be shown that in the far
Euclidean region the correlator of Eq. (7) reduces to (Q2 = −q2)

ΠV (Q2) = −4

3

Nc

(4π)2
log

Q2

µ2
+ O(e−2QΛ) , (Q2 ≫ 0). (9)

The last term is not part of the OPE. It is generically referred to as quark–
hadron duality violations, defined as

ΠV (q2) ≃ Π
OPE
V (q2) + ∆(q2) , (q2 > 0). (10)

In Migdal’s model, it can be shown that

∆(q2) =
Nc

12π

Y0 (qΛ )

J0 (qΛ )
. (11)
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In other words, duality is broken and the duality violating pieces collect the
singularities of the spectrum. This is exactly the role that duality violations
have to play, since the OPE, being a regular expansion, is unable to capture
the resonance poles.

There have been some studies devoted to the issue of quark–hadron du-
ality violation [5]. The particular form of Eq. (9) is known to be induced by
finite-size singularities. It is important to stress however that this duality
breakdown is not what is expected from a large-Nc model of resonances,
where infinite-size singularities are present.

3. A large-Nc toy model in 4 dimensions

In the large-Nc limit, the spectral function of the 〈V V 〉 correlator takes
the form

1

π
Im ΠV (t) =

∞
∑

n=0

F 2
nδ(t−M2

V (n)) . (12)

We will consider the simplest model in the large-Nc limit with asymptotic
Regge behavior, namely [5]

F 2
n = F 2, M2

V (n) = m2
ρ + an . (13)

Using dispersion relations, the set of Dirac deltas can be resummed to give

ΠV (q2) =
F 2

a

[

ψ

(

m2
ρ

a

)

− ψ

(

−q2 +m2
ρ

a

)]

. (14)

The free parameters F and a can be determined by matching to the parton-
model logarithm and requiring a vanishing dimension-two condensate

c2 = −F 2

(

m2
ρ

a
− 1

2

)

. (15)

Duality violations can also be determined analytically. Using Eq. (10),

∆(q2) =
Nc

12π
cot

[

π
−q2 +m2

ρ

a

]

. (16)

which in the Euclidean region decays exponentially as e−|q2|/µ2

. Notice the
difference with Eq. (9).
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4. Holographic duals

Both Migdal’s model and the toy model introduced in the previous
sections have 5-dimensional duals through the AdS–CFT correspondence1.
Their action can be written as

S = −
∫

d4x dz e−Φ(z)√g 1

4g2
5

Tr

[

(Fµ̂ν̂F
µ̂ν̂)L + (Fµ̂ν̂F

µ̂ν̂)R

]

, (17)

where g is the AdS metric

gµ̂ν̂ dx
µ̂dxν̂ =

1

z2
(ηµνdx

µdxν + dz2) , ηµν = diag(−1, 1, 1, 1) , (18)

and Φ(z) is the dilaton field. In the hard wall model, Φ(z) = φ, ǫ ≤ z ≤ Λ,
where z = ǫ and z = Λ are the four-dimensional boundary branes. In
this model, the solution to 〈V V 〉 is given by Eq. (7). Holography therefore
provides a nice geometrical interpretation of the infrared scale Λ of Migdal’s
model.

The so called soft wall model was originally proposed as a AdS–QCD
model with built-in Regge behavior. The theory does not have an infrared
brane, and instead the dilaton field has a quadratic profile, Φ(z) ∼ cz2. The
soft wall model is the holographic dual to our toy model with m2

ρ = 4c = a
[4]. Notice that modifications on the infrared of 5-dimensional holographic
models correspond to different spectrums and therefore to different violations
of quark–hadron duality. In the language of holography a realistic large-Nc

spectrum is achieved, as illustrated in the soft wall model, by the removal of
the infrared brane.

4.1. Some phenomenology of the soft-wall model

The soft wall model has two independent parameters, g5 and c. c is
determined by mρ and g5 can be fixed by imposing matching of the model
to the perturbation theory logarithm. Thus,

g2
5 =

12π2

Nc
, c =

m2
ρ

4
≃ 150MeV2 . (19)

By matching to our toy model one immediately finds that duality violations
take the form [8]

∆(q2) =
π

2g2
5

cot

[

π
−q2 + 4c

4c

]

. (20)

1 For a detailed analysis of the relationship between Migdal’s model, Padé approxi-
mants and holography we refer the reader to [7].
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Unfortunately, m2
ρ = a predicts a Regge slope a and decay constants F

at about half their experimental values. Furthermore, using Eq. (15), the
soft wall model yields a negative dimension-two condensate. Interestingly,
2m2

ρ = a would bring both a and F closer to experimental values as well as
making the dimension-two condensate vanish.

5. Discussion

We have shown that Migdal’s model for the spectrum of vector mesons
in QCD is not a Padé approximant. Padé approximants are discretizations
of functions and, if convergence is to be fulfilled, in the continuum limit
N → ∞ they should yield the function one has started with. In Migdal’s
model, one starts with the parton model logarithm and ends in a theory of
discrete resonances, even after N → ∞.

This departure from the Padé approximant is due to the modified con-
tinuum limit, which also generates an infrared scale Λ. This infrared scale
has a nice geometrical interpretation as the infrared boundary brane of
5-dimensional holographic models. The scale breaks the convergence of the
Padé approximant and is actually a modeling of quark–hadron duality break-
down. The existence of duality breakdown is a necessary ingredient in any
model of resonances: from the operator product expansion one cannot reach
the spectrum. Notice however that Migdal’s modeling of duality breakdown
is based on a manipulation of the asymptotic behavior of 〈V V 〉. Therefore,
it is by construction unable to distinguish models with the same asymptotics.

Migdal’s spectrum (and hence the spectrum in the hard wall model) tends
to the Padé approximant at large space-like momenta and hence reproduces
the perturbative logarithm. However, on the physical axis, due to the pres-
ence of duality breakdown, the picture is very different: the Padé tries to
reconstruct the logarithmic branch cut by piling simple poles arbitrarily
close, thus invalidating any possible interpretation of them as resonances in
a large-Nc model. Inclusion of duality breakdown is thus, contrary to what
Migdal claimed, essential.
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