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The same, well known, detΣ + detΣ† term in effective theories, which
’t Hooft showed is generated by instantons in QCD and which resolves the
UA(1) problem giving mass, in particular to the η′ is for three light flavors
shown to give three classical minima along the UA(1) circle. The three
minima are related to the center Z(3) of SU(3). The term also contributes,
in a similar way as the diquark model of Jaffe, to an inverted scalar mass
spectrum for the light scalars. The three vacua suggests a connection to
the strong CP problem and confinement.

PACS numbers: 11.15.Ex, 11.30.–j, 11.30.Rd, 12.39.Fe

It is widely believed that QCD with three nearly massless light quark
flavors explain the well-known approximate SU(3)L× SU(3)R chiral symme-
try seen in the light meson mass spectrum. Our present understanding of
the symmetry breaking involves three basic mechanisms:

(i) Spontaneous symmetry breaking in the QCD vacuum, which gives rise
to a near flavor symmetric 〈q̄q〉 condensate and an octet of (would be
massless) Goldstone pseudoscalars.

(ii) A contribution from the gluon anomaly, which explicitly breaks the
axial symmetry UA(1) in U(3)L× U(3)R, and which gives in, particular,
mass to the η′ [1].

(iii) Small chiral quark masses mu,md,ms from the electro-weak sector,
which give the pseudoscalar octet states a small mass and break flavor
symmetry. A large ms/md mass ratio together with the anomaly term
(ii) also splits the η from the pion, which saves isospin symmetry in
spite of the large md/mu chiral quark mass ratio.
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In effective theories for scalar and pseudoscalar mesons one models the
global U(3)L× U(3)R symmetry by potential terms. Including up to dimen-
sion four terms one writes1

VU3U3 =
µ2

2
Tr[ΣΣ†] + λTr[ΣΣ†ΣΣ†] + λ′(Tr[ΣΣ†])2 , (1)

where Σ is the usual 3×3 matrix containing the scalar (s) and pseudoscalar
(p) nonets. (Denoting the nonet members by sk and pk for k = 0 to 8, one
has Σ =

∑

k(sk + ipk)λk, where λk are Gell–Mann matrices).
If µ2 has the “wrong sign” µ2 < 0 Eq. (1) predicts the often quoted

spontaneous symmetry breaking with a nonet of massless pseudoscalars.
But, in this case the U(1) problem [2] arises. There is “too much symmetry”,
the axial UA(1) problem appears and the η and η′ become massless.

To have a realistic zeroth order SU(3)L× SU(3)R model, one must follow
the step (ii) above and break the axial UA(1) symmetry explicitly in the
strong interactions. The simplest way to do it [1] is by adding a determinant
term to the Lagrangian,

VSU3SU3 = VU3U3 + β[det(eiθΣ) + det(eiθΣ)∗] . (2)

The addition of the complex conjugate term is required by parity, and also
by C parity, since a trilinear coupling of three C = + mesons must by Bose
statistics be symmetric under interchange of two mesons. We have included
a UA(1) phase factor given by the angle θ. To give the pseudoscalar octet
members mass (and the η′ a small extra mass) one conventionally adds
a term ∝ (Tr[ΣMq] + h.c.) where Mq is a diagonal matrix containing the
chiral light quark masses.

Thereby one obtains an instructive and simple effective tree level model
for scalar and pseudoscalar mesons, essentially the SU(3) version of the linear
sigma model, by which one can model the basic global symmetries of QCD
and their zeroth order breaking with the nonperturbative instanton term.
Eq. (2) is the simplest model for the lightest mesons, which is consistent
with the symmetries of QCD. In its first formulations it has been with us for
almost 50 years [3,5] and remain as a first understanding of the symmetries
involved in strong interactions.

It is the main point of this paper to show that determinant term can
give rise to three classical minima, and to show how color symmetry enters
for the lightest scalar mesons, although in an almost hidden form.

1 We recall that by putting the pseudoscalars (p) into the anti-Hermitian part of Σ =
s+ ip the γ5 in ū(s+ iγ5p)u disappears since we can write it as ū[ 1

2
(1− γ5)Σ + 1

2
(1+

γ5)Σ
†]u=ūLΣuR + ūRΣ†uL. The parity transformation of γ5 is thus just complex

conjugation, Σ → Σ∗, while CP is represented by Σ → Σ†. From this it is also clear
that Σ transforms as Σ → ULΣ UR, and Σ†

→ URΣ† UL under U(3)L× U(3)R,
from which the invariance of the potential (1) follows.
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There are well known mathematical identities for the determinant, which
are useful for our purpose, and which we give in Eqs.(3)–(5) below. The first2

is (for Nf = 3),

6 det Σ = (TrΣ)3 + 2Tr(Σ3) − 3Tr(Σ2)Tr(Σ) . (3)

In this expression each term has less symmetry (SU(3)F ) than the sum
SU(3)L× SU(3)R. In fact, each term when evaluated in terms of the 18
meson fields has many more terms than the determinant, where most terms
cancel against each other.

Another identity for a determinant3 detΣij = det(q̄iqj) comes directly
from its basic definition

detΣ = det(q̄iqj) = εijkq̄1qi q̄2qj q̄3qk

=
1

3!
δlmn
ijk q̄lqi q̄mqj q̄nqk . (4)

The second expression is written in a way which is clearly frame indepen-
dent [6].

Perhaps the simplest expression is obtained when the flavor sum in
Eq. (4) is written out explicitly:

detΣ = det(q̄iqj) = +ūu d̄d s̄s − ūu d̄s s̄d + ūd d̄s s̄u

−ūd d̄u s̄s + ūs d̄u s̄d − ūs d̄d s̄u . (5)

The most important physics properties of these determinant forms are

(a) The determinant is completely antisymmetric with respect to flavor.

(b) In each term one has 3 quarks and 3 antiquarks, and any quark flavor
occurs only once, and similarly any antiquark flavor occurs only once.

(c) It is a flavor singlet both in the three quarks and in the three anti-
quarks, and as already noted invariant under an SU(3) transformation
from both the left as well as from the right of Σ.

(d) A UA(1) transformation is just a simple phase transformation eiϕ from
the left and from the right, whereby only the phase of Σ changes by
e2iϕ. Because of this we have the freedom in choosing θ in Eq. (2).

2 This identity is easily derived after diagonalisation. In terms of the eigenvalues a, b, c
one has 6 detΣ = 6abc = (a + b + c)3 + 2(a3 + b3 + c3) − 3(a2 + b2 + c2)(a + b + c).

3 Here the matrix element q̄iqj stands for the weight of the left handed antiquark —
right handed quark component in a meson, or in a superposition of mesons, in a
rather obvious way. Thus the dimension of q̄q is as for a meson, GeV.



2834 N.A. Törnqvist

It is of interest to note that in Eq. (5) the first term is contained only in
the first term, (TrΣ)3, of Eq. (3). The three negative terms are contained in

the third term, −3Tr(Σ2)Tr(Σ), of Eq. (3), while the two remaining positive

terms in the above equation are contained in, 2Tr(Σ3), of Eq. (3).

These equations (2)–(5) show that the determinant term involves a re-

markably symmetric but entangled quantum system. In particular, note
that because the three quarks or three antiquarks involved form a flavor

singlet, any diquark subsystem must be in the 3̄F representation of SU(3)F .

In fact, many years ago Jaffe [7] found that in the bag model the strongest

bound diquarks are those, which are in the antisymmetric 3̄F SU(3)F rep-
resentation, have antisymmetric spin S = 0, symmetric space (S-wave) and

are antisymmetric in color 3̄C . Therefore he suggested a diquark model for
the lightest scalar nonet, which would have an “inverted” mass spectrum

(compared to the vector mesons), where the σ(600) is the lightest, followed
by a κ near 800 MeV and the a0(980), f0(980). In fact, the model described

by Eq. (2) predicts a very broad, light sigma and the determinant term

(when including s − d quark mass splitting) shifts the κ down from the a0

by the same amount as the K is shifted up from the π 4.

The light and broad sigma [8], the σ(600), is now accepted as a true res-

onance also by the chiral perturbation theory experts [9]. Also the expected

extremely broad κ pole, which has been claimed in experiments [10], has
very recently [11] been determined to a remarkable accuracy by Roy–Steiner

constraints involving crossing symmetry, analyticity and unitarity.

The connection between Jaffe’s diquark model and the determinant term

is clear. It is natural to expect the lowest diquarks to have spin 0 and to be
in an S-wave. Since the determinant requires any diquark to be in the 3̄F

they must also be in the antisymmetric 3̄C by spin-statistics. Thus if one
wants to include color, then the determinant term should be multiplied by

a similar factor, but now with color replacing flavor in the indices.

This shows the flavor-color connection through Fermi–Dirac statistics

within the scalar mesons, in a analogous way as the color factor is needed for
the proton wave function. There is, however, one clear difference compared

to Jaffe’s model. The determinant term does not describe diquark–diquark

bound states but a transition from q̄q to q̄q q̄q. Similarly, because it describes
such a transition, and not a qqq state, it is not in conflict with the fact

that a flavor singlet, color singlet, S-wave, spin 1
2

spectroscopic qqq state is
forbidden by Fermi–Dirac statistics (because of only two degrees of freedom

for spin).

4 The contribution to m2

κ − m2

a0
= −(m2

K − m2

π) = 2β(vs̄s − vd̄d).
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Now the physical states are of course not the ūu, d̄d, s̄s appearing in
Eqs. (4), (5), but superpositions of these (and because of the preceding dis-

cussion also mixings with four-quark meson–meson states, with same quan-

tum numbers). In particular, the pure SU(3) singlet states are equal super-
position of ūu, d̄d, s̄s. They are thus represented by the complex matrix

Φ = φ · 1/
√

3, where φ = (s0 + ip0) and where 1 is the 3× 3 unit matrix. It
is of some interest that these singlet terms appear only in the first term of

Eqs. (3), (5).
First neglect the phase angle θ in Eq. (2). There is then a real minimum

of the potential Eq. (2) i.e. a non zero vacuum value. (For µ = 0 this is

v = 1√
3
φmin = −β/(2λ + 6λ′).) Note that the usual positivity condition for

a minimum, v > 0, chooses the sign of β < 0 when the sign in front of β in

Eq. (6) is chosen positive.
But, in fact, there are three minima in the effective potential defining 3

vacuum expectation values! Substituting Φ into Σ of Eq. (6) one finds, now
including the phase θ in Eq. (2):

V (φ) =
µ2

2
|φ|2 +

λ + 3λ′

3
|φ|4 +

β

3
√

3

[

(eiθφ)3 + (e−iθφ∗)3
]

=
µ2

2
|φ|2 +

λ + 3λ′

3
|φ|4 +

2β

3
√

3
|φ|3 cos [3θ + 3arg(φ)] . (6)

The cosine factor in the β term makes this potential different from the usual

“Mexican hat” potential. As an illustrative example it is shown in Fig. 1
as a contour plot in the complex φ plane near parameter values found in

Ref. [4]. It has three “hills” in the directions arg(φ) = π − θ, π − θ + 2π/3
and π− θ + 4π/3, and three valleys in between. Most importantly, provided

µ2 is not too large and positive, it has three minima defining three vacuum
expectation values in the downhill directions of the steepest hills

v1 = φmin
1 /

√
3 = ve−iθ ,

v2 = φmin
2 /

√
3 = ve−iθ+i2π/3 ,

v3 = φmin
3 /

√
3 = ve−iθ+i4π/3 . (7)

One should expect that instantons in QCD can tunnel between these
vacua and, in fact, ’t Hooft [1] motivated the determinant term because of

instantons. The inclusion of the θ angle shows that the three minima are

all on the same footing. Although the term (6) can resolve a continuous
ambiguity in θ there remains a threefold ambiguity. In the SU(3)F limit,

i.e. if one neglects weak interactions and chiral quark masses, one has the
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freedom to chose this chiral angle θ to be a multiple of 2π/3, such that
this choice (θ = 0, 2π/3 or 4π/3) makes any of the three minima real and

> 0. Reality of vie
iθ is required by CP, at least as long as weak interactions

are neglected. Expanding the meson fields around any of these vacua Σ →
Σ + vi1 one finds a singlet η′ mass, m2

p0
= −6β|v|=12(λ+3λ′)|v|2, from the

second derivative in the angular variable (arg(φ) ∝ p0) of the potential (6).
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Fig. 1. An illustrative example of the potential V (φ) of Eq. (6) as a contour plot in

the complex φ plane. The three minima are here at |φmin| ≈ 130 MeV. (This cor-

responds to an average fπ and fK decay constant of 130
√

(2/3) MeV≈ 106 MeV.)

The parameters in Eq. (6) are chosen in this illustration as µ = 0, β = −1700 MeV

and λ+3λ′ = 11.5. The masses of the SU(3) singlet pseudoscalar and singlet scalar

states are given by the second derivatives at any of the three minima.

The scalar singlet mass is similarly obtained m2
s0

= 4(λ+3λ′)v2=m2
p0

/3,
or 553 MeV for a 958 MeV p0, from the second derivative in the radial

direction |φ| of the same potential (6). The scalar octet mass is given by

m2
s1..8

= 16(λ+3/2λ′)v2=4/3m2
p0
−8λ′v2, which means in the region of 1 GeV.

The 0−+ Goldstone octet remain in this SU(3)L× SU(3)R limit, as expected

massless.
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Why 3 minima? The threefold symmetry, together with CP, is related
to the center Z(3) of the axial SU(3) symmetry in SUL(3)× SUR(3). Above
we showed how the determinant connects flavor and three colors because of
Fermi–Dirac statistics. This makes three flavors special for scalar mesons,
and Nf = 3 is also special because SU(3)F remains approximate after sym-
metry breaking from the small chiral quark masses. The symmetry breaking
is small compared to ΛQCD or, here perhaps better, compared to the η′ or
proton mass.

Thus for the meson spectrum it does not matter which of the three vi’s is
chosen in the shift, Σ → Σ + vi1. The meson masses remain the same since
they depend on |vi|2 = v2, but for fermions a problem appears because of the
possible phase of vi. A constituent quark can get mass, mconst

q = gvi, through
Yukawa couplings to the vacuum as in the original linear sigma model [3]:
gq̄LΣqR + h.c. → gviq̄LqR + h.c., where g is a pion quark coupling. Here vi

must be chosen real for each quark. A phase of vi like Eq. (7) could violate
parity and charge conjugation, by which one could argue that such single
free quarks are forbidden not only by color but also CP.

The three minima in Fig. 1 are puzzling, Are these just a curiosity of the
effective model studied, or are they connected to the longstanding strong
CP problem [13] and perhaps confinement? The axial UA(1) current is,
of course, well known not to be conserved, because of the triangle quark
graph and the gluon chiral anomaly. In the strong CP problem one also
derives from the anomaly many different vacua connected by “large” gauge
transformations and winding numbers in the same UA(1) degree of freedom
as discussed here. The situation in our model seems similar although the
model fixes the number of vacua to three in a cyclic fashion. Should the
true vacuum be a superposition of the three vacua as for the θ vacuum [13]
(
∑

n einθ|vi >), and should flavor symmetry be broken in a way that main-
tains the permutation Z(3) symmetry of the three vacua, because of its
possible connection to color?

To get a finite pseudoscalar octet mass one can, instead of a conven-
tional term ∝ mqTrΣ + h.c., introduce a small term ∝ mq(TrΣ)3 + h.c.,
which retains the Z(3) symmetry (like the terms on the r.h.s. of Eq. (3)).
Similarly, instead of a conventional term ∝ Tr(ΣMq) + h.c., which breaks
SU(3)F , one can introduce e.g. a term ∝ (TrΣ)2Tr(ΣMq)+h.c., which also
retains the Z(3) symmetry, i.e. one still has the three equal minima as in
Fig. 1. These alternative forms for the symmetry breaking results in only
minor modifications for the predictions to the mass spectrum [14], since
these depend only on the second derivatives of the Lagrangian at the chosen
minimum vi, as the singlet η′ and σ masses in the demonstration of Fig. 1.
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Fig. 1 suggests that the three vacua vi and Z(3) play a role in the con-
finement mechanism (see Huang [15]). Instantons can tunnel between these
minima, and the wave function of the proton may be a superposition of
states in each of the three vi. For a proton or baryon mass term mpp̄LpR,
where p stands for qqq it would be natural that it should transform under
UA(1) like the determinant term, which also involves 3 quarks and 3 anti-
quarks. Now, for a three quark system imagine a qqq wave function in the
tricyclic potential of Fig. 1, with three probability maxima at the three min-
ima and let the phase of p̄LpR wind 3 times that of φ, i.e. like detΣ. E.g.
a “trial wave function” (for p̄L or pR) along the chiral circle ∝ cos(3ϕ)e3iϕ,
where ϕ = arg(φ)/2, would do. This gives for p̄LpR: ∝ [cos(3ϕ)e3iϕ]2,
which transforms as detΣ under a chiral rotation (det Σ → e6iϕ det Σ, when
Σ → e2iϕΣ). Then for baryons, as for mesons, it does not matter which of
the three minima is chosen as real, but for a quark it would.

A perhaps better approach is to assume a quark to be a soliton, which
interpolates between two of the vacua as in the Sine–Gordon equation.
A baryon is then composed of a three soliton solution which interpolates
through all three vacua starting and ending at the same vi, which is chosen
real and which remain the true minimum after symmetry breaking.

This may open the door for a simple understanding of the confinement
mechanism. As a self-consistency check, such a threefold rotation in the
chiral angle for the baryon mass term is consistent with the fact that baryons
have integer baryon number, but quarks have fractional baryon number of 1

3
.

The number three is then of topological nature as a winding number, which
is conserved although SU(3)F is broken.

In conclusion the puzzling fact that this well known effective model has
three vacua, which are illustrated in Fig. 1, opens many interesting questions.
A better understanding should illuminate the long standing strong CP and
confinement problems.

Support from EU RTN Contract CT2002-0311 (Euridice) is gratefully
acknowledged.
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