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I discuss low energy aspects of heavy meson decays, where there is
at least one heavy meson in the final state. Examples are B–B mixing,
B → DD, B → Dη′, and B → Dγ. The analysis is performed in the heavy
quark limit within heavy–light chiral perturbation theory. Coefficients of
1/Nc suppressed chiral Lagrangian terms (beyond factorization) have been
estimated by means of a heavy–light chiral quark model.
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1. Introduction

In this paper we consider non-leptonic “heavy meson to heavy meson(s)”
transitions, for instance B–B-mixing [1], B → DD̄ [2] and with only one
D-meson in the final state, like B → Dη′ [3] and B → γ D∗ [4–6].

The methods [7] used to describe heavy to light transitions like B → ππ
and B → Kπ are not suited for the decays we consider. We use heavy–light
chiral perturbation theory (HLχPT). Lagrangian terms corresponding to
factorization are then determined to zeroth order in 1/mQ, where mQ is the

mass of the heavy quark (b or c). For B–B-mixing we have also calculated
1/mb corrections [1].

Colour suppressed 1/Nc terms beyond factorization can be written down,
but their coefficients are unknown. However, these coefficients can be cal-
culated within a heavy–light chiral quark model (HLχQM) [8] based on
the heavy quark effective theory (HQEFT) [9] and HLχPT [10]. The 1/Nc

suppressed non-factorizable terms calculated in this way will typically be
proportional to a model dependent gluon condensate [1–3,6, 8, 11].
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2. Quark Lagrangians for non-leptonic decays

The effective non-leptonic Lagrangian at quark level has the form [12]:

LW =
∑

i

Ci(µ) Q̂i(µ) , (1)

where the Wilson coefficients Ci contain GF and KM factors. Typically, the
operators are four quark operators being the product of two currents:

Q̂i = jµ
W(q1 → q2) jW

µ (q3 → q4) , (2)

where jµ
W(qi → qj) = (qj)L γµ (qi)L, and some of the quarks qi,j are heavy.

To leading order in 1/Nc, matrix elements of Q̂i factorize in products of
matrix elements of currents. Non-factorizable 1/Nc suppressed terms are
obtained from “coloured quark operators”. Using Fierz transformations and

δijδln =
1

Nc
δinδlj + 2 tain talj , (3)

where ta are colour matrices, we may rewrite the operator Q̂i as

Q̂F
i =

1

Nc
jµ
W(q1 → q4) jW

µ (q3 → q2) + 2 jµ
W(q1 → q4)

a jW
µ (q3 → q2)

a , (4)

where jµ
W(qi → qj)

a = (qj)L γµ ta (qi)L is a left-handed coloured current.

The quark operators in Q̂F
i give 1/Nc suppressed terms.

3. Heavy–light chiral perturbation theory

The QCD Lagrangian involving light and heavy quarks is:

LQuark = ±Q
(±)
v iv · DQ(±)

v + O(m−1
Q ) + q̄iγ · Dq + . . . , (5)

where Q
(±)
v are the quark fields for a heavy quark and a heavy anti-quark

with velocity v, q is the light quark triplet, and iDµ = i∂µ − eqAµ − gst
aAa

µ.
The bosonized Lagrangian have the following form, consistent with the un-
derlying symmetry [10]:

Lχ(Bos)=∓Tr

[
H

(±)
a (iv · Dfa)H

(±)
f

]
−gATr

[
H

(±)
a H

(±)
f γµγ5Aµ

fa

]
+. . . (6)

where the covariant derivative is iDµ
fa ≡ δaf (i∂µ − eHAµ)−Vµ

fa ; a, f being

SU(3) flavour indices. The axial coupling is gA ≃ 0.6. Furthermore,

Vµ(orAµ) = ± i

2
(ξ†∂µξ ± ξ∂µξ†) , (7)
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where ξ = exp(iΠ/f), and Π is a 3 by 3 matrix containing the light mesons
(π,Kη), and the heavy (1−, 0−) doublet field (Pµ, P5) is

H(±) = P±(P (±)
µ γµ − iP

(±)
5 γ5) , P± = (1 ± γ · v)/2 , (8)

where superscripts (±) means meson and anti-meson respectively. To boso-
nize the non-leptonic quark Lagrangian, we need to bosonize the currents.
Then the b, c, and c quarks are treated within HQEFT, which means the

replacements b → Q
(+)
vb

, c → Q
(+)
vc , and c → Q

(−)
v̄ . Then the bosonization of

currents within HQEFT for decay of a heavy B-meson will be:

qL γµ Q(+)
vb

−→ αH

2
Tr
[
ξ†γµLH

(+)
b

]
≡ Jµ

b , (9)

where L is the left-handed projector in Dirac space, and αH = fH

√
MH

for H = B,D before pQCD and chiral corrections are added. Here, H
(+)
b

represents the heavy meson (doublet) containing a b-quark. For creation of
a heavy anti-meson B or D, the corresponding currents Jµ

b̄
and Jµ

c̄ are given

by (9) with H
(+)
b replaced by H

(−)
b and H

(−)
c , respectively. For the B → D

transition we have

Q
(+)
vb

γµ LQ(+)
vc

−→ −ζ(ω)Tr

[
H

(+)
c γµLH

(+)
b

]
≡ Jµ

b→c , (10)

where ζ(ω) is the Isgur–Wise function, and ω = vb · vc. For creation of DD

pair we have the same expression for the current Jµ
cc̄ with H

(+)
b replaced

by H
(−)
c , and ζ(ω) replaced by ζ(−λ), where λ = v̄ · vc. In addition there

are 1/mQ corrections for Q = b, c. The low velocity limit is ω → 1 . For

B → DD and B → D∗γ one has ω ≃ 1.3 , and ω ≃ 1.6 , respectively.

3.1. Factorized Lagrangians for non-leptonic processes

For B − B mixing, the factorized bosonized Lagrangian is

LB = CB Jµ
b (Jb̄)

µ , (11)

where CB is a short distance Wilson coefficient (containing (GF)2), which is
taken at µ = Λχ ≃ 1 GeV, and the currents are given by (9).

For processes obtained from two different four quark operators for b →
cc̄q (q = d, s), we find the factorized Lagrangian corresponding to Fig. 1:

LSpec
Fact =

(
C2 +

C1

Nc

)
Jµ

b→c (Jc̄)µ , (12)
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where Ci = 4√
2
GFVcbV

∗
cq ai, and [13] a1 ≃ −0.35 − 0.07i, a2 ≃ 1.29 + 0.08i.

We have considered the process B0
d → D+

s D−
s . Note that there is no fac-

torized contribution to this process if both D-mesons in the final state are

pseudoscalars! But the factorized contribution to B0
d → D+D−

s will be the

starting point for chiral loop contributions to the process B0
d → D+

s D−
s .

�
s

D−
s

c�b c
B0 D+

d

Fig. 1. Factorized contribution for B0
d → D+D−

s through the spectator mechanism,

which does not exist for decay mode B0
d → D+

s D−
s .

The factorizable term from annihilation is shown in Fig. 2, and is:

LAnn
Fact = (C1 +

C2

Nc
)Jµ

cc̄ (Jb)µ . (13)

Because (C1 + C2/Nc) is a non-favourable combination of the Wilson coef-
ficients, this term will give a small non-zero contribution if at least one of
the mesons in the final state is a vector.�B b

d �D+
s

D−
s

c

s

c

Fig. 2. Factorized contribution for B0
d → D+

s D−
s through the annihilation mecha-

nism, which give zero contributions if both D+
s and D−

s are pseudoscalars.

3.2. Possible 1/Nc suppressed tree level terms

For B–B̄ mixing, we have for instance the 1/Nc suppressed term

Tr
[
ξ†σµαLH

(+)
b

]
· Tr

[
ξ†σµαRH

(−)

b̄

]
. (14)
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For B → DD̄, we have for instance the terms

Tr
[
ξ†σµαLH

(+)
b

]
· Tr

[
H

(+)
c γαLH

(−)
c̄ γµ

]
, (15)

Tr
[
ξ†σµαLH

(+)
b

]
· Tr

[
H

(+)
c γαLH

(−)
c̄

]
(v̄ − vc)µ . (16)

One needs a framework to estimate the coefficients of such terms. We use
the HLχQM, which will pick a certain linear combination of 1/Nc terms.

3.3. Chiral loops for non-leptonic processes

Within HLχPT, the leading chiral corrections are proportional to

χ(M) ≡
(

gAmM

4πf

)2

ln

(
Λ2

χ

m2
M

)
, (17)

where mM is the appropriate light meson mass and Λχ is the chiral symmetry
breaking scale, which is also the matching scale within our framework.

For B−B mixing there are chiral loops obtained from (6) and (11) shown
in Fig. 3. These have to be added to the factorized contribution.

Fig. 3. Chiral corrections to B−B mixing, i.e. the bag parameter BBq
for q = d, s.

The black boxes are weak vertices.

For the process B0
d → D+

s D−
s we obtain a chiral loop amplitude cor-

responding to Fig. 4. This amplitude is complex and depend on ω and λ
defined previously. It has been recently shown [5] that (0+, 1+) states in
loops should also be added to the result.

�B0 B∗0
s

D∗−

D+
s

D−
s

K0�B0

D∗+

D∗−

D+
s

D−
s

K0

Fig. 4. Two classes of non-factorizable chiral loops for B0
d → D+

s D−
s based on the

factorizable amplitude proportional to the IW function ∼ ζ(ω).
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4. The heavy–light chiral quark model

The Lagrangian for HLχQM [8] contains the Lagrangian (5):

LHLχQM = LHQET + LχQM + LInt , (18)

where LHQET is the heavy quark part of (5), and the light quark part is

LχQM = χ [γµ(iDµ + Vµ + γ5Aµ) − m]χ . (19)

Here χL = ξ†qL and χR = ξqR are flavour rotated light quark fields, and m
is the light constituent mass. The bosonization of the (heavy–light) quark
sector is performed via the ansatz:

LInt = −GH

[
χf Hf

v Qv + Qv Hf
v χf

]
. (20)�B d

b

Fig. 5. The HLχQM ansatz: Vertex for quark meson interaction.

The coupling GH is determined by bosonization through the loop di-
agrams in Fig 6. The bosonization leads to relations between the model
dependent parameters GH, m, and 〈 αs

π G2 〉, and the quadratic, linear, and
logarithmic divergent integrals I1, I3/2, I1, and the physical quantities fπ,
〈 qq 〉, gA and fH (H = B,D).

For example, the relation obtained for identifying the kinetic term is:

−iG2
HNc

(
I3/2 + 2mI2 +

i(8 − 3π)

384Ncm3

〈αs

π
G2
〉)

= 1 , (21)

where we have used the prescription:

g2
sG

a
µνGa

αβ → 4π2
〈αs

π
G2
〉 1

12
(gµαgνβ − gµβgνα) . (22)

The parameters are fitted in strong sector, with 〈 αs

π G2 〉 = [(0.315 ± 0.020)

GeV]4, and GH
2 = 2m

f2 ρ, where ρ ≃ 1. For details , see [8].
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H H �Vα,Aα

H H

�Vα,Aα

H H �Vα,Aα

H H

Fig. 6. Diagrams generating the strong chiral Lagrangian at mesonic level. The

kinetic term and the axial vector term ∼ gA.

5. 1/Nc terms from HLχQM

To obtain the 1/Nc terms for B − B mixing in Fig. 7 , we need the
bosonization of colored current in the quark operators of Eq. (4):

(
qL ta γα Q(+)

vb

)
1G

−→ −GH gs

64π
Ga

µνTr
[
ξ†γαLH

(+)
b Σµν

]
, (23)

Σµν = σµν − 2πf2

m2 Nc
[σµν , γ · vb]+ . (24)�B B

Γ Γ

Fig. 7. Non-factorizable contribution to B − B mixing; Γ ≡ ta γµ L.

This coloured current is also used for B → DD in Fig. 8, for B → D η′ in
Fig. 9, and for B → γD∗ in Fig. 10. In addition there are more complicated
bosonizations of coloured currents as indicated in Fig. 8.

For B → D η′ and B → γD∗ decays there are two different four quark
operators, both for b → cūq and b → c̄uq, respectively. At µ = 1 GeV they
have Wilson coefficients a2 ≃ 1.17 , a1 ≃ −0.37 (up to prefactors GF and
KM-factors).

For B → D η′, we must also attach a propagating gluon to the η′gg∗-
vertex. Note that for B0

s,d → γD0∗, the 1/Nc suppressed mechanism in
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�B0

d

b �D+
s

D−
s

c

s

c

Fig. 8. Non-factorizable 1/Nc contribution for B0 → D+
s D−

s through the annihila-

tion mechanism with additional soft gluon emision.��0B D� � ��0B Dta� ta�
Fig. 9. Diagram for B → Dη′ within HLχQM . Γ = γµ(1 − γ5).

B D B D

Fig. 10. Non-factorizable contributions to B → γD∗ from the coloured operators.

Fig. 10 dominates, unlike B0
s,d → γD0∗. Factorized contributions are pro-

portional to either the favourable contribution af = a2 + a1/Nc ≃ 1.05 or
the non-favourable contribution anf = a1 + a2/Nc ≃ 0.02.

5.1. 1/mc correction terms

For the B → D transition we have the 1/mc suppressed terms:

1

mc
Tr

[(
Z0H

(+)
c + Z1γ

αH
(+)
c γα + Z2H

(+)
c γ · vb

)
γαLH

(+)
b

]
, (25)

where the Zi’s are calculable within HLχQM. The relative size of 1/mc

corrections are typically of order of 20–30%.
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6. Results

6.1. B–B mixing

The result for the B(ag) parameter in B–B-mixing has the form [1]

B̂Bq =
3

4
b̃

[
1 +

1

Nc

(
1 − δB

G

)
+

τb

mb
+

τχ

32π2f2

]
, (26)

similar to the K − K-mixing case [11]. From perturbative QCD we have

b̃ ≃ 1.56 at µ = Λχ = 1 GeV. From calculations within the HLχQM we
obtain, δB

G = 0.5±0.1 and τb = (0.26±0.04) GeV, and from chiral corrections
τχ,s = (−0.10 ± 0.04) GeV2, and τχ,d = (−0.02 ± 0.01) GeV2. We obtained

B̂Bd
= 1.51 ± 0.09 B̂Bs = 1.40 ± 0.16 , (27)

in agreement with lattice results.

6.2. B → D D decays

Keeping the chiral logs and the 1/Nc terms from the gluon condensate,
we find the branching ratios in the “leading approximation”. For decays of
B̄0

d (∼ VcbV
∗
cd) and B̄0

s (∼ VcbV
∗
cs) we obtain branching ratios of order of few

×10−4 and ×10−3, respectively. Then we have to add counterterms ∼ ms

for chiral loops. These may be estimated in HLχQM.

6.3. B → D η′ and B → γD∗ decays

The result corresponding to Fig. 9 is:

Br(B → Dη
′

) ≃ 2 × 10−4 . (28)

The partial branching ratios from the mechanism in Fig. 10 are [6]

Br(B0
d → γ D∗0)G ≃ 1 × 10−5; Br(B0

s → γ D∗0)G ≃ 6 × 10−7 . (29)

The corresponding factorizable contributions are roughly two orders of mag-

nitude smaller. Note that the process B0
d → γ D∗0 has substantial meson

exchanges (would be chiral loops for ω → 1), and is different.
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7. Conclusions

Our low energy framework is well suited to B − B mixing, and to some
extent to B → DD. Work continues to include (0+, 1+), states, countert-

erms, and 1/mc terms. Note that the amplitude for B0
d → D+

s D−
s is zero

in the factorized limit. For processes like B → Dη′ and B → Dγ we
can give order of magnitude estimates when factorization give zero or small
amplitudes.
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