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FANO RESONANCES WITH HADRONIC ATOMS∗
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The formation of hadronic atoms in multichannel systems is discussed.
These atoms created in intermediate states produce different signals in the
inelastic and elastic transitions. In the first case the scattering amplitude
is dominated by a simple pole. In the second case an accompanying zero
arises. Such structures may be quite distinct in two channel cases but
disappear with the increasing number of open channels.

PACS numbers: 13.40.Ks, 14.40.–n

1. Introduction

Systems composed of two mesons are of great interest for theorists. First,
due to the apparent simplicity of the related quark structure and second due
to the applicability of effective theories in the low energy region. The latter
aspect, makes scattering lengths to be the quantities of prime interest. In
principle, the easiest way to measure the length is a low energy scattering
experiment. Unfortunately, mesonic targets are not available and a compa-
rable information has to be extracted from mesonic atoms. The atomic level
shifts and broadenings, due to nuclear interactions, are to a good approxima-
tion proportional to the scattering lengths and to learn atomic levels one has
to detect the X-ray transitions. This has been so far successful only in the
meson–baryon systems. Measurements of ππ or KK̄ scattering lengths have
to be done in a different way. Experiments have been contemplated, and
few have been attempted. One experiment with a 70 KeV energy resolution

p+ d→3 He + (π+π−)atom →3 He + (π0π0) (1)
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was performed at the Indiana UCL storage ring [1]. Although charged pions
have been produced the atoms have not been detected. Another experiment
performed with high energy K-mesons at CERN [2]

K+,− → π+,− + (π0π0) , (2)

studied the spectrum of the (π0π0) pair close to the (π+π−) threshold. Here,
the intention was to detect the cusp at the threshold and extract the relevant
scattering length in a way suggested in Ref. [3]. However, the energy reso-
lution in this experiment is about 1 MeV. Thus the energy bins reflecting
the strongest cusp effect overlap the π+π− atomic states.

The purpose of this note is to discuss semi-quantitatively the signals
of such atoms produced in intermediate states. More quantitative analysis
related to the actual experiment will be performed elsewhere.

2. Atoms in intermediate states

Consider an S-wave scattering in two channel systems. Let c denote the
charged meson pair and o the neutral pair. For many systems the neutral
channel has a lower threshold and the region of our special interest is a situ-
ation when channel c is closed and channel o is open. For phenomenological
applications, it is convenient to describe the scattering matrix T̂ in terms
of a real and symmetric reaction matrix K̂. These two matrices are related
by the Heitler equation T̂ = K̂ − iK̂q̂T̂ where q̂ is a diagonal matrix of the
center of mass momenta. In a single channel case this equation leads to
low energy parametrization 1/T = 1/a + iq, where a = K is a scattering
length related to the phase shift by a = − tan δ/q. A generalization of the

scattering length to a many channel situation is provided by the K̂-matrix.
For two channels, the relation of T and K matrices which follows from the
Heitler equation is more involved

K̂ =

(

Koo Kco

Koc Kcc

)

, (3)

and

T̂ =

(

Too Tco

Toc Tcc

)

=

(

Aoo

1+iqoAoo

Aco

1+iqcAcc
Aoc

1+iqcAcc

Acc

1+iqcAcc

)

, (4)

where qo,c are the momenta in the two channels o, c and the channel scat-
tering lengths Aij are expressed in terms of the K-matrix elements by

Acc = Kcc − iK2
coqo/(1 + iqoKoo) ,

Aco = Kco/(1 + iqoKoo) ,

Aoo = Koo − iK2
coqc/(1 + iqcKcc) . (5)
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These equations form a basis for the description of two channel scattering
which guarantees the unitarity condition ImAcc = −|Aco|2qo. There are three
parameters of K-matrix but these may be reduced to two lengths under the
isospin invariance.

The isospin symmetry is broken in the first instance by Coulomb inter-
actions and meson mass splittings. The first allow for atomic binding in
channel c while the second induce decays of atomic states. To describe the
atoms in collisions, such effects have to be built into Eq. (4) and Eq. (5).
The standard way is to put the Coulomb interactions into propagators Ḡc.
Solving any type of Lippman–Schwinger equation for the scattering matrix
T̄ = V + V ḠcT̄ allows to separate long range effects and include the short
range effects into “Coulomb corrected” scattering lengths Āij . This separa-
tion follows the general form of the propagator Ḡ that describes both the
Coulomb and the short ranged interactions Ḡ = Ḡc + ḠcT̄ Ḡc. As a conse-
quence, the scattering is described by amplitudes of the form

fij = f cδij + eiσiCiT̄ijCje
iσj , (6)

where f c, σ and C2 are the Coulomb scattering amplitudes, phases and pen-
etration factors. All these arise as effects of long range Coulomb force and
may be expressed by two functions that should replace iq in Eqs. (4),(5).
Thus, in channel c:

iq → f = iqC2 + 2γh , (7)

where C2 = 2πη/[exp(2πη) − 1] and h = 1

2
[ψ(iη) + ψ(−iη)] − 1

2
lnη2 with

γ = ZZ ′αµ = 1/B and η = γ/q. The µ denotes reduced mass and B the
Bohr radius. In the neutral channel o one has f = iq. Coulomb corrections to
A arise as a consequence of short range behavior of the Coulomb propagator
Gc. The corrected Ā are introduced to K̄, T̄ by formulas (4),(5). A way to
calculate the transition from A to Ā may be found in Ref. [4].

Atomic effects that occur in the intermediate states of nuclear reactions
are generated by singularities in f . Eq. (7) allows to expand f around an
atomic level ε0 to obtain the pole term

f ≃ R

E − ε0
, with R = −2π

µ
|ψ(0)|2 = −2µ2α3 . (8)

Here, ε0 is the pure Coulomb energy of an s-level, E is the energy relative to
the π+π− threshold and ψ is the pure Coulomb atomic wave function. From
Eqs. (7) and (8) one finds the position of the atomic pole in Tcc of Eq. (4)
i.e. the complex energy levels

ε− iΓ/2 = ε0 +RĀcc . (9)
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Eq. (9) is a well known result relating atomic level shifts and widths to the
scattering length in the leading order of Ācc/B. On the other hand the
atoms observable in the scattering experiments are given by T̄oo which in
the vicinity of the atomic level has a different structure

T̄oo ≈ K̄oo

1 + iqoK̄oo

E − εo +R(K̄cc − K̄2
co/K̄oo)

E − εo +RĀcc

. (10)

In addition to the pole at an atomic level this matrix element has also a zero
which is typical for Fano resonances. This zero is a consequence of a pole
which occurs in Āoo close to the atomic level. Calculations indicate that
in ππ system the pole is far away from zero and the peak profile is almost
symmetric [5]. On the other hand, in theKK̄ system these two points almost
coincide and generate a strongly asymmetric profile. In realistic cases more
channels may be open. Each additional channel m enlarges the dimension
of K and changes Kij → Kij − iqmKimKmj/(1 + iqmKmm). This adds
absorptive parts to all matrix elements in Eq. (10). The Fano zero is shifted
to the complex energy plane, and disappears from the physical T̄oo. However,
the asymmetry of the atomic peak is quite stable. Weakly coupled channels
e.g. those involving real photons introduce very limited asymmetries.

These two structures one of Breit–Wigner shape involved in T̄cc and the
other of Fano shape involved in T̄oo arise when atoms are formed in the final
states of a reaction.

3. Atoms in final states

Let Fo(r) denote the source of neutral pair and Fc(r) the corresponding
source of charged pair. The leading formation amplitude is Fo =

∫

Fo(r)ϕo(r)
where ϕo is the wave function for non-interacting mesons in channel o. Fi-
nal state interactions induce two additional amplitudes. The elastic one
is described by Foo = FoGoT̄ooϕo where a proper off-shell extrapolation
and integrations are understood. The other amplitude, due to charge ex-
change scattering, is given by Fco = FcḠcT̄coϕo. Close to the c threshold
these amplitudes describe the cusp and the atomic states. Here, we dis-
cuss only atoms in a zero range approximation for the scattering operator
T (r) = 2π/µδ(r)T̄ . Close to the “n”-th atomic level εo,n the propagator Ḡc

is dominated by ¯ψn(r)ψn(r′)/(E−εo,n) and formulas of the previous section
generate the charge exchange amplitude

Fco =

∫

Fc(r)ψn(r)
2π

µ

Āco

E − εo,n +RĀcc

ψn(0) , (11)

(note: in Ref. [5] the sign of Foc is mistaken).
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The elastic amplitude is also dominated by the atomic pole

Foo = −
∫

Fo(r)
exp(iqor)

r

K̄oo

1 + iqoK̄oo

E − εo,n +R(K̄cc − K̄2
co/K̄oo)

E − εo,n +RĀcc

,

(12)
which, because of the Fano zero, is expected to be a smaller one. An addi-
tional suppression arises if the value of Koo is smaller than the source radius.
That happens in the case of ππ but not the KK̄ formation. At this point,
an additional information is needed on the source radius in Eqs. (11),(12).
Another radius is involved in the meson–meson interactions but this one is
weighted by the large Bohr radius and introduces small and calculable ef-
fects. The ratio λ = Fc/Fo is expected to be given by the isospin symmetry
or by the experimental conditions. For reaction (1) one has λ ≃

√
3 [5] and

for the decay (2) the isospin invariance gives λ = 2 [3].
The probability to form a 1S state atom is given by integration of |Fco|2

over the whole final phase space. It includes the integral over atomic line
which may be calculated with the help of unitarity condition. In this way
one recovers a branching ratio for the atom formation

Ratom = P (atom)/P (total) = ψ1S(0)2/(2µ)LN−1/LN

given by the coalescence model. In the last relation LN−1 is the phase space
for the atom and residual particles, LN is the phase space for two mesons and
residual particles. The atomic wave functions scale with the main quantum
number n as ψn(0)2 ∼ 1/n3 and higher levels contribute a correction of 22%.
For decay (2) the result is Ratom = 0.9×10−5 [6], but the experimental best
fit indicates a bigger number Ratom = 1.61(0.66) × 10−5 [2].

The coalescence model gives only a part of the atomic effect. One cor-
rection comes from the interference of direct Fo and charge exchange Fco

amplitudes. For pionium it is small, as the relevant parameter 2qoIm(Aco/λ̄)
is small [5]. On the other hand the “atomic” contributions to Fco and Foo

interfere constructively and corrections may be sizable. These depend on
the radius of the source. With a tentative value 〈1/r〉 = 2 fm we obtain
a 30% increase of Ratom. This number is closer to the best fit experimental
estimate. However, a complete analysis including the whole near thresh-
old region and a more subtle understanding of the formation range is still
pending.
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