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A possibility to study final state radiation near the π+π− threshold
region at the Φ-factory DAΦNE is discussed. The dependence on the fi-
nal state radiation model is tested by a Monte Carlo event generator that
includes the contribution of the direct φ → π+π−γ decay, the double-
resonance φ → ργ → π+π−γ contribution and “pure” final state radiation
both in the framework of the sQED model and in the Resonance Per-
turbation Theory. Finally, a model-independent way to study final state
radiation is proposed.

PACS numbers: 13.25.Jx, 12.39.Fe, 13.40.Gp

Final state radiation (FSR) is an irreducible background in radiative
return measurements of the hadronic e+e− cross section [1]. Up to now
the hadronic cross section is a main source of theoretical uncertainty in the
prediction of the anomalous magnetic moment of the muon, aµ [2]. The
biggest contribution (about 80%) to the hadronic part of aµ comes from the
π+π− final state and to be compatible with experimental data on aµ the

corresponding contribution a
(π+π−)
µ should be known with accuracy of at

least 1%. That means that the corresponding cross section of the process

e+(p1) + e−(p2) → π+(p+)π−(p−) (1)

or, more exactly, radiative corrections (RCs) to it should be calculated with
accuracy higher than 1%. In principle, RC caused by initial state radiation
(ISR) can be calculated by QED, although the accuracy is limited by tech-
nical problems. For the calculation of the FSR cross section, instead, the
situation is much more difficult. The pQCD model can be used to estimate
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FSR RC for the high energy region, s = (p1+p2)
2 ≤ 2 GeV2. The low energy

region, that dominates in the evaluation of a
(π+π−)
µ , cannot be described by

pQCD. Therefore calculation of FSR RC relies on models describing pion–
photon interaction in the low energy region.

Usually the combined sQED∗VMD model is assumed as a model to cal-
culate FSR RC [3]. In this case the pions are treated as point-like particles
(the sQED model) and the total FSR amplitude is multiplied by the pion
form factor, estimated in the VMD model. But, the sQED∗VMD model
is an approximation that is valid for relatively soft photons and it can fail
for high energy photons, i.e. near the π+π− threshold. In this energy re-
gion the contributions to FSR, beyond the sQED∗VMD model, can become
important.

Radiative return experiments allow to measure the cross section for the
process (1) using the radiative process

e+(p1) + e−(p2) → π+(p+)π−(p−)γ(k) , (2)

where the photon is radiated by leptons. As mentioned, FSR process is the
main irreducible background for (2). The cross section of FSR process is
written as

dσF =
1

2s(2π)5

∫

δ4(Q − p+ − p− − k)
d3p+d3p−d3k

8E+E−ω
|M (FSR)|2 , (3)

where Q = p1 + p2, s = Q2 and

M (FSR) =
e

s
Mµν ū(−p1)γµu(p2)ε

⋆
ν . (4)

In the general case the tensor Mµν describing the process

γ∗(Q) → π+(p+)π−(p−)γ(k)

can be rewritten in the terms of three gauge invariant tensors (see [4] and
Refs. [23,24] in it):

Mµν(Q, k, l) ≡ −ie2Mµν
F (Q, k, l) = −ie2(τµν

1 f1 + τµν
2 f2 + τµν

3 f3) ,

τµν
1 = kµQν − gµνk · Q, l = p+ − p− ,

τµν
2 = k · l(lµQν − gµνk · l) + lν(kµk · l − lµk · Q) ,

τµν
3 = Q2(gµνk · l − kµlν) + Qµ(lνk · Q − Qνk · l) .

We would like to stress that this expansion is totally model-independent.
The model dependence is related only with the implicit form of the scalar
functions fi. There are several different contributions to FSR depending on
the photon radiation mechanism.
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First, there is “pure” FSR. It is a contribution that is described by the
sQED∗VMD model in the soft photon limit. Second, in the case of the
accelerator DAΦNE (s = m2

φ) considered in this paper, there are contri-
butions to FSR related to the intermediate φ meson state: at least, the φ
direct decay (γ∗ → φ → π+π−γ) and the double resonance contributions
(γ∗ → φ → ρ±π∓ → π+π−γ).

That means that for DAΦNE energy region the total cross section dσT

of the process (2), when the photon is radiated either by leptons or by final
pions, can be written as

dσT ∼ |MISR + MFSR|
2 = dσI + dσF + dσIF ,

dσI ∼ |MISR|
2, dσIF ∼ 2Re{MISR · (MRPT + Mφ)∗} ,

dσF ∼ |MRPT|
2 + |Mφ|

2 + 2Re{MRPT · M∗
φ} , (5)

where dσI corresponds to ISR, dσF to FSR and dσIF to their interference.
The part caused by the φ decay (it corresponds to Mφ in (5)) consists

of two parts: the φ direct decay and the double resonance contributions.
FSR contribution that is related with the φ direct decay is described by
Achasov’s four quark model [5] and corresponds to the following: γ∗ →
φ → (f0; f0 + σ) → π+π−γ. The numerical values of parameters (like
mass and width of the scalar mesons, the numerical value of the constants
describing γφf0, γφσ and f0ππ, σππ vertexes) are taken from the KLOE fit
for the neutral channel π0π0γ [6]. The last version of KLOE parametrization
uses the mixed (f0 + σ) intermediate state [6] whereas only the f0 meson
was included in previous version [7]. The dependence on the choice of the
intermediate scalar state is shown in Fig. 1. As we can see the inclusion of
σ meson of the experimental spectrum and decreases enough the value of
|Mφ|

2 near the threshold and describes the data better.
The double resonance contribution γ∗ → φ → ρ±π∓ → π+π−γ is de-

scribed in [8] and its value is compatible with the value of the φ direct decay.
Presently, we used PDG values for the experimental values Γ (ρ → πγ) and
Γ (φ → e+e−) [9] to calculate the φρπ and ρπγ coupling constants.

“Pure” FSR (a part of FSR that is not related with the intermediate φ
meson state) is described in the framework of both sQED∗VMD and Res-
onance Perturbation Theory1 (RPT) [4]. Following the KLOE experiment
results we consider only the case of destructive interference between the φ
direct amplitude and “pure” FSR one.

The results dσT/dσI for two different initial energies possible at DAΦNE
(s = 1 GeV2 and s = m2

φ) are shown in Fig. 2 with and without contributions
from RPT and φ decay. The case of the KLOE large angle analysis 50◦ ≤
θγ ≤ 130◦, 50◦ ≤ θπ ≤ 130◦ is considered.

1 RPT is assumed to be an appropriate theory to describe pion–photon interaction
about 1 GeV. See, for example, [10].
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Fig. 1. Left: The dependence of the branching ratio of the φ direct decay on the

intermediate scalar states. Right: The ratio dσT/dσI as function of the invariant

mass of the two pions, in the region 50◦ ≤ θγ ≤ 130◦, 50◦ ≤ θπ ≤ 130◦ s = m2
φ

when only f0 (down) and f0 + σ (above) are included.
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Fig. 2. The ratio dσT/dσI as function of the invariant mass of the two pions, in

the region 50◦ ≤ θγ ≤ 130◦, 50◦ ≤ θπ ≤ 130◦, for different models of FSR. Left

corresponds to s = m2
φ, right to s = 1 GeV2.
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Now let us dicuss the results. To start with, we consider the case s = m2
φ.

First, the peak near 1 GeV2 corresponds to the f0 meson intermediate state.
Second, as one can see, the destructive interference between φ decay and
“pure” FSR decreases the visible cross section in the whole Q2 region. Last
but not least, all contributions are large enough near the threshold to make
the analysis difficult.

In the case of s = 1 GeV2 the φ resonant contribution is suppressed
and the main contribution beyond of sQED comes from RPT (see Fig. 2,
(right), where the value of dσT with and without the φ direct decay almost
coincides).

We think that a possibility to test FSR models near the π+π− threshold,
using only the cross section and other variables (like mass spectrum, asym-
metries, etc.) for one value of the initial energy (one value of the variable s),
is a difficult task due to large numbers of parameters. (In fact, in our case
we have about ten different parameters describing FSR.) The situation can
be simplified a bit if we extract all possible information for the φ decay from
the neutral π0π0 channel. In order to describe “pure” FSR we have used a
combined fit for different values of the initial energy. Also we propose to
consider a physical quantity which very well determined in the framework
of sQED and then study its deviation from sQED behaviour in the data. In
our opinion this quantity can be determined as [11]

Ys(Q
2) =

(

dσT

dQ2

)

s
−

(

dσsQED+φ

dQ2

)

s

Hs(Q2)
≡ |Fπ(Q2)|2 + ∆Fs(Q

2) . (6)

The quantity
dσsQED+φ

dQ2
is the differential FSR cross section in the frame-

work of sQED and includes φ direct decay. As one can see the value of
Y (Q2) coincides with the square of the pion form factor in the framework
of sQED∗VMD (Fπ(Q2)) and does not depend on the initial energy. Then
we can determine a quantity

∆Y (Q2) = Ys1
(Q2) − Ys2

(Q2) ,

where s1 and s2 are two different c.m. energy values for e+e−, for KLOE
setup s1 = 1 GeV2 and s2 = m2

φ. In the case of the sQED∗VMD model,

the value ∆Y (Q2) = 0. This means that any deviation from zero will be in
favour of some contribution beyond sQED.

Fig. 3 shows the quantity Ys(Q
2) at s1 = 1 GeV2 and at s2 = m2

φ and

the value ∆Y (Q2), when FSR is described by sQED. As expected, each of
the quantities Ys1

and Ys2
coincides with the square of the pion form factor

|Fπ(Q2)|2, shown by solid line. The value of ∆Y is consistent with zero.
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A combined fit of Ys1
and Ys2

to the pion form factor is also possible as

Fπ(Q2) ≃ 1 + p1 ∗ Q2 + p2 ∗ q4 . (7)

It gives the following values: p1 = 1.4±0.186 GeV−2, p2 = 8.8±0.73 GeV−4,
χ2/ν = 0.25.
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Fig. 3. Left: Ys(Q
2) at s = 1 GeV2 (triangles), and at s = m2

φ (circles), when FSR

includes only sQED and φ contribution. The pion form factor |Fπ(Q2)|2 is shown

by the solid line. Right: The difference ∆Y (Q2).

A different situation appears if FSR emission from pions is modeled by
RPT. In this case, as shown in Fig. 4, the difference ∆Y (Q2) 6= 0 and the
quantities Ys(Q

2) cannot be anymore identified with |Fπ(Q2)|2. A combined
fit of Ys1

and Ys2
is no longer possible.

To conclude this paper we would like to summarize the main results.
We have shown that the π+π− threshold energy region is very sensitive to
all FSR contributions. To test the FSR model one can use two different
ways. In the first method one constructs a general amplitude for the π+π−γ
final state according to some underlying theory and then determines the free
parameters of that theory by constrained fit on specific variables (like mass
spectrum, asymmetries, etc.). In the second method, that was proposed
here, one tries to find a physical quantity that has a very well described
behaviour in the framework of sQED and then compare the experimental
spectra at two different energies of the initial particles. In this way one can
test any deviation from the behaviour predicted by sQED for that physical
quantity. In our opinion these two methods are mostly complementary and
should be used together to study effective FSR.
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Fig. 4. Left: Ys(Q
2) at s = 1 GeV2 (triangles), and at s = m2

φ (circles), when FSR

includes RPT and φ contribution. The pion form factor |Fπ(Q2)|2 is shown by the

solid line. Right: The difference ∆Y (Q2).
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