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The muon anomalous magnetic moment is one of the most precisely
measured quantities in particle physics. Recent high precision measure-
ments (0.54 ppm) at Brookhaven reveal a “discrepancy” by 3.2 standard
deviations from the electroweak Standard Model which could be a hint for
an unknown contribution from physics beyond the Standard Model. This
triggered numerous speculations about the possible origin of the “missing
piece”. The remarkable 14-fold improvement of the previous CERN exper-
iment, actually animated a multitude of new theoretical efforts which lead
to a substantial improvement of the prediction of aµ. The dominating un-
certainty of the prediction, caused by strong interaction effects, could be
reduced substantially, due to new hadronic cross section measurements in
electron–positron annihilation at low energies. After an introduction and
a brief description of the principle of the experiment, I present a major
update and review the status of the theoretical prediction and discuss the
role of the hadronic vacuum polarization effects and the hadronic light-
by-light scattering contribution. Prospects for the future will be briefly
discussed. As, in electroweak precision physics, the muon g − 2 shows the
largest established deviation between theory and experiment at present, it
will remain one of the hot topics for further investigations.
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1. Lepton magnetic moments

The subject of our interest is the motion of a lepton in an external
electromagnetic field under consideration of the full relativistic quantum
behavior. The latter is controlled by the equations of motion of Quantum
Electrodynamics (QED), which describes the interaction of charged leptons
(ℓ = e, µ, τ) with the photon (γ) as an Abelian U(1)em gauge theory. QED
is a quantum field theory (QFT) which emerges as a synthesis of quantum
mechanics with special relativity. In our case an external electromagnetic
field is added, specifically a constant homogeneous magnetic field ~B. For
slowly varying fields the motion is essentially determined by the generalized
Pauli equation, which also serves as a basis for understanding the role of the
magnetic moment of a lepton on the classical level. As we will see below,
in the absence of electrical fields ~E the quantum correction miraculously
may be subsumed in a single number, the anomalous magnetic moment aℓ,
which is the result of relativistic quantum fluctuations, usually simply called
radiative corrections.

Charged leptons in first place interact with photons, and photonic ra-
diative corrections can be calculated in QED, the interaction Lagrangian
density of which is given by (e is the magnitude of the electron’s charge)

LQED
int (x) = ejµem(x) Aµ(x) , jµem(x) = −

∑

ℓ

ψ̄ℓ(x)γ
µψℓ(x) , (1)

where jµem(x) is the electromagnetic current, ψℓ(x) the Dirac field describing
the lepton ℓ, γµ the Dirac matrices and with a photon field Aµ(x) exhibiting
an external classical component Aext

µ and hence Aµ → Aµ+Aext
µ .We are thus

dealing with QED exhibiting an additional external field insertion “vertex”.
Besides charge, spin, mass and lifetime, leptons have other very interest-

ing static (classical) electromagnetic and weak properties like the magnetic
and electric dipole moments. Classically the dipole moments can arise from
either electrical charges or currents. A well known example is the circulating
current, due to an orbiting particle with electric charge e and mass m, which
exhibits a magnetic dipole moment ~µL = e

2c
~r × ~v given by

~µL =
e

2mc
~L , (2)

where ~L = m~r×~v is the orbital angular momentum (~r position, ~v velocity).
As we know, most elementary particles have intrinsic angular momentum,
called spin, and in particular leptons like the electron are Dirac fermions of
spin 1

2 . Spin is directly responsible for the intrinsic magnetic moment of any
spinning particle. The fundamental relation which defines the “g–factor” or
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the magnetic moment is

~µ = gℓ

e~

2mℓc
~S , ~S the spin vector. (3)

For leptons, the Dirac theory predicts gℓ = 2 [1], unexpectedly, twice the
value g = 1 known to be associated with orbital angular momentum. It took
about 20 years of experimental efforts to establish that the electrons mag-
netic moment actually exceeds 2 by about 0.12%, the first clear indication
of the existence of an “anomalous” contribution to the magnetic moment [2].
In general, the anomalous magnetic moment of a lepton is related to the
gyromagnetic ratio by

aℓ =
µℓ

µB
− 1 = 1

2(gℓ − 2) , (ℓ = e, µ, τ) , (4)

where µB is the Bohr magneton which has the value

µB =
e~

2mec
= 5.788381804(39) × 10−11 MeVT−1 . (5)

Formally, the anomalous magnetic moment is given by a form factor,
defined by the matrix element

〈ℓ−(p′)| jµem(0) |ℓ−(p)〉 ,

where |ℓ−(p)〉 is a lepton state of momentum p. The relativistically covariant
decomposition of the matrix element reads(q) �(p0)�(p) = (−ie) ū(p′)

[
γµFE(q2) + iσ

µνqν

2mµ
FM(q2)

]
u(p)

with q = p′ − p and where u(p) denotes a Dirac spinor, the relativistic
wave function of a free lepton, a classical solution of the Dirac equation
(γµpµ − m) u(p) = 0. FE(q2) is the electric charge or Dirac form factor
and FM(q2) is the magnetic or Pauli form factor. Note that the matrix
σµν = i

2 [γµ, γν ] represents the spin 1/2 angular momentum tensor. In the

static (classical) limit q2 → 0 we have

FE(0) = 1 , FM(0) = aµ , (6)

where the first relation is the charge normalization condition, which must be
satisfied by the electrical form factor, while the second relation defines the
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anomalous magnetic moment. aµ is a finite prediction in any renormalizable
QFT: QED, the Standard Model (SM) or any renormalizable extension of it.

By end of the 1940’s the breakthrough in understanding and handling
renormalization of QED (Tomonaga, Schwinger, Feynman, and others) had
made unambiguous predictions of higher order effects possible, and in partic-
ular of the leading (one-loop diagram) contribution to the anomalous mag-
netic moment

a
QED(1)
ℓ =

α

2π
, (ℓ = e, µ, τ) (7)

by Schwinger in 1948 [3]. This contribution is due to quantum fluctuations
via virtual photon–lepton interactions and in QED is universal for all leptons.
At higher orders, in the perturbative expansion1, other effects come into
play: strong interaction, weak interaction, both included in the SM, as well
as yet unknown physics which would contribute to the anomalous magnetic
moment.

In fact, shortly before Schwinger’s QED prediction, Kusch and Foley in
1948 established the existence of the electron “anomaly” ge = 2 (1.00119 ±
0.00005), a 1.2 per mill deviation from the value 2 predicted by Dirac in
1928.

We now turn to the muon. A muon looks like a copy of an electron, which
at first sight is just much heavier mµ/me ∼ 200, however, unlike the electron
it is unstable and its lifetime is actually rather short. The decay proceeds
by weak charged current interaction into an electron and two neutrinos.

The muon is very interesting for the following reason: quantum fluctua-
tions due to heavier particles or contributions from higher energy scales are
proportional to

δaℓ

aℓ

∝ m2
ℓ

M2
(M ≫ mℓ) , (8)

where M may be

— the mass of a heavier SM particle, or

— the mass of a hypothetical heavy state beyond the SM, or

— an energy scale or an ultraviolet cut-off where the SM ceases to be
valid.

On the one hand, this means that the heavier the new state or scale the
harder it is to see (it decouples as M → ∞). Typically the best sensitivity
we have for nearby new physics, which has not yet been discovered by other
experiments. On the other hand, the sensitivity to “new physics” grows

1 which is equivalent to the loop-expansion, referring to the number of closed loops in
corresponding Feynman diagrams.
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quadratically with the mass of the lepton, which means that the interesting
effects are magnified in aµ relative to ae by a factor (mµ/me)

2 ∼ 4 × 104.
This is what makes the anomalous magnetic moment of the muon the pre-
destinated “monitor for new physics” or, if no deviation is found it may
provide severe constraints to physics beyond the SM2.

In contrast, ae is relatively insensitive to unknown physics and can be
predicted very precisely, and therefore it presently provides the most precise
determination of the fine structure constant α = e2/4π.

What makes the muon so special for what concerns its anomalous mag-
netic moment?

• Most interesting is the enhanced high sensitivity of aµ to all kind of
interesting physics effects.

• Both experimentally and theoretically aµ is a “clean” observable, i.e.,
it can be measured with high precision as well as predicted unambigu-
ously in the SM.

• That aµ can be measured so precisely, is kind of a miracle and possi-
ble only due to the specific properties of the muon. Due to the parity
violating weak (V-A) interaction property, muons can easily be polar-
ized and perfectly transport polarization information to the electrons
produced in their decay.

• There exists a magic energy (“magic γ”) at which equations of motion
take a particularly simple form. Miraculously, this energy is so high
(3.1 GeV) that the µ lives 30 times longer than in its rest frame!

In fact only these highly energetic muons can by collected in a muon storage
ring. At much lower energies muons could not be stored long enough to
measure the precession precisely!

Production and decay of the muons goes by the chain

π → µ+ νµ

|−→ e+ νe + νµ

and the polarization “gymnastics” is illustrated in Fig. 1. Note that the “max-
imal” parity (P) violation means that the charged weak transition currents
only couple to left-handed neutrinos νµL

and right-handed antineutrinos ν̄µR
,

in other words, parity violation is a direct consequence of the fact that the
neutrinos νµR

and ν̄µL
show no electromagnetic, weak and strong interaction

in nature! as if they were non-existent.

2 Even more promising would be a measurement of aτ with additional enhancement
(mτ/mµ)2 ∼ 283. However, the much shorter lifetime of the τ lepton (ττ/τµ ∼
1.3 × 10−7) makes this measurement impossible at present.
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• µ’s produced in pion decays are polarized

➪

➪π
+

µ
+ νµL

CP↔ ➪

➪
π
−

µ
− ν̄µR

➪

➪
π

+

µ
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CP↔

l P

✘ ➪

➪π
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• Polarized µ’s decay producing electrons carrying the µ spin direction

➪

➪➪➪

µ
+

e
+

ν̄µR

νeL

➪ ➪➪➪

µ
−

e
−

νµL

ν̄eR

Fig. 1. Spin transfer properties in production and decay of the muons (P=parity,

C=charge conjugation). µ− [µ+] is produced with positive [negative] helicity h =

~s · ~p/|~p|, decay e− [e+] have negative [positive] helicity, respectively.

2. The BNL muon g − 2 experiment

After the proposal of parity violation in weak transitions by Lee and
Yang in 1957, it immediately was realized that muons produced in weak
decays of the pion (π+ → µ++ neutrino) should be longitudinally polarized.
In addition, the decay positron of the muon (µ+ → e+ + 2 neutrinos) could
indicate the muon spin direction. This was confirmed by Garwin, Lederman
and Weinrich [4] and Friedman and Telegdi [5]3. The first of the two papers
for the first time determined gµ = 2.00 within 10% by applying the muon
spin precession principle. Now the road was free to seriously think about
the experimental investigation of aµ.

The first measurement of (gµ − 2)/2 was performed at Columbia in
1960 [6] with a result aµ = 0.00122(8) at a precsision of about 5%. Soon
later in 1961, at the CERN cyclotron (1958–1962) the first precision deter-
mination became available [7]. Surprisingly, nothing special was observed

3 The latter reference for the first time points out that P and C are violated simul-
taneously, in fact P is maximally violated while CP is to very good approximation
conserved in this decay (see Fig. 1).
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within the 0.4% level of accuracy of the experiment. It was the first real
evidence that the muon was just a heavy electron. In particular this meant
that the muon is point-like and no extra short distance effects could be seen.
This latter point of course is a matter of accuracy and the challenge to go
further was evident.

The idea of a muon storage ring was put forward next. A first one was
successfully realized at CERN (1962–1968) [8]. It allowed to measure aµ for
both µ+ and µ− at the same machine. Results agreed well within errors
and provided a precise verification of the CPT theorem for muons. An
accuracy of 270 ppm was reached and an insignificant 1.7 σ (1 σ = 1 standard
deviation) deviation from theory was found. Nevertheless the latter triggered
a reconsideration of theory. It turned out that in the estimate of the three-
loop O(α3) QED contribution the leptonic “light-by-light scattering” part
in the radiative corrections (dominated by the electron loop) was missing.
Aldins et al. [9] then calculated this and after including it, perfect agreement
between theory and experiment was obtained.

The CERN muon g − 2 experiment was shut down end of 1976, while
data analysis continued until 1979 [10]. Only a few years later, in 1984
the E821collaboration formed, with the aim to perform a new experiment
at Brookhaven National Laboratory (BNL). Data taking was between 1998
and 2001. The data analysis was completed in 2004. The E821 g − 2 mea-
surements achieved the remarkable precision of 0.54ppm [11, 12], which is
a 14-fold improvement of the CERN result. The principle of the BNL muon
g−2 experiments involves the study of the orbital and spin motion of highly
polarized muons in a magnetic storage ring. This method has been applied
in the last CERN experiment already. The key improvements of the BNL
experiment include the very high intensity of the primary proton beam from
the Alternating Gradient Synchrotron (AGS), the injection of muons instead
of pions into the storage ring, and a superferric storage ring magnet. The
protons hit a target and produce pions. The pions are unstable and decay
into muons plus a neutrino where the muons carry spin and thus a magnetic
moment which is directed along the direction of the flight axis. The longi-
tudinally polarized muons from pion decay are then injected into a uniform
magnetic field ~B where they travel in a circle (see Fig. 2).

When polarized muons travel on a circular orbit in a constant magnetic
field, as illustrated in Fig. 3, then aµ is responsible for the Larmor preces-
sion of the direction of the spin of the muon, characterized by the angular
frequency ~ωa. At the magic energy of about ∼ 3.1 GeV, the latter is directly
proportional to aµ:

~ωa =
e

m

[
aµ
~B −

(
aµ − 1

γ2 − 1

)
~β × ~E

]E∼3.1GeV

at “magic γ′′

≃ e

m

[
aµ
~B
]
. (9)
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Fig. 2. The schematics of muon injection and storage in the g − 2 ring.

Fig. 3. Spin precession in the g − 2 ring (∼ 12◦/circle).

Electric quadrupole fields ~E are needed for focusing the beam and they
affect the precession frequency in general. γ = E/mµ = 1/

√
1 − β2 is the

relativistic Lorentz factor with β = v/c the velocity of the muon in units of
the speed of light c. The magic energy Emag = γmagmµ is the energy E for
which 1

γ2
mag−1

= aµ. The existence of a solution is due to the fact that aµ is a

positive constant in competition with an energy dependent factor of opposite
sign (as γ ≥ 1). The second miracle, which is crucial for the feasibility of the
experiment, is the fact that γmag =

√
(1 + aµ)/aµ ≃ 29.378 is large enough

to provide the time dilatation factor for the unstable muon boosting the life
time τµ ≃ 2.197 × 10−6 sec to τin flight = γ τµ ≃ 6.454 × 10−5 sec, which
allows the muons, traveling at v/c = 0.99942 · · ·, to be stored in a ring of
reasonable size (diameter ∼ 14 m).
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This provided the basic setup for the g − 2 experiments at the muon
storage rings at CERN and at BNL. The oscillation frequency ~ωa can be
measured very precisely. Also the precise tuning to the magic energy is not
the major problem. The most serious challenge is to manufacture a precisely
known constant magnetic field B, as the latter directly enters the experi-
mental extraction of aµ (9). Of course one also needs high enough statistics
to get sharp values for the oscillation frequency. The basic principle of the
measurement of aµ is a measurement of the “anomalous” frequency differ-
ence ωa = |~ωa| = ωs − ωc, where ωs = gµ (e~/2mµ) B/~ = gµ/2 · e/mµ B
is the muon spin-flip precession frequency in the applied magnetic field and
ωc = e/mµ B is the muon cyclotron frequency. The principle of measuring
ωa is indicated in Fig. 4 and an example of a measured count spectrum is
shown in Fig. 5. Instead of eliminating the magnetic field by measuring ωc,
B is determined from proton nuclear-magnetic-resonance (NMR) measure-
ments. This procedure requires the value of µµ/µp to extract aµ from the
data. Fortunately, a high precision value for this ratio is available from the
measurement of the hyperfine structure in muonium. One obtains

aµ =
R̄

|µµ/µp| − R̄
, (10)

where R̄ = ωa/ω̄p and ω̄p = (e/mµc)〈B〉 is the free-proton NMR frequency
corresponding to the average magnetic field, seen by the muons in their
orbits in the storage ring. We mention that for the electron a Penning trap

Fig. 4. Decay of µ+ and detection of the emitted e+ (PMT=Photomultiplier).
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Fig. 5. Distribution of counts versus time for the 3.6 billion decays in the 2001

negative muon data-taking period. Courtesy of the E821 collaboration [11].

Fig. 6. The Brookhaven National Laboratory muon storage ring. The ring has a

radius of 7.112 meters, the aperture of the beam pipe is 90 mm, the field is 1.45

Tesla and the momentum of the muon is pµ = 3.094 GeV/c. Picture taken from

the Muon g − 2 Collaboration Web Page http://www.g-2.bnl.gov/ (Courtesy of

Brookhaven National Laboratory).
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is employed to measure ae rather than a storage ring. The B field in this
case can be eliminated via a measurement of the cyclotron frequency. The
BNL g − 2 muon storage ring is shown in Fig. 6.

Since the spin precession frequency can be measured very well, the pre-
cision at which g−2 can be measured is essentially determined by the possi-
bility to manufacture a constant homogeneous magnetic field ~B. Important
but easier to achieve is the tuning to the magic energy. The outcome of the
experiment will be discussed later.

3. QED prediction of ae and the determination of α

The anomalous magnetic moment aℓ is a dimensionless quantity, just
a number, and corresponds to an effective tensor interaction term

δLAMM
eff = −eℓaℓ

4mℓ

ψ̄(x) σµν Fµν(x) ψ(x) , (11)

which in an external magnetic field at low energy takes the well known form
of a magnetic energy (up to a sign)

δLAMM
eff ⇒ −Hm ≃ −eℓaℓ

2mℓ

~σ ~B . (12)

Such a term, if present in the fundamental Lagrangian, would spoil renor-
malizability of the theory and contribute to FM(q2) at the tree level. In
addition, it is not SU(2)L gauge invariant, because gauge invariance only al-
lows minimal couplings via a covariant derivative, i.e., vector and/or axial-
vector terms. The emergence of an anomalous magnetic moment term in
the SM is a consequence of the symmetry breaking by the Higgs mechanism,
which provides the mass to the physical particles and allows for helicity flip
processes like the anomalous magnetic moment transitions. In any renor-
malizable theory the anomalous magnetic moment term must vanish at tree
level. This means that there is no free adjustable parameter associated with
it. It is a finite prediction of the theory.

The reason why it is so interesting to have such a precise measurement
of ae or aµ, of course, is that it can be calculated with comparable accuracy
in theory by a perturbative expansion in α of the form

aℓ ≃
N∑

n=1

A(2n)(α/π)n , (13)

with up to N = 5 terms under consideration at present. The experimental
precision of ae (0.66 ppb) requires the knowledge of the coefficients with
accuracies δA(4) ∼ 1 × 10−7, δA(6) ∼ 6 × 10−5, δA(8) ∼ 2 × 10−2 and
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δA(10) ∼ 10. The expansion (13) is an expansion in the number N of closed
loops of the contributing Feynman diagrams.

The recent new determination of ae [13] allows for a very precise deter-
mination of the fine structure constant [14, 15]

α−1(ae) = 137.035999069(96)[0.70 ppb] , (14)

which we will use in the evaluation of aµ.
At two and more loops results depend on lepton mass ratios. For the

evaluation of these contributions precise values for the lepton masses are
needed. We will use the following values for the muon–electron mass ratio,
the muon and the tau mass [16, 17]

mµ

me

= 206.768 2838 (54) ,
mµ

mτ

= 0.059 4592 (97) ,

me = 0.510 9989 918(44) MeV , mµ = 105.658 3692 (94) MeV ,

mτ = 1776.99 (29) MeV . (15)

The leading contributions to aℓ can be calculated in QED. With increas-
ing precision higher and higher terms become relevant. At present, 4-loops
are indispensable and strong interaction effects like hadronic vacuum po-
larization (vap) or hadronic light-by-light scattering (LbL) as well as weak
effects have to be considered. Typically, analytic results for higher order
terms may be expressed in terms of the Riemann zeta function

ζ(n) =

∞∑

k=1

1

kn
(16)

and of the poly-logarithmic integrals

Lin(x) =
(−1)n−1

(n − 2)!

1∫

0

lnn−2(t) ln(1 − tx)

t
dt =

∞∑

k=1

xk

kn
. (17)

We first discuss the universal contributions aℓ in “one flavor QED”, with
one type of lepton lines only. At leading order one has
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• one 1-loop diagram

` ` ae = a� = a� = �2� Shwinger 48
giving the result mentioned before.

• At 2-loops 7 diagrams with only ℓ-type fermion lines

which contribute a term

a
(4)
ℓ =

[
197

144
+
π2

12
− π2

2
ln 2 +

3

4
ζ(3)

] (α
π

)2
, (18)

obtained independently by Peterman [18] and Sommerfield [19] in 1957.

• At 3-loops, with one type of fermion lines only, the 72 diagrams of
Fig. 7 contribute. Most remarkably, after about 25 years of hard work,

Fig. 7. The universal third order contribution to aµ. All fermion loops here are

muon-loops (first 22 diagrams). All non-universal contributions follow by replacing

at least one muon in a closed loop by some other fermion.
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Laporta and Remiddi in 1996 [20] managed to give a complete analytic
result (see also [21])

a
(6)
ℓ =

[
28259

5184
+

17101

810
π2 − 298

9
π2 ln 2 +

139

18
ζ(3)

+
100

3

{
Li4(

1

2
) +

1

24
ln4 2 − 1

24
π2 ln2 2

}

− 239

2160
π4 +

83

72
π2ζ(3) − 215

24
ζ(5)

] (α
π

)3
. (19)

This resultwas confirmingKinoshita’s earlier numerical evaluation [22].

The big advantage of the analytic result is that it allows a numerical
evaluation at any desired precision. The direct numerical evaluation
of the multidimensional Feynman integrals by Monte Carlo methods
is always of limited precision and an improvement is always very ex-
pensive in computing power.

• At 4-loops 891 diagrams contribute to the universal term. Their eval-
uation is possible by numerical integration and has been performed in
a heroic effort by Kinoshita [23] (reviewed in [24]), and was updated
recently by Kinoshita and his collaborators (2002/2005/2007) [15,25].

The largest uncertainty comes from 518 diagrams without fermion loops

contributing to the universal term A
(8)
1 . Completely unknown is the univer-

sal five-loop term A
(10)
1 , which is leading for ae. An estimation discussed

in [39] suggests that the 5-loop coefficient has at most a magnitude of 3.8.

We adopt this estimate and take into account A
(10)
1 = 0.0(3.8) (as in [25]).

Collecting the universal terms we have

auni
ℓ = 0.5

(α
π

)
− 0.32847896557919378 . . .

(α
π

)2

+1.181241456587 . . .
(α
π

)3
− 1.9144(35)

(α
π

)4
+ 0.0(3.8)

(α
π

)5

= 0.001 159 652 176 42(81)(10)(26)[86] · · · (20)

for the one-flavor QED contribution. The three errors are: the error of
α, given in (14), the numerical uncertainty of the α4 coefficient and the
estimated size of the missing higher order terms, respectively.

At two loops and higher, internal fermion-loops show up, where the flavor
of the internal fermion differs form the one of the external lepton, in general.
As all fermions have different masses, the fermion-loops give rise to mass
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dependent effects, which were calculated at two-loops in [26, 27] (see also
[28–31]), and at three-loops in [32–37].

The leading mass dependent effects come from photon vacuum polariza-
tion, which leads to charge screening. Including a factor e2 and considering
the renormalized photon propagator (wave function renormalization factor
Zγ) we have

i e2 D
′µν
γ (q) =

−igµν e2 Zγ

q2
(
1 + Π

′
γ(q2)

) + gauge terms (21)

which in effect means that the charge has to be replaced by an energy-
momentum scale dependent running charge

e2 → e2(q2) =
e2Zγ

1 + Π ′
γ(q2)

. (22)

The wave function renormalization factor Zγ is fixed by the condition that
as q2 → 0 one obtains the classical charge (charge renormalization in the
Thomson limit). Thus the renormalized charge is

e2 → e2(q2) =
e2

1 + (Π ′
γ(q2) − Π ′

γ(0))
, (23)

where in perturbation theory the lowest order diagram which contributes to
Π ′

γ(q2) is
γ γ

f̄
f

and describes the virtual creation and re-absorption of fermion pairs γ∗ →
e+e−, µ+µ−, τ+τ−, uū, dd̄, · · · (had) → γ∗ .

In terms of the fine structure constant α = e2

4π
Eq. (23) reads

α(q2) =
α

1 − ∆α(q2)
, ∆α(q2) = −Re

(
Π

′
γ(q2) − Π

′
γ(0)

)
. (24)

The various contributions to the shift in the fine structure constant come
from the leptons (lep = e, µ and τ), the 5 light quarks (u, b, s, c, and b)
and/or the corresponding hadrons (had). The top quark is too heavy to
give a relevant contribution. The hadronic contributions will be considered
later. The running of α is governed by the renormalization group (RG). In
the context of g−2 calculations, the use of RG methods has been advocated
in [30]. In fact, the enhanced short-distance logarithms may be obtained by
the substitution α→ α(mµ) = α (1+ 2

3
α
π

ln
mµ

me
+ · · ·) in a lower order result

(see the following example).
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Typical contributions are the following:

— LIGHT internal masses give rise to log’s of mass ratios which become
singular in the light mass to zero limit (logarithmically enhanced cor-
rections)� e = h13 ln m�me � 2536 +O �mem� �i ����2 :

— HEAVY internal masses decouple, i.e., they give no effect in the heavy
mass to infinity limite � = � 145 �mem� �2 +O �m4em4� ln m�me �� ����2 :

New physics contributions from states which are too heavy to be pro-
duced at present accelerator energies typically give this kind of contribution.
Even so aµ is 786 times less precise than ae it is still 54 times more sensitive
to new physics (NP).

Corrections due to internal e, µ- and τ -loops are different for ae, aµ

and aτ . For reasons of comparison and because of its role in the precise
determination of α we briefly consider ae first. The result is of the form

aQED
e = auni

e + ae(µ) + ae(τ) + ee(µ, τ) (25)

with4 [27, 35, 36]

ae(µ) = 5.197 386 70(27) × 10−7
(α
π

)2
− 7.373 941 64(29) × 10−6

(α
π

)3
,

ae(τ) = 1.83763(60) × 10−9
(α
π

)2
− 6.5819(19) × 10−8

(α
π

)3
,

4 The order α3 terms are given by two parts which cancel partly

A
(6)
2 (me/mµ) = −2.17684015(11) × 10−5

˛

˛

µ−vap
+ 1.439445989(77) × 10−5

˛

˛

µ−LbL

A
(6)
2 (me/mτ ) = −1.16723(36) × 10−7

˛

˛

τ−vap
+ 0.50905(17) × 10−7

˛

˛

τ−LbL
.

The errors are due to the uncertainties in the mass ratios. They are negligible in
comparison with the other errors. “vap” denotes vacuum polarization type contribu-
tions [35] and “LbL” light-by-light scattering type ones [36] (the first 6 diagrams of
Fig. 7 with an e- or τ -loop).
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ae(µ, τ) = 0.190945(62) × 10−12
(α
π

)3
.

The QED part thus may be summarized in the prediction

aQED
e =

α

2π
− 0.328 478 444 002 90(60)

(α
π

)2

+1.181 234 016 828(19)
(α
π

)3

−1.9144(35)
(α
π

)4
+ 0.0(3.8)

(α
π

)5
. (26)

The hadronic and weak contributions to ae are small: ahad
e = 1.67(3)×10−12

and aweak
e = 0.036 × 10−12, respectively. The hadronic contribution now

just starts to be significant, however, unlike in ahad
µ for the muon, ahad

e is
known with sufficient accuracy and is not the limiting factor here. The
theory error is dominated by the missing 5-loop QED term. As a result ae

essentially only depends on perturbative QED, while hadronic, weak and
new physics (NP) contributions are suppressed by (me/M)2, where M is
a weak, hadronic or new physics scale. As a consequence ae at this level of
accuracy is theoretically well under control (almost a pure QED object) and
therefore is an excellent observable for extracting αQED based on the SM
prediction

aSM
e = aQED

e [Eq. (26)] + 1.706(30) × 10−12 (hadronic & weak) . (27)

We now compare this result with the very recent extraordinary precise
measurement of the electron anomalous magnetic moment5 [13]

aexp
e = 0.001 159 652 180 85(76) (28)

which yields

α−1(ae) = 137.035999069(90)(12)(30)(3) ,

which is the value (14) [14, 15] we use in calculating aµ. The first error is
the experimental one of aexp

e , the second and third are the numerical uncer-
tainties of the α4 and α5 terms, respectively. The last one is the hadronic
uncertainty, which is completely negligible. Note that the largest theoretical

5 The famous ge measurement from University of Washington (Dehmelt et al. 1987) [38]
found aexp

e = 0.001 159 652 188 30(420) and recently has been improved by about
a factor 6 in an experiment at Harvard University (Gabrielse et al. 2006). The new
central value shifted downward by 1.7 standard deviations.
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uncertainty comes from the almost completely missing information concern-
ing the 5-loop contribution. This is now by far the most precise determina-
tion of α and we will use it throughout in the calculation of aµ, below.
The best determinations of α which do not depend on ae are [40, 41]

α−1(Cs06) = 137.03600000(110)[8.0 ppb] ,

α−1(Rb06) = 137.03599884(091)[6.7 ppb] ,

less precise by about a factor ten. α(Cs06) is determined from a mea-
surement of h/MCs via Cesium recoil measurements [40], while α(Rb06)
derives from the ratio h/MRb measured via Bloch oscillations of Rubidium
atoms in an optical lattice [41]. These values should be used in theoreti-
cal predictions of ae. Using α(Cs06) we get ae = 0.00115965217298(930)
and aexp

e − atheor
e = 7.87(9.33) × 10−12, with α(Rb06) the prediction reads

ae = 0.00115965218279(769) and aexp
e − atheor

e = −1.94(7.73) × 10−12 in
best agreement. The error of the prediction is completely dominated by the
uncertainty coming from α(Cs06) and α(Rb06) such that an improvement
of α by a factor 10 would allow a much more stringent test of QED (see

also [14,15]). If one assumes that
∣∣∣∆aNew Physics

e

∣∣∣ ≃ m2
e/Λ

2 where Λ approx-

imates the scale of “New Physics”, then the agreement between α−1(ae) and
α−1(Rb06) currently probes Λ <

∼O(250 GeV). To access the much more in-
teresting Λ ∼ O(1 TeV) region also a bigger effort on the theory side would
by necessary about the O(α4) and the O(α5) terms.

4. Standard Model prediction for aµ

4.1. QED contribution

The SM prediction of aµ looks formally very similar to the one for
ae, however, besides the common universal part, the mass dependent, the
hadronic and the weak effects enter with very different weight and signifi-
cance. The mass-dependent QED corrections follow from the universal set
of diagrams (see e.g. Fig. 7 for the 3 loop case) by replacing the closed inter-
nal µ-loops by e- and/or τ -loops. Typical contributions come from vacuum
polarization or light-by-light scattering loops, like

e
a(6)

µ (lbl, e) =
[
2

3
π2 ln

mµ

me

+
59

270
π4 − 3 ζ(3)

−
10

3
π2 +

2

3
+ O

(
me

mµ

ln
mµ

me

)] (
α

π

)3

.γ’s
µ

γ

The result is given by

aµ = auni
e + aµ

(
mµ

me

)
+ aµ

(
mµ

mτ

)
+ aµ

(
mµ

me
,
mµ

mτ

)
(29)
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with6 [27, 35–37]

aµ

(
mµ

me

)
= 1.094 258 311 1 (84)

(α
π

)2
+ 22.868 380 02 (20)

(α
π

)3

+ 132.682 3 (72)
(α
π

)4
,

aµ

(
mµ

mτ

)
= 7.8064 (25) × 10−5

(α
π

)2
+ 36.051 (21) × 10−5

(α
π

)3

+ 0.005 (3)
(α
π

)4
,

aµ

(
mµ

me
,
mµ

mτ

)
= 52.766 (17) × 10−5

(α
π

)3
+ 0.037 594 (83)

(α
π

)4
,

except for the last term, which has been worked out as a series expansion
in the mass ratios [42, 43], all contributions are known analytically in exact
form [35,36]7 up to 3-loops. At 4-loops only a few terms are known analyt-
ically [45]. Again the relevant 4-loop contributions have been evaluated by
numerical integration methods by Kinoshita and Nio [46]. The 5-loop term

has been estimated to be A
(10)
2 (mµ/me) = 663(20) in [47–49].

Our knowledge of the QED result for aµ may be summarized by

aQED
µ =

α

2π
+ 0.765 857 410(26)

(α
π

)2
+ 24.050 509 65(46)

(α
π

)3

+ 130.8105(85)
(α
π

)4
+ 663(20)

(α
π

)5
. (30)

Growing coefficients in the α/π expansion reflect the presence of large
ln

mµ

me
≃ 5.3 terms coming from electron loops. In spite of the strongly

growing expansion coefficients the convergence of the perturbation series is
excellent because α/π is a truly small expansion parameter.

6 Again the order α3 terms are given by two parts (see (13))

A
(6)
2 (mµ/me) = 20.947 924 89(16)|

e−LbL + 1.920 455 130(33)|
e−vap

A
(6)
2 (mµ/mτ ) = 0.002 142 83(69)|

τ−LbL − 0.001 782 33(48)|
τ−vap .

The errors are due to the uncertainties in the mass ratios. Note that the electron
light-by-light scattering loop gives an unexpectedly large contribution [9].

7 Explicitly, the papers only present expansions in the mass ratios; some result have
been extended in [37] and cross checked against the full analytic result in [44].
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# n of loops Ci [(α/π)n] aQED
µ × 1011

1 +0.5 116140973.30 (0.08)
2 +0.765 857 410(26) 413217.62 (0.01)
3 +24.050 509 65(46) 30141.90 (0.00)
4 +130.8105(85) 380.81 (0.03)
5 +663.0(20.0) 4.48 (0.14)

tot 116584718.11 (0.16)

The different higher order QED contributions are collected in Table I.

TABLE I

QED contributions to aµ in units 10−6

Term Universal e-loops τ -loops e&τ -loops

a(4) −1.772 305 06 (0) 5.904 060 07 (5) 0.000 421 20(13) −
a(6) 0.014 804 20 (0) 0.286 603 69 (0) 0.000 004 52 (1) 0.000 006 61(0)
a(8) −0.000 055 73(10) 0.003 862 56 (21) 0.000 000 15 (9) 0.000 001 09(0)
a(10) 0.000 000 00(26) 0.000 044 83(135) ? ?

We thus arrive at a QED prediction of aµ given by

aQED
µ = 116 584 718.113(.082)(.014)(.025)(.137)[.162] × 10−11 , (31)

where the first error is the uncertainty of α in (14), the second one combines
in quadrature the uncertainties due to the errors in the mass ratios, the
third is due to the numerical uncertainty and the last stands for the missing
O(α5) terms. With the new value of α[ae] the combined error is dominated
by our limited knowledge of the 5-loop term.

4.2. Weak contributions

The electroweak SM is a non-Abelian gauge theory with gauge group
SU(2)L ⊗ U(1)Y → U(1)QED, which is broken down to the electromagnetic

Abelian subgroup U(1)QED by the Higgs mechanism, which requires a scalar
Higgs field H which receives a vacuum expectation value v. The latter fixes
the experimentally well known Fermi constant Gµ = 1/(

√
2v2) and induces

the masses of the heavy gauge bosons MW and MZ as well as all fermion
masses mf . Other physical constants which we will need later for evaluating
the weak contributions are the Fermi constant

Gµ = 1.16637(1) × 10−5 GeV−2 , (32)
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the weak mixing parameter

sin2
ΘW = 0.22276(56) (33)

and the masses of the intermediate gauge bosons Z and W

MZ = 91.1876 ± 0.0021GeV , MW = 80.392 ± 0.029GeV . (34)

For the not yet discovered SM Higgs particle the mass is constrained by LEP
data to the range

114 GeV < mH < 200GeV (at 96% CL) . (35)

The weak interaction contributions to aµ are due to the exchange of the
heavy gauge bosons, the charged W± and the neutral Z, which mixes with
the photon via a rotation by the weak mixing angle ΘW and which defines the
weak mixing parameter sin2

ΘW = 1 −M2
W /M2

Z . What is most interesting
is the occurrence of the first diagram of Fig. 8, which exhibits a non-Abelian
triple gauge vertex and the corresponding contribution provides a test of the

W W

νµ Z H
µ

γ

Fig. 8. The leading weak contributions to aℓ; diagrams in the physical unitary

gauge.

Yang–Mills structure involved. It is of course not surprising that the photon
couples to the charged W boson the way it is dictated by electromagnetic
gauge invariance. The gauge boson contributions up to negligible terms of

order O

(
m2

µ

M2
W,Z

)
are given by [50]

a(2) EW
µ (W ) =

√
2Gµm

2
µ

16π2

10

3
≃ +388.70(0) × 10−11 ,

a(2) EW
µ (Z) =

√
2Gµm

2
µ

16π2

(−1 + 4 sin2
ΘW )2 − 5

3
≃ −193.88(2) × 10−11

while the diagram with the Higgs exchange, for mH ≫ mµ, yields

a(2) EW
µ (H) ≃

√
2Gµm

2
µ

4π2

m2
µ

m2
H

ln
m2

µ

m2
H

+ · · · ≤ 5 × 10−14 for mH ≥ 114 GeV .
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Employing the SM parameters given in (32) and (33) we obtain

a(2) EW
µ = (194.82 ± 0.02) × 10−11 . (36)

The error comes from the uncertainty in sin2
ΘW given above.

The electroweak two-loop corrections have to be taken into account as
well. In fact triangle fermion-loops may give rise to unexpectedly large
radiative corrections. The diagrams which yield the leading corrections are
those including a VVA triangular fermion-loop (VVA 6= 0 while VVV = 0)
associated with a Z boson exchange

γ Z

f

µ

γ

which exhibits a parity violating axial coupling (A). A fermion of flavor f
yields a contribution

a(4) EW
µ ([f ]) ≃

√
2Gµm

2
µ

16π2

α

π
2T3fNcfQ

2
f

[
3 ln

M2
Z

m2
f ′

+ Cf

]
, (37)

where T3f is the 3rd component of the weak isospin, Qf the charge and Ncf

the color factor, 1 for leptons, 3 for quarks. The mass mf ′ is mµ if mf < mµ

and mf if mf > mµ, and Ce = 5/2, Cµ = 11/6 − 8/9 π2, Cτ = −6 [51].
However, in the SM the consideration of individual fermions makes no sense
and a separation of quarks and leptons is not possible. Mathematical con-
sistency of the SM requires complete VVA anomaly cancellation between
leptons and quarks, and actually

∑
f NcfQ

2
fT3f = 0 holds for each of the 3

known lepton–quark families separately. Treating, in a first step, the quarks
like free fermions (quark parton model QPM) the first two families yield
(using mu = md = 300 MeV , ms = 500 MeV , mc = 1.5 GeV)

a(4) EW
µ

([
e, u, d
µ, c, s

])

QPM

≃ −
√

2Gµ m
2
µ

16π2

α

π

[
ln

m8
um

8
c

m12
µ m

2
dm

2
s

+
49

3
− 8π2

9

]

≃ −
√

2Gµ m
2
µ

16π2

α

π
× 32.0(?)

≃ −8.65(?) × 10−11 , (38)

which demonstrates that the leading large logs ∼ lnMZ have canceled [52],
as it should be. However, the quark masses which appear here are ill-defined
constituent quark masses, which can hardly account reliably for the strong
interaction effects, therefore the question marks in place of the errors.
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In fact, low energy QCD is characterized in the chiral limit of massless
light quarks u, d, s, by spontaneous chiral symmetry breaking (SχSB) of the
chiral group SU(3)V ⊗ SU(3)A, which in particular implies the existence of
the pseudoscalar octet of pions and kaons as Goldstone bosons. The light
quark condensates are essential features in this situation and lead to non-
perturbative effects completely absent in a perturbative approach. Thus low
energy QCD effects are intrinsically non-perturbative and controlled by chi-
ral perturbation theory (ChPT), the systematic QCD low energy expansion,
which accounts for the SχSB and the chiral symmetry breaking by quark
masses in a systematic manner. The low energy effective theory describing
the hadronic contributions related to the light quarks u, d, s requires the
calculation of the diagrams of the type shown in Fig. 9. The leading effect
for the 1st plus 2nd family takes the form [53]

a(4)EW
µ

([
e, u, d
µ, c, s

])

ChPT

=

√
2Gµm

2
µ

16π2

α

π

[
−14

3
ln
M2

Λ

m2
µ

+4 ln
M2

Λ

m2
c

− 35

3
+

8

9
π2

]

≃−
√

2Gµm
2
µ

16π2

α

π
×26.2(5)≃−7.09(13)×10−11. (39)

The error comes from varying the cut-off MΛ between 1 GeV and 2 GeV.
Below 1 GeV ChPT can be trusted above 2 GeV we can trust pQCD. For-
tunately the result is not very sensitive to the choice of the cut-off. For
more sophisticated analyses we refer to [52–54] which was corrected and
refined in [55, 56]. Thereby, a new kind of non-renormalization theorems
played a key role [57–59]. Including subleading effects yields −6.7 × 10−11

for the first two families. The 3rd family of fermions including the heavy
top quark can be treated in perturbation theory and has been worked out to
be −8.2× 10−11 in [60]. Subleading fermion loops contribute −5.3× 10−11.
There are many more diagrams contributing, in particular the calculation
of the bosonic contributions (1678 diagrams) is a formidable task and has
been performed 1996 by Czarnecki, Krause and Marciano as an expansion in

γ
Z

π0, η, η′

µ

γ

(a) [L.D.]

γ
Z

π±, K±

µ

γ

(b) [L.D.]

γ
Z

u, d, s

µ

γ

(c) [S.D.]

Fig. 9. The two leading ChPT diagrams (L.D.) and the QPM diagram (S.D.). The

charged pion loop is sub-leading and is discarded. Diagrams with permuted γ ↔ Z

on the µ-line have to be included.
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(mµ/MV )2 and (MV /mH)2 [61]. Later complete calculations, valid also for
lighter Higgs masses, were performed [62,63], which confirmed the previous
result −22.3 × 10−11. The 3rd family of fermions including the heavy top
quark can be treated in perturbation theory and has been worked out in [60].

The complete weak contribution may be summarized by [56]

aEW
µ =

√
2Gµ m

2
µ

16π2

{
5

3
+

1

3
(1 − 4 sin2

ΘW )2 − α

π
[155.5(4)(2)]

}

= (154 ± 1[had] ± 2[mH ,mt, 3 − loop]) × 10−11 (40)

with errors from triangle quark loops and from variation of the Higgs mass
in the range mH = 150+100

−40 GeV. The 3-loop effect has been estimated to be
negligible [55, 56].

4.3. Hadronic contributions

So far when we were talking about fermion loops we only considered the
lepton loops. Besides the leptons also the strongly interacting quarks have
to be taken into account8. The problem is that strong interactions at low
energy are non-perturbative and straight forward first principle calculations
become very difficult and often impossible.

Fortunately the leading hadronic effects are vacuum polarization type
corrections (see (23)), which can be safely evaluated by exploiting causality
(analyticity) and unitarity (optical theorem) together with experimental low
energy data. In fact vacuum polarization effects may be calculated using the
master formula

1

q2
⇒

∞∫

0

ds

s

1

q2 − s

1

π
Im Πγ(s) (41)

which replaces a free photon propagator by a dressed one, and where the
imaginary part of the photon self-energy function Πγ(s) is determined via the

8 The theory of strong interactions is Quantum Chromodynamics (QCD) [64]. The
strongly interacting particles, the hadrons, are made out of quarks and/or antiquarks,
which interact via an octet of gluons according to the non-Abelian SU(3)c gauge
theory. The gauged internal degrees of freedom are named color. Quarks are flavored
and labeled as up (u), down (d), strange (s), charm (c), bottom (b) and top (t).
Each of the flavored quarks exists in Nc = 3 colors (red, green, blue). All hadrons
are color neutral bound states (confinement). This means that QCD is intrinsically
non-perturbative. However, QCD also has the property of asymptotic freedom [65],
which implies that perturbation theory starts to work at higher energies, where the
quark structure appears resolved as in deep inelastic electron–proton scattering, for
example.
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optical theorem by the total cross-section of hadron production in electron–
positron annihilation:

σ(s)e+e−→γ∗→hadrons =
4π2α

s

1

π
Im Πγ(s) . (42)

The leading hadronic contribution is represented by the diagram Fig. 10,

had
µ

γ

γ γ

Fig. 10. The leading order (LO) hadronic vacuum polarization diagram.

which corresponds to a contribution amassive γ
µ = K(s) of the lowest order

diagram with the photon replaced by a “massive photon” of mass
√
s, and

convoluted according to (41). It yields the dispersion integral

aµ =
α

π

∞∫

0

ds

s

1

π
Im Πγ(s)K(s) , K(s) ≡

1∫

0

dx
x2(1 − x)

x2 + s
m2

µ
(1 − x)

. (43)

As a result the leading non-perturbative hadronic contributions ahad
µ can be

obtained in terms of Rγ(s) ≡ σ(0)(e+e− → γ∗ → hadrons)/4πα2

3s
data via the

dispersion integral:

ahad
µ =

(αmµ

3π

)2
( E2

cut∫

4m2
π

ds
Rdata

γ (s) K̂(s)

s2
+

∞∫

E2
cut

ds
RpQCD

γ (s) K̂(s)

s2

)
. (44)

The rescaled kernel function K̂(s) = 3s/m2
µK(s) is a smooth bounded func-

tion, increasing from 0.63. . . at s = 4m2
π to 1 as s→ ∞. The 1/s2 enhance-

ment at low energy implies that the ρ → π+π− resonance is dominating
the dispersion integral (∼ 75%). Data can be used up to energies where
γ − Z mixing comes into play at about 40 GeV. However, by the virtue
of asymptotic freedom, perturbative Quantum Chromodynamics (pQCD)
becomes the more reliable the higher the energy and in fact may be used
safely in regions away from the flavor thresholds where the non-perturbative
resonances show up: ρ, ω, φ, the J/ψ series and the Υ series. We thus use
perturbative QCD [66,67] from 5.2 to 9.46 GeV and for the high energy tail
above 13 GeV, as recommended in [66–68].
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Hadronic cross section measurements e+e− → hadrons at electron–posi-
tron storage rings started in the early 1960’s and continued up to date. Since
our analysis [69] in 1995 data from MD1 [70], BES-II [71] and from CMD-
2 [72] have lead to a substantial reduction in the hadronic uncertainties on
ahad

µ . More recently, KLOE [73], SND [74] and CMD-2 [75] published new
measurements in the region below 1.4GeV. My up-to-date evaluation of the
leading order hadronic VP yields [76]

ahad(1)
µ = (692.1 ± 5.6) × 10−10 . (45)

Some other recent evaluations are collected in Table II. Differences in er-
rors come about mainly by utilizing more “theory-driven” concepts: use of
selected data sets only, extended use of perturbative QCD in place of data

TABLE II

Some recent evaluations of a
had(1)
µ .

a
had(1)
µ × 1010 Data Ref.

696.3[7.2] e+e− [77]
711.0[5.8] e+e− +τ [77]
694.8[8.6] e+e− [78]
684.6[6.4] e+e− TH [79]
699.6[8.9] e+e− [80]
692.4[6.4] e+e− [81]
693.5[5.9] e+e− [82]
701.8[5.8] e+e− +τ [82]
690.9[4.4] e+e−∗∗ [83]
689.4[4.6] e+e−∗∗ [84]
692.1[5.6] e+e−∗∗ [76]

[assuming local duality], sum rule methods and low energy effective meth-
ods [85]. Only the last three (∗∗) results include the most recent data from
SND, CMD-2, and BaBar9.

In principle, the I = 1 iso-vector part of e+e− → hadrons can be ob-
tained in an alternative way by using the precise vector spectral functions
from hadronic τ -decays τ → ντ + hadrons which are related by an isospin

9 The analysis [84] does not include exclusive data in a range from 1.43 to 2 GeV;
therefore also the new BaBar data are not included in that range. It also should
be noted that CMD-2 and SND are not fully independent measurements; data are
taken at the same machine and with the same radiative correction program. The
radiative corrections play a crucial role at the present level of accuracy, and common
errors have to be added linearly. In [77, 83] pQCD is used in the extended ranges
1.8–3.7 GeV and above 5.0 GeV; furthermore [83] excludes the KLOE data.



Essentials of the Muon g − 2 3047

rotation [86]. After isospin violating corrections, due to photon radiation
and the mass splitting md −mu 6= 0, have been applied, there remains an
unexpectedly large discrepancy between the e+e−- and the τ -based deter-
minations of aµ [77], as may be seen in Table II. Possible explanations are
so far unaccounted isospin breaking [78] or experimental problems with the
data. Since the e+e−-data are more directly related to what is required in
the dispersion integral, one usually advocates to use the e+e−-data only.

h e h h h
µ

γa) b) c)

Fig. 11. Higher order (HO) vacuum polarization contributions.

At order O(α3) diagrams of the type shown in Fig. 11 have to be cal-
culated, where the first diagram stands for a class of higher order hadronic
contributions obtained if one replaces in any of the first 6 two-loop diagrams
on p. 3033 one internal photon line by a dressed one. The relevant kernels
for the corresponding dispersion integrals have been calculated analytically
in [87] and appropriate series expansions were given in [88] (for earlier esti-
mates see [89, 90]). Based on my recent compilation of the e+e− data [76]
I obtain

ahad(2)
µ = (−100.3 ± 2.2) × 10−11 , (46)

in accord with previous/other evaluations [81, 84, 86, 88, 90].
Much more serious problems with non-perturbative hadronic effect we

encounter with the hadronic light-by-light (LbL) contribution at O(α3) de-
picted in Fig. 12. Experimentally, we know that γγ → hadrons → γγ is

µ

γ

γ γ
γ

Fig. 12. Hadronic light-by-light scattering in g − 2.

dominated by the hadrons π0, η, η′, · · ·, i.e., single pseudoscalar meson
spikes [91], and that π0 → γγ etc. is governed by the parity odd Wess–
Zumino–Witten (WZW) effective Lagrangian

L(4) = − αNc

12 πf0
εµνρσF

µνAρ∂σπ0 + · · · (47)
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which reproduces the Adler–Bell–Jackiw triangle anomaly and which helps
in estimating the leading hadronic LbL contribution. f0 denotes the pion
decay constant fπ in the chiral limit of massless light quarks. Again, in a
low energy effective description, the quasi Goldstone bosons, the pions and
kaons play an important role, and the relevant diagrams are displayed in
Fig 13.

π0, η, η′

µ

γ

q1 q2 q3

(a) [L.D.]

γ
γ

π±, K±

µ

γ

(b) [L.D.]

γ
γ

u, d, s

µ

γ

(c) [S.D.]

Fig. 13. Leading hadronic light-by-light scattering diagrams: the two leading ChPT

diagrams (L.D.) and the QPM diagram (S.D.). The charged pion loop is sub-leading

only, actually. Diagrams with permuted γ’s on the µ-line have to be included.

γ-hadron/quark vertices at q2 6= 0 are dressed (VMD).

However, as we know from the hadronic VP discussion, the ρ meson is
expected to play an important role in the game. It looks natural to apply
a vector-meson dominance (VMD) like model. Electromagnetic interactions
of pions treated as point-particles would be descried by scalar QED in a first
step. However, due to hadronic interactions the photon mixes with hadronic
vector-mesons like the ρ0. The naive VMD model attempts to take into
account this hadronic dressing by replacing the photon propagator as

i gµν

q2
+ · · · → i gµν

q2
+ · · · −

i (gµν − qµqν

m2
ρ

)

q2 −m2
ρ

=
i gµν

q2
m2

ρ

q2 −m2
ρ

+ · · · ,

where the ellipses stand for the gauge terms. The main effect is that it
provides a damping at high energies with the ρ mass as an effective cut-
off (physical version of a Pauli–Villars cut-off). However, the naive VMD
model is not compatible with chiral symmetry. The way out is the Res-
onance Lagrangian Approach (RLA) [92] , an extended version of ChPT
which incorporates vector-mesons in accordance with the basic symmetries.
The Hidden Local Symmetry (HLS) [93] model and the Extended Nambu–
Jona–Lasinio (ENJL) [94] model are alternative versions of RLA, which are
basically equivalent [95], for what concerns this application.

Based on such effective field theory (EFT) models, two major efforts in
evaluating the full aLbL

µ contribution were made by Hayakawa, Kinoshita
and Sanda (HKS 1995) [96], Bijnens, Pallante and Prades (BPP 1995) [97]
and Hayakawa and Kinoshita (HK 1998) [98] (see also Kinoshita, Nizic and
Okamoto (KNO 1985) [90]). Although the details of the calculations are
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quite different, which results in a different splitting of various contribu-
tions, the results are in good agreement and essentially given by the π0-pole
contribution, which was taken with the wrong sign, however. In order to
eliminate the cut-off dependence in separating L.D. and S.D. physics, more
recently it became favorable to use quark–hadron duality, as it holds in
the large Nc limit of QCD, for modeling of the hadronic amplitudes [99].
The infinite series of narrow vector states known to show up in the large Nc

limit is then approximated by a suitable lowest meson dominance (LMD+V)
ansatz [100], assumed to be saturated by known low lying physical states
of appropriate quantum numbers. This approach was adopted in a reanal-
ysis by Knecht and Nyffeler (KN 2001) [101–104] in 2001, in which they
discovered a sign mistake in the dominant π0, η, η′ exchange contribution,
which changed the central value by +167 × 10−11, a 2.8 σ shift, and which
reduces a larger discrepancy between theory and experiment. More recently
Melnikov and Vainshtein (MV 2004) [105] found additional problems in pre-
vious calculations, this time in the short distance constraints (QCD/OPE)
used in matching the high energy behavior of the effective models used for
the π0, η, η′ exchange contribution.

The10 most important pion-pole term is of the form (p is the muon
momentum, qi (i = 1, 2, 3) are the virtual photon momenta, two of which
are chosen as loop integration variables) [101]

aLbL;π0

µ = −e6
∫

d4q1
(2π)4

d4q2
(2π)4

1

q21q
2
2(q1+q2)2[(p+q1)2−m2][(p−q2)2−m2]

×
[Fπ∗γ∗γ∗(q22, q

2
1 , q

2
3) Fπ∗γ∗γ(q22 , q

2
2, 0)

q22 −m2
π + iε

T1(q1, q2; p)

+
Fπ∗γ∗γ∗(q23, q

2
1 , q

2
2) Fπ∗γ∗γ(q23 , q

2
3, 0)

q23 −m2
π + iε

T2(q1, q2; p)

]
, (48)

where T1(q1, q2; p) and T2(q1, q2; p) are known scalar kinematics factors and
Fπ∗γ∗γ∗(q21 , q

2
2, q

2
3) is the non-perturbative π0γγ form factor (FF) whose off-

shell form is essentially unknown in the integration range of (48).
A new quality of the problem encountered here is the fact that the in-

tegrand depends on 3 invariants q21 , q
2
2 , q

2
3 q3 = −(q1 + q2). While hadronic

VP correlators or the VVA triangle with an external zero momentum ver-
tex only depend on a single invariant q2. In the latter case the invariant
amplitudes (form factors) may be separated into a low energy part q2 ≤ Λ2

(soft) where the low energy effective description applies and a high energy
part q2 > Λ2 (hard) where pQCD works. In multi-scale problems, however,
there are mixed soft–hard regions where no answer is available in general,

10 This paragraph cannot be more than a rough sketch of an ongoing discussion.
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unless we have data to constrain the amplitudes in such regions. In our
case, only the soft region q21 , q

2
2, q

2
3 ≤ Λ2 and the hard region q21, q

2
2 , q

2
3 > Λ2

are under control of either the low energy EFT and of pQCD, respectively.
In the mixed soft–hard domains operator product expansions and/or soft
versus hard factorization “theorems” à la Brodsky–Farrar [106] may help.
Actually, one more approximation is usually made: the pion-pole approxi-

mation,i.e., the pion-momentum square (first argument of F) is set equal to
m2

π, as the main contribution is expected to come from the pole. Knecht and
Nyffeler modeled Fπγ∗γ∗(m2

π, q
2
1 , q

2
2) in the spirit of the large Nc expansion

as a “LMD+V” form factor:

Fπγ∗γ∗(m2
π, q

2
1 , q

2
2) =

fπ

3

×q
2
1q

2
2(q

2
1 + q22) + h1(q

2
1 + q22)

2 + h2q
2
1q

2
2 + h5(q

2
1 + q22) + h7

(q21 −M2
1 )(q21 −M2

2 )(q22 −M2
1 )(q22 −M2

2 )
, (49)

with h7 = −(NcM
4
1M

4
2 /4π

2f2
π), fπ ≃ 92.4 MeV. An important constraint

comes from the pion-pole form factor Fπγ∗γ(m2
π,−Q2, 0), which has been

measured by CELLO [107] and CLEO [108]. Experiments are in fair agree-
ment with the Brodsky–Lepage [109] form

Fπγ∗γ(m2
π,−Q2, 0) ≃ − Nc

12π2fπ

1

1 + (Q2/8π2f2
π)

(50)

which interpolates between a 1/Q2 asymptotic behavior and the constraint
from π0 decay at Q2 = 0. This behavior requires h1 = 0. Identifying
the resonances with M1 = Mρ = 769 MeV, M2 = Mρ′ = 1465 MeV, the

phenomenological constraint fixes h5 = 6.93 GeV4. h2 will be fixed later.
As the previous analyses, Knecht and Nyffeler apply the above VMD type
form factor on both ends of the pion line. In fact at the vertex attached
to the external zero momentum photon, this type of pion-pole form factor
cannot apply for kinematical reasons: when qµ

ext = 0 not Fπγ∗γ(m2
π,−Q2, 0)

but Fπ∗γ∗γ(q22, q
2
2 , 0) is the relevant object to be used, where q2 is to be

integrated over. However, for large q22 the pion must be far off-shell, in which
case the pion exchange effective representation becomes obsolete. Melnikov
and Vainshtein reanalyzed the problem by performing an operator product
expansion (OPE) for q21 ≃ q22 ≫ (q1 + q2)

2 ∼ m2
π. In the chiral limit this

analysis reveals that the external vertex is determined by the exactly known
ABJ anomaly Fπγγ(m2

π, 0, 0) = −1/(4π2fπ). This means that in the chiral
limit there is no VMD like damping at high energies at the external vertex.
However, the absence of a damping in the chiral limit does not prove that
there is no damping in the real world with non-vanishing quark masses. In
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fact, the quark triangle-loop in this case provides a representation of the
π0∗γ∗γ∗ amplitude given by

FCQM
π0∗γ∗γ∗(q

2, p2
1, p

2
2) ≡ (−4π2fπ) Fπ∗γ∗γ∗(q2, p2

1, p
2
2) = 2m2

q C0(mq; q
2, p2

1, p
2
2)

≡
∫

[dα]
2m2

q

m2
q − α2α3p

2
1 − α3α1p

2
2 − α1α2q2

, (51)

where [dα] = dα1dα2dα3 δ(1−α1 −α2 −α3) and mq is a constituent quark

mass (q = u, d, s). For p2
1 = p2

2 = q2 = 0 we obtain FCQM
π0∗γ∗γ∗(0, 0, 0) = 1,

which is the proper ABJ anomaly. Note the symmetry of C0 under permuta-
tions of the arguments (p2

1, p
2
2, q

2). For large p2
1 at p2

2 ∼ 0, q2 ∼ 0 or p2
1 ∼ p2

2
at q2 ∼ 0 the asymptotic behavior is given by

FCQM
π0γ∗γ

(0, p2
1, 0) ∼ r ln2 r , FCQM

π0γ∗γ∗(0, p
2
1, p

2
1) ∼ 2r ln r , (52)

where r =
m2

q

−p2
1
. The same behavior follows for q2 ∼ p2

1 at p2
2 ∼ 0. Note that

in all cases we have the same power behavior ∼ m2
q/p

2
i modulo logarithms.

Thus at high energies the anomaly gets screened by chiral symmetry breaking
effects.

We, therefore, advocate to use consistently dressed form factors as in-
ferred from the resonance Lagrangian approach. However, other effects
which were first considered in [105] must be taken into account:

(1) the constraint on the twist four (1/q4)-term in the OPE requires h2 =
−10 GeV2 in the Knecht–Nyffeler from factor (49): δaµ ≃ +5 ± 0 ,

(2) the contributions from the f1 and f ′1 isoscalar axial-vector mesons:
δaµ ≃ +10 ± 4 (using dressed photons),

(3) for the remaining effects: scalars (f0) + dressed π±,K± loops +
dressed quark loops: δaµ ≃ −5 ± 13 .

Note that the remaining terms have been evaluated in [96, 97] only. The
splitting into the different terms is model dependent and only the sum should
be considered: the results read −5 ± 13 (BPP) and 5.2 ± 13.7 (HKS) and
hence the true contribution remains unclear11.

An overview of results is presented in Table III. The last column gives
my estimates base on [96,97,101,105]. The “no FF” column shows results for
undressed photons (no form factor). The constant WZW form factor yields
a divergent result, applying a cut-off Λ one obtains [102] (α/π)3C ln2

Λ, with
an universal coefficient C = N2

cm
2
µ/(48π

2f2
π); in the VMD dressed cases MV

represents the cut-off Λ →MV if MV → ∞.

11 We adopt the value estimated in [97] because the sign of the scalar contribution which
dominates in the sum has to be negative in any case [103].
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TABLE III

LbL: Summary of most recent results for aµ × 1011.

no FF BPP HKS KN MV FJ

π0, η, η′ +∞ 85 ± 13 82.7 ± 6.4 83 ± 12 114 ± 10 88 ± 12
axial vector 2.5 ± 1.0 1.7 ± 0.0 22 ± 5 10 ± 4
scalar −6.8 ± 2.0 − − − −7 ± 2
π, K loops −49.8 −19 ± 13 −4.5 ± 8.1 0 ± 10 −19 ± 13
quark loops 62(3) 21 ± 3 9.7 ± 11.1 − − 21 ± 3

total 83 ± 32 89.6 ± 15.4 80 ± 40 136 ± 25 93 ± 34

5. Theory confronting the experiment

The following Table IV collects the typical contributions to aµ evaluated
in terms of α determined via ae (14). The world average experimental muon

TABLE IV

The various types of contributions to aµ in units 10−6, ordered according
to their size (L.O. lowest order, H.O. higher order, LbL. light-by-light).

L.O. universal 1161.409 73 (0)
e–loops 6.194 57 (0)
H.O. universal −1.757 55 (0)
L.O. hadronic 0.069 21 (56)
L.O. weak 0.001 95 (0)
H.O. hadronic −0.001 00 (2)
LbL. hadronic 0.000 93 (34)
τ–loops 0.000 43 (0)
H.O. weak −0.000 41 (2)
e+τ–loops 0.000 01 (0)

theory 1165.917 86 (66)
experiment 1165.920 80 (63)

−150 −50 0 100 200

•

•

•

QED

EW 1–loop

EW 2–loop

L.O. had

H.O. had

LbL 1995

LbL 2001

had τ -e+e−
in units

10−10

aµ − 1165.9× 10−6

World Ave

Theory (e+e−)

Theory (τ)

3.2 σ

1.2 σ

magnetic anomaly, dominated by the very precise BNL result, now is [11]

aexp
µ = 1.16592080(63) × 10−3 (53)

(relative uncertainty 5.4 × 10−7), which confronts the SM prediction

atheor
µ = 1.16591786(66) × 10−3 . (54)
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Fig. 14 illustrates the improvement achieved by the BNL experiment. The
theoretical predictions mainly differ by the L.O. hadronic effects, which also
dominate the theoretical error. A deviation between theory and experiment
of about 3 σ was persisting since the first precise BNL result was released
in 2000, in spite of progress in theory and experiment since. Note that the

100 200 300

CERN (79)
TheoryKNO (85)

E821 (00) µ
+

E821 (01) µ
+

E821 (02) µ
+

E821 (04) µ
−

Average 208.0± 6.3
E969 goal

EJ 95 (e+
e
−) 181.3± 16. [1.6 σ]

DEHZ03





(e+
e
−)

(+τ)
180.9± 8.0 [2.7 σ]
195.6± 6.8 [1.3 σ]

GJ03 (e+
e
−) 179.4± 9.3 [2.5 σ]

SN03 (e+
e
− TH) 169.2± 6.4 [4.3 σ]

HMNT03 (e+
e
− incl.) 183.5± 6.7 [2.7 σ]

TY04





(e+
e
−)

(+τ)
180.6± 5.9 [3.2 σ]
188.9± 5.9 [2.2 σ]

DEHZ06 (e+
e
−) 180.5± 5.6 [3.3 σ]

HMNT06 (e+
e
−) 180.4± 5.1 [3.4 σ]

177.6± 6.4 [3.3 σ]
FJ06 (e+

e
−)





LbLBPP,HK,KN

LbLFJ

LbLMV

179.3± 6.8 [3.2 σ]
182.9± 6.1 [2.9 σ]

aµ×1010-11659000

Fig. 14. Comparison between theory and experiment. Results differ by different

L.O. hadronic vacuum polarizations and variants of the LbL contribution. Some

estimates include isospin rotated τ -data (+τ)). The last entry FJ06 also illus-

trates the effect of using different LbL estimations: (1) Bijnens, Pallante, Prades

(BPP) [97], Hayakawa, Kinoshita (HK) [98] and Knecht, Nyffeler (KN) [101]; (2) my

estimation based on the other evaluations; (3) the Melnikov, Vainshtein (MV) [105]

estimate of the LbL contribution. EJ95 vs. FJ06 illustrates the improvement of the

e+e−-data between 1995 and now (see also Table II). E969 is a possible follow-up

experiment of E821 proposed recently [115].

experimental uncertainty is still statistics dominated. Thus just running
the BNL experiment longer could have substantially improved the result.
Originally the E821 goal was δaexp

µ ∼ 40× 10−11. Fig. 15 illustrates the sen-
sitivity to various contributions and how it developed in time. The dramatic
(mµ/me)

2 enhancement in the sensitivity of aµ, relative to ae, to physics at
scales M larger than mµ, which is scaling like (mµ/M)2, and the more
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10−1 1 10 102 103 104

aµ uncertainty [ppm]

BNL CERN III CERN II CERN I

4th

QED 6th

8th

hadronic VP

hadronic LBL

weak

New Physics

SM precision

???

Fig. 15. Sensitivity of g − 2 experiments to various contributions. The increase in

precision with the BNL g − 2 experiment is shown as a gray vertical band. New

Physics is illustrated by the deviation (aexp
µ − atheor

µ )/aexp
µ .

than one order of magnitude improvement of the experimental accuracy has
brought many SM effects into the focus of the interest. Not only are we
testing now the 4-loop QED contribution, higher order hadronic VP effects,
the infamous hadronic LbL contribution and the weak loops, we are reaching
or limiting possible New Physics at a level of sensitivity which causes a lot
of excitement. “New Physics” is displayed in the figure as the ppm deviation
of

δaµ = aexp
µ − atheor

µ = (294 ± 89) × 10−11 (55)

which is 3.3 σ. We note that the theory error is somewhat larger than the
experimental one. It is fully dominated by the uncertainty of the hadronic
low energy cross-section data, which determine the hadronic vacuum po-
larization and, partially, by the uncertainty of the hadronic light-by-light
scattering contribution.

As we notice, the enhanced sensitivity to “heavy” physics is somehow
good news and bad news at the same time: the sensitivity to “New Physics”
we are always hunting for at the end is enhanced due to

aNP
ℓ ∼

(
mℓ

MNP

)2

by the mentioned mass ratio square, but at the same time also scale depen-
dent SM effects are dramatically enhanced, and the hadronic ones are not
easy to estimate with the desired precision.
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6. Prospects

The BNL muon g − 2 experiment has determined aµ as given by (53),
reaching the impressive precision of 0.54 ppm, a 14-fold improvement over
the CERN experiment from 1976. Herewith, a new quality has been achieved
in testing the SM and in limiting physics beyond it. The main achievements
and problems are

• a substantial improvement in testing CPT for muons,

• a first confirmation of the fairly small weak contribution at the 2–3 σ
level,

• the hadronic vacuum polarization contribution, obtained via experi-
mental e+e− annihilation data, limits the theoretical precision at the
1 σ level,

• now and for the future the hadronic light-by-light scattering contribu-
tion, which amounts to about 2σ, is not far from being as important
as the weak contribution; present calculations are model-dependent,
and may become the limiting factor for future progress.

At present a 3.3 σ deviation between theory and experiment is observed12

and the “missing piece” (55) could hint to new physics, but at the same time
rules out big effects predicted by many possible extensions of the SM.

Usually, new physics (NP) contributions are expected to produce con-
tributions proportional to m2

µ/M
2
NP and thus are expected to be suppressed

by M2
W/M2

NP relative to the weak contribution.
The most promising theoretical scenarios are supersymmetric (SUSY)

extensions of the SM, in particular the minimal one (MSSM). Each SM state

X has an associated supersymmetric “sstate” X̃ where sfermions are bosons
and sbosons are fermions. This implements the fermion ↔ boson super-
symmetry. In addition, an anomaly free MSSM requires a second complex
Higgs doublet, which means 4 additional scalars and their SUSY partners.
Both Higgs fields exhibit a neutral scalar which aquire vacuum expectation
values v1 and v2. Typical supersymmetric contributions to aµ stem from
smuon–neutralino and sneutrino–chargino loops Fig. 16. Some contribu-
tions are enhanced by tan β ≡ v2

v1
which may be large (in some cases of order

mt/mb ≈ 40). One obtains [110] (for the extension to 2-loops see [111])

aSUSY
µ ≃ sign(µ)

α(MZ) (5 + tan2 ΘW )

48π sin2
ΘW

m2
µ

m̃2
tan β

(
1 − 4α

π
ln

m̃

mµ

)
(56)

12 It is the largest established deviation between theory and experiment in electroweak
precision physics at present.
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ν̃

χ̃ χ̃

χ̃0

µ̃ µ̃

Fig. 16. Physics beyond the SM: leading SUSY contributions to g− 2 in supersym-

metric extension of the SM.

m̃ = mSUSY a typical SUSY loop mass and µ is the Higgsino mass term. In
the large tan β regime we have

∣∣aSUSY
µ

∣∣ ≃ 123 × 10−11

(
100 GeV

m̃

)2

tan β . (57)

aSUSY
µ generally has the same sign as the µ-parameter. The deviation (55)

requires positive sign(µ) and if identified as a SUSY contribution

m̃ ≃ (65.5 GeV)
√

tan β . (58)

Negative µ models give the opposite sign contribution to aµ and are strongly
disfavored. For tan β in the range 2 ÷ 40 one obtains

m̃ ≃ 92–414 GeV , (59)

precisely the range where SUSY particles are often expected. For a vari-
ety of non-SUSY extensions of the SM typically |aµ(NP)| ≃ Cm2

µ/M
2 where

C = O(1) [or O(α/π) if radiatively induced]. The current constraint suggests
(very roughly) M ≃ 1.7 − 2.4 TeV [M ≃ 87 − 121 GeV]. The C = O(1) as-
sumption is problematic, however, since no tree level contribution can be tol-
erated. For a more elaborate discussion and further references I refer to [112].
Note that the most natural leading contributions in extensions of the SM are
1-loop contributions similar to the leading weak effects or the leading MSSM
contributions. However, mass limits set by LEP and Tevatron make it highly
non-trivial to reconcile the observed deviation to many of the new physics
scenarios. Only the tan β enhanced contributions in SUSY extensions of the
SM for µ > 0 and large enough tan β may explain the “missing contribution”.
Two Higgs doublet models [113] have similar possibilities. Physics beyond
the SM of course not only contributes to aµ but also to other observables like
to the branching fraction BR(b → sγ) = (3.40 ± 0.28) × 10−4 or to the W
mass prediction MW = 80.392(29) GeV. In the R-parity conserving MSSM



Essentials of the Muon g − 2 3057

the lightest neutralino is stable and therefore is a candidate for cold dark
matter in the universe. From the precision mapping of the anisotropies in
the cosmic microwave background, the WMAP collaboration has determined
the relict density of cold dark matter to Ωh2 = 0.1126 ± 0.0081. This sets
severe constraints on the SUSY parameter space (see for example [114]).

Of course, for a specific model, one must check that the sign of the
induced aNP

µ is in accord with experiment (i.e. it should be positive).
Plans for a new g−2 experiment exist [115]. In fact, the impressive

0.54 ppm precision measurement by the E821collaboration at Brookhaven
was still limited by statistical errors rather than by systematic ones. There-
fore an upgrade of the experiment at Brookhaven or J-PARC (Japan) is
supposed to be able to reach a precision of 0.2 ppm (Brookhaven) or 0.1 ppm
(J-PARC).

For the theory this poses a new challenge. It is clear that on the the-
ory side, a reduction of the leading hadronic uncertainty is required, which
actually represents a big experimental challenge: one has to attempt cross-
section measurements at the 1% level up to J/ψ[Υ ] energies (5[10] GeV).
Such measurements would be crucial for the muon g − 2 as well as for a
more precise determination of the running fine structure constant αQED(E).
In particular, e+e− low energy cross section measurements in the region be-
tween 1 and 2.5 GeV [116,117] are able to substantially improve the accuracy

of a
had(1)
µ and αQED(MZ) [76].
New ideas are required to get less model-dependent estimations of the

hadronic LbL contribution. Here, new high statistics experiments attempt-
ing to measure the π0γ∗γ∗ form factor F(m2

π,−Q2
1,−Q2

2) for Q2
1 ∼ Q2

2 and
a scan of the light-by-light off-shell amplitude via e+e− → e+e−γ∗γ∗ →
e+e−γγ would be of great help. Certainly lattice QCD studies [118] will be
able to shed light on these non-perturbative problems in future.

In any case the muon g−2 story is a beautiful example which illustrates
the experience that the closer we look the more there is to see, but also the
more difficult it gets to predict and interprete what we see. Even facing
problems to pin down precisely the hadronic effects, the achievements in the
muon g − 2 is a big triumph of science. Here all kinds of physics meet in
one single number which is the result of a truly ingenious experiment. Only
getting all details in all aspects correct makes this number a key quantity
for testing our present theoretical framework in full depth. It is the result
of tremendous efforts in theory and experiment and on the theory side has
contributed a lot to push the development of new methods and tools such
as computer algebra as well as high precision numerical methods which are
indispensable to handle the complexity of hundreds to thousands of high
dimensional integrals over singular integrands suffering from huge cancella-
tions of huge numbers of terms. Astonishing that all this really works!
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Note added: After completion of this work a longer review article ap-
peared [119], which especially reviews the experimental aspects in much more
depth than the present essay. For a recent reanalysis of the light-by-light
contribution we refer the reader to [120], which presents the new estimate
aLbL

µ = (110 ± 40) × 10−11.

This extended update and overview was initiated by a talk given at
the International Workshop on Precision Physics of Simple Atomic Systems
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to Savely Karshenboim for the kind invitation to this stimulating meeting.
The main new results were first presented at the Kazimierz Final EURIDICE
Meeting. Thanks to Maria Krawczyk and Henryk Czyż for the kind hospi-
tality in Kazimierz. Particular thanks to Andreas Nyffeler and to Simon
Eidelman for many enlightening discussions. Thanks also to Oleg Tarasov
and Rainer Sommer for helpful discussions and for carefully reading the
manuscript. Many thanks to B. Lee Roberts and the members of the E821
collaboration for many stimulating discussions over the years and for pro-
viding me some of the figures. Special thanks go to Wolfgang Kluge, Klaus
Mönig, Stefan Müller, Federico Nguyen, Giulia Pancheri and Graziano Ve-
nanzoni for numerous stimulating discussions and their continuous interest.
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