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This work covers methodology of solving QCD evolution equation of the
parton distribution using Markovian Monte Carlo (MMC) algorithms in a
class of models ranging from DGLAP to CCFM. One of the purposes of the
above MMCs is to test the other more sophisticated Monte Carlo programs,
the so-called Constrained Monte Carlo (CMC) programs, which will be used
as a building block in the parton shower MC. This is why the mapping
of the evolution variables (eikonal variable and evolution time) into four-
momenta is also defined and tested. The evolution time is identified with
the rapidity variable of the emitted parton. The presented MMCs are
tested independently, with ∼ 0.1% precision, against the non-MC program
APCheb especially devised for this purpose.

PACS numbers: 12.38.–t, 12.38.Bx, 12.38.Cy

1. Introduction

The problem of solving numerically the so-called evolution equations
of the parton distribution functions (PDFs) in quantum Chromodynamics
(QCD) is revisited again and again in all effort of providing more precise per-
turbative QCD predictions for the experiments in the Large Hadron Collider
(LHC) and other hadron colliders (e.g. Tevatron). In this work we intend
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nership with the CERN Physics Department and by the Polish Ministry of Scien-
tific Research and Information Technology the grant No 620/E-77/6.PR UE/DIE
188/2005–2008.
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to present a methodology of solving QCD evolution equations using Monte
Carlo techniques for several types of the evolutions, the resulting numerical
results, including the comparisons with other non-MC numerical methods.

Two decades ago, when first attempts of solving numerically and precisely
the evolution time dependence of the parton distribution functions (PDFs)
according to the DGLAP [1] equations were made, it was unthinkable that
the Monte Carlo techniques could be used for this purpose. It was simply
because the computers were too slow by several orders of the magnitude.
Instead, various faster techniques were developed, based mainly on dividing
the evolution time into short periods and using discrete grid in x-space —
they are presently still widely used. Nowadays, with much faster computers,
it is perfectly feasible to solving numerically the QCD evolution equations
with 3–4 digit precision for DGLAP and other types of evolutions, albeit it
is still much slower than with other techniques.

One may therefore ask the following question: does the MC technique
of solving QCD evolution equations have some advantages over other tech-
niques which makes it worth to pursue in spite of its slowness? In our opinion
the MC technique offers certain unique advantages. Let us mention the most
important ones: Although numerical statistical error is usually bigger than
for other methods, this error is very stable and robust, not prone to any
effects related to finite grid or time slicing. Another advantage of the MC
method is that for many types of partons one may solve the evolution equa-
tions for all parton types simultaneously, without the need of diagonalizing
kernels, that is using PDFs in the basis of gluon, singlet quark and several
types of the non-singlet quark components, and then recombining that back.
Finally, the biggest potential advantage is that in the MC method one can
devise mapping of the evolution time and other variables into four-momenta,
hence to set-up the starting point for constructing a more realistic treatment
of the multiparton emission shower, that is the so-called parton shower MC.
Also, the extensions from orthodox DGLAP towards more complicated ker-
nels/evolutions featuring small x resummations, such as CCFM [2], can be
treated with the MC techniques more easily than with other methods.

It should be stressed that this work is closely related with another work
of Ref. [3]. In fact the MC programs of this work are exploited in Ref. [3] to
test more complicated MC techniques of solving evolution equations. The
main difference between this work and Ref. [3] is that here we concentrate on
the Markovian class of MC solutions, while Ref. [3] elaborates on the class
of non-Markovian techniques, in which the parton energy fraction x and its
type f are constrained (predefined). The Markovian MC is better suited for
the final-state parton cascade while the constrained MC of Ref. [3] is better
for the initial state cascade, for instance in hadron colliders (W/Z boson
production).
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Our paper is organised as follows: In Section 2 we present general form
of evolution equations and their iterative solutions. In Section 3 we describe
in detail three Markovian algorithms for solving these equations. Section 4
contains details on evolution kernels and form-factors. In Section 5 we give
some remarks on Monte Carlo implementations of the above algorithms.
Section 6 is devoted to the Chebyshev polynomials method of solving the
evolution equations. In Section 7 we present our numerical results. Finally,
Section 8 summerises the paper.

2. General evolution equations

In this work we shall cover several types of the QCD evolution equations
ranging from DGLAP [1] to CCFM [2] and their extensions. The generic
evolution equation covering all types of QCD evolution of our interest reads

∂tDf (t, x) =
∑

f ′

1
∫

x

du Kff ′(t, x, u)Df ′(t, u) . (2.1)

The parton distribution function (PDF) is Dj(t, u), with x being the frac-
tion of the hadron momentum1 carried by the parton and j being the type
(flavour) of the parton. The so called evolution time t = ln Q represents in
QCD logarithm of the energy scale Q = µ determined by hard scattering
process probing PDF. The case of the LL DGLAP case [1] is recovered with
the following identification

Kff ′(t, x, u) =
1

u
Pff ′

(

t,
x

u

)

=
αS(t)

2π

2

u
P

(0)
ff ′

(

t,
x

u

)

, (2.2)

where P
(0)
ff ′(z) is the lowest order DGLAP kernel.

In the compact operator (matrix) notation Eq. (2.1) reads

∂tD(t) = K(t) D(t) . (2.3)

Given a known D(t0) at the initial time t0, the formal solution at any later
time t ≥ t0 is provided by the time ordered exponential

D(t) = exp





t
∫

t0

K(t′)dt′





T.O.

D(t0) = GK(t, t0)D(t0) . (2.4)

1 Or, equivalently, the fraction of the eikonal “plus” variable.
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The time-ordered exponential evolution operator reads2

GK(t, t0) = G(K; t, t0) = exp





t
∫

t0

K(t′)dt′





T.O.

= I +
∞
∑

n=1

n
∏

i=1

t
∫

t0

dtiθti>ti−1K(ti) , (2.5)

where (I)f2,f1(x2, x1) ≡ δf2f1δx2=x1 and the multiplication of the operators
is defined as follows

(

K(t2)K(t1)
)

f2,f1
(x2, x1) =

∑

f ′

x1
∫

x2

dx′
Kf2f ′(t2, x2, x

′)Kf ′f1
(t1, x

′, x1) .

(2.6)
From now on we adopt the following notation3:

δx=y = δ(x − y), θy<x = 1 for y < x and θy<x = 0 for y ≥ x.

In the case of the kernel split into two components, K(t) = K
A(t) +

K
B(t), the solution of Eq. (2.4) can be reorganised as follows4

D(t) = G
K

B (t, t0) D(t0) +

∞
∑

n=1







n
∏

i=1

t
∫

ti−1

dti






G

K
B (t, tn)

×

[

n
∏

i=1

K
A(ti)GK

B(ti, ti−1)

]

D(t0) ,

GK(t, t0) = G
K

B (t, t0) +
∞
∑

n=1







n
∏

i=1

t
∫

ti−1

dti






G

K
B (t, tn)

×

[

n
∏

i=1

K
A(ti)GK

B(ti, ti−1)

]

, (2.7)

2 Here and in the following we adopt the following conventions
Qn

i=1 Ai ≡

AnAn−1 . . . A2A1 and
Qn

i=1

R

dti ≡

R

dtn

R

dtn−1 . . .
R

dt2
R

dt1. The inverse ordering

will be similarly denoted with
Qn

i=1.
3 Similarly, we define θz<y<x = θz<yθy<x.
4 The scope of the index i in

Q

i
ceases at the closing bracket, but validity scope of

indiced variables, like ti, extends until the formula’s end. The use of Eq. (2.6) is
understood accordingly.
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where G
K

B is the evolution operator of Eq. (2.5) of the evolution with the

kernel K
B . Formal proof of identities in Eq. (2.7) can be found in Ref. [4].

2.1. Resuming virtual corrections

Monte Carlo method cannot efficiently deal with the non-positive distri-
butions, hence resummation of negative virtual part in the evolution kernel
is a necessary preparatory step. It will be done with help of identity of
Eq. (2.7). We are going resum (negative) diagonal virtual part K

V = K
B

in the kernel

Kff ′(t, x, u) = K
V
ff ′(t, x, u) + K

R
ff ′(t, x, u) ,

K
V
ff ′(t, x, u) = −δff ′δx=uK

v
ff (t, x) . (2.8)

At this point we do not need to be very specific about KR
ff ′(t, x, u) — we

only remark that due to infrared (IR) singularity at x = u and f = f ′

it includes IR cut-off, typically u − x < ∆(x, u, t), causing Kv to be also
∆-dependent.

Thanks to diagonality of the kernel K
V , the corresponding time-ordered

exponential is easily calculable

{G
K

V (t, t′)}ff ′(x, u) = δff ′δx=u e−Φf (t,t′|x) ,

Φf (t, t′|x) =

t
∫

t′

dt′′ K
v
ff ′(t′′, x) . (2.9)

Inserting the above in Eq. (2.7) we obtain

D(t) =

∞
∑

n=0







n
∏

i=1

t
∫

ti−1

dti






G

K
V (t, tn)

[

n
∏

i=1

K
R(ti)GK

V (ti, ti−1)

]

D(t0) .

(2.10)

More compact notation is obtained with the prescription
∏k−1

i=k Ai ≡ I and
∏k−1

i=k

∫

dti ≡ 1.

2.2. Momentum sum rule

Evolution equations and their time ordered solutions do not require any
assumptions about the normalisation of PDFs and kernels. However, Marko-
vian Monte Carlo methods are inherently based on the unitary normalisation
of the probability distributions (for the forward step). Hence, we concentrate
on the evolution equations which are supplemented with some conservation
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rule, providing time-independent normalisation condition. For DGLAP it is
the momentum sum rule which is obeyed exactly and is exploited to this end
(it can also be used for the CCFM class models). It will be also formulated
in terms of the compact operator formalism. Let us define operator (vector)
Ē acting from the left side

Ē D(t) ≡

1
∫

0

dx
∑

f

x Df (t, x) . (2.11)

The momentum sum rule can be stated as the following time conservation
law:

∂tĒ D(t) = 0 . (2.12)

Inserting evolution equation one obtains immediately

∂tĒ D(t) = ĒK D(t) = 0 . (2.13)

The sufficient condition for the above to be true is the following property of
the kernel

ĒK = 0̄, (ĒK)f (u) =
∑

f ′

1
∫

0

dx xKf ′f (t, x, u) = 0 , (2.14)

for any u and f . In particular we have ĒK
V + ĒK

R = 0̄, from which we
can derive immediately the virtual part of the kernel

−
(

ĒK
V
)

f
(u) = uK

v
ff (t, u) =

∑

f ′

u
∫

0

dx x K
R
f ′f (t, x, u) =

(

ĒK
R
)

f
(u) .

(2.15)
From ĒK = 0̄ also follows the following useful identity

ĒGK(t, t0) = Ē , (2.16)

which provides immediately ĒD(t) = ĒD(t0).

2.3. Markovianization

The aim is now to transform Eq. (2.10) into a form better suited for the
Monte Carlo evaluation, using Markovian algorithm. The basic problem is
to show how to change the integration order from

∫ t

t0
dtn . . .

∫ t3
t0

dt2
∫ t2
t0

dt1 to
∫ t

t0
dt1
∫ t1
t0

dt2 . . .
∫ tn−1

t0
dtn, taking into account non-commutative character

of the product of the kernels in the time ordered exponentials.
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It is convenient not only to change the order of the t-integration but also
to transpose simultaneously (temporarily) both sides of Eq. (2.10)

D̄(t) = D̄(t0)

∞
∑

n=0





∏n

i=1

t
∫

t0

dti θti>ti−1
Ḡ

K
V (ti, ti−1)K̄

R
(ti)



 Ḡ
K

V (t, tn) .

(2.17)

In the next step we isolate the integration over t1, the outermost one,

D̄(t) = D̄(t0)

{

Ḡ
K

V (t, t0) +

t
∫

t0

dt1 Ḡ
K

V (t1, t0)K̄
R
(t1)

×

∞
∑

n=1





∏n

i=2

t
∫

t1

dti θti>ti−1 Ḡ
K

V (ti, ti−1)K̄
R
(ti)



 Ḡ
K

V (t, tn)

}

.

(2.18)

Closer look into second line in the above equation reveals5 that it represents
again the time ordered evolution operator ḠK(t, t1) (with t0 → t1). We
obtain therefore

D̄(t) = D̄(t0)

{

Ḡ
K

V (t, t0) +

t
∫

t0

dt1 Ḡ
K

V (t1, t0)K̄
R
(t1) ḠK(t, t1)

}

.

(2.19)

Transposition can be now removed and the integral over t1 is pulled out

D(t) =

t
∫

t0

dt1

{

GK(t, t1) K
R(t1)GK

V (t1, t0) + G
K

V (t, t0)δt1=t

}

D(t0) .

(2.20)

The above result can be also presented as an integral equation for the evo-
lution operator

GK(t, t0) =

t
∫

t0

dt1

{

GK(t, t1) K
R(t1)GK

V (t1, t0) + G
K

V (t, t0)δt1=t

}

.

(2.21)

5 After renaming ti → ti−1 and shifting indices i and n by one.
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This can be inserted back into Eq. (2.19) many times. The following example
shows three levels of the nesting

D(t)=

t
∫

t0

dt1

(

t
∫

t1

dt2

[

t
∫

t2

dt3

{

GK(t, t3)K
R(t3)GK

V (t3, t2)+G
K

V (t, t2)δt3=t

}

×K
R(t2)GK

V (t2, t1) + G
K

V (t, t1)δt2=t

]

×K
R(t1)GK

V (t1, t0) + G
K

V (t, t0)δt1=t

)

D(t0) .

(2.22)

It should be stressed that integration over t1 is now the external one and in
the MC it will be generated as a first one.

If the above nesting is continued to the level N + 1, then one may argue
that the contribution from the term with GK(t, tN+1) for large N decreases
like 1/N !, hence in the Markovian MC we may use the following formula
“truncated” at large fixed N playing a role of a dummy technical parameter:

D(t) =

t
∫

t0

dt1

(

t
∫

t1

dt2

[

t
∫

t2

dt3

{

. . .

. . .

t
∫

tN−1

dtN

{

K
R(tN )G

K
V (tN , tN−1) + G

K
V (t, tN−1)δtN =t

}

...

×K
R(t2)GK

V (t2, t1) + G
K

V (t, t1)δt2=t

]

×K
R(t1)GK

V (t1, t0) + G
K

V (t, t0)δt1=t

)

D(t0) , (2.23)

where the integration over tN+1 was consumed by δtN+1=t. The above iden-
tity will be instrumental in constructing MMC algorithm in the following
section.

3. Markovian MC algorithms

For the Monte Carlo method one needs a (sum of) scalar multi-dimen-
sional integral. For the straightforward Markovian algorithm we shall take
the following multi-integral

C = ĒD(t) = ĒGK(t, t0)D(t0) . (3.1)
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The aim is to generate with the MC method all internal integration vari-
ables in the above equation. Then, the histogram of the variable x = xn

and flavour type f = fn is evaluated in the high statistic MC run. Such
a histogram is defined by means of inserting Dirac delta functions in the
above multi-integral:

Df (x) =

∞
∑

n=0

∑

fnf0

∫

dxndx0

(

GK(t, t0)
)(n)

fn,f0

(xn, x0) δx=xnδffn
Df0(t0, x0) ,

(3.2)
where n is the dimensionality of the integral in GK.

3.1. Basic formalism

As a warm-up exercise let us insert D(t) of Eq. (2.20) into ĒD(t) and
check how the identity ĒD(t) = D(t0) is recovered through explicit inte-
gration over t1

ĒD(t) =

t
∫

t0

dt1

{

ĒGK(t, t1)K
R(t1)GK

V (t1, t0)+ĒG
K

V (t, t0)δt1=t

}

D(t0)

=

t
∫

t0

dt1

{

− ĒK
V (t1)GK

V (t1, t0) + ĒG
K

V (t, t0)δt1=t

}

D(t0)

=

t
∫

t0

dt1

{

− Ē∂t1GK
V (t1, t0) + ĒG

K
V (t, t0)δt1=t

}

D(t0)

=

{

− ĒG
K

V (t1, t0)|
t1=t
t1=t0

+ ĒG
K

V (t, t0)

}

D(t0) = ĒD(t0) . (3.3)

In the above the most essential was the use of ĒGK(t, t1) = Ē in the first
step, because it has allowed to decouple t1-integration from the integrations
inside GK(t, t1). Next, ĒK

R(t1) = −ĒK
V (t1) was employed, then the

evolution equation for G
K

V and finally G
K

V (t0, t0) = I was also used. The
decoupled inner integrations are explicitly present in the following iterative
formula
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ĒD(t) =

t
∫

t0

dt1

(

t
∫

t1

dt2

[

t
∫

t2

dt3

{

. . .

. . .

t
∫

tN−1

dtN

{

ĒK
R(tN )G

K
V (tN , tN−1) + ĒG

K
V (t, tN−1)δtN =t

}

...

×K
R(t2)GK

V (t2, t1) + G
K

V (t, t1)δt2=t

]

×K
R(t1)GK

V (t1, t0) + G
K

V (t, t0)δt1=t

)

D(t0) . (3.4)

Again, we would like to stress that the order of the integration starting
from t1 and ending with tN is exactly the one which will be realized in the
Markovian Monte Carlo algorithm.

3.2. Straightforward Markovian algorithm

In the Markovian MC we are going to generate ti, one after another,
starting from t1 until for certain n, 0 ≤ n ≤ N , t = tn+1 is reached6. For
this to be feasible in the Markovian MC, we have to show with the same
algebra as in Eq. (3.4), that all integrals over ti are properly normalised

to momentum fraction7 xi−1, starting with the innermost
∫ t

tN−1
dtN and

finishing with outermost
∫ t

t0
dt1. Following the above warm-up example one

can show that the integration over t1 decouples completely from all inner
integrations over t2, . . . , tN and, therefore, can be generated independently
as a first variable in the MC algorithm.

In the MC generation, whenever δtn+1=t term is encountered for the first
time, the real parton emission chain is terminated. More precisely, for all
k > n one may formally define tk = t, but they are dummy (not used).

In Ref. [5] it was stated, that every standard (classic) MC algorithm can
be reduced to a superposition of only three elementary methods: mapping
of variables, weighting-rejecting and branching. As seen in Fig. 1, where
the above basic MMC algorithm is depicted using graphical notation of
Ref. [5], it is indeed a superposition of branching and mapping — every box

fi, xi typically includes more elementary methods (typically mappings and

branchings).

6 Maximum number of steps N is large and fixed. Formally, N → ∞ is understood.
7 Unitary normalisation is obtained by means of applying 1/xi−1 normalisation factor.
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t1 1 1f ,x t f ,x2 2 2 ... tN f ,x
N N

t =t
1 t =t

2 t =t
N

Fig. 1. Scheme of the standard Markovian Monte Carlo.

What still remains, is to define in a more detail the distribution of
all three variables of ti, fi, xi of the single Markovian step after generating
ti−1, fi−1, xi−1 in the preceding step:

1 =
1

xi−1

t
∫

ti−1

dti

{

ĒK
R(ti)GK

V (ti, ti−1) + ĒG
K

V (t, ti−1)δti=t

}

fi−1

(xi−1)

=
1

xi−1

t
∫

ti−1

dti

{

[

∑

fi

∫

dxi xiK
R
fifi−1

(ti, xi, xi−1)e
−Φfi−1

(ti,ti−1)
]

+xi−1δti=te
−Φfi−1

(t,ti−1)

}

=

t
∫

ti−1

dti
∑

fi

∫

dxi ω(ti, fi, xi|ti−1, fi−1, xi−1) . (3.5)

Let us also show the above distribution in a form immediately suitable for
the MC generation

1 = e−Φfi−1
(t,ti−1) +

1
∫

e
−Φfi−1

(t,ti−1)

d
(

e−Φfi−1
(ti,ti−1)

)

×





∑

fi

Φfifi−1
(ti, ti−1|xi−1)

Φfi−1
(ti, ti−1|xi−1)

∫

dxi
1

Φfifi−1
(ti, ti−1|xi−1)

×
xi

xi−1
K

R
fifi−1

(ti, xi, xi−1)



 , (3.6)

where virtual form-factor is evaluated using real emission kernels and split



126 K. Golec-Biernat et al.

into contributions from various transition channels according to

Φf (t1, t0|u) =

t1
∫

t0

dt K
v
ff (t, u) =

∑

f ′

t1
∫

t0

dt

u
∫

0

dx

u
x K

R
f ′f (t, x, u)

=
∑

f ′

Φf ′f (t1, t0|u) . (3.7)

Given an uniform random number r ∈ (0, 1), generation of ti is done by

means of solving the equation r = U(ti) = e−Φfi−1
(ti,ti−1) for ti, within the

range r ∈ [e−Φfi−1
(t,ti−1), 1]. The remaining range r ∈ [0, e−Φfi−1

(t,ti−1)] is
mapped into a single point ti = t, that is the point where the distribution
proportional to δt=ti resides. Flavour index fi is generated according to nor-
malised discrete probability distribution Pfi

= Φfifi−1
(ti, ti−1)/Φfi−1

(ti, ti−1).
Finally, variable xi is generated according to the normalised integrand of
∫

dxi in Eq. (3.6).
The above Markovian MC algorithm of Fig. 1 is completely standard and

very well known. Practical problem is that the generation of ti, for more
complicated kernels than in DGLAP case requires numerical evaluation and
inversion of the form-factor Φfifi−1

(ti, ti−1). Generation of fi is always rather
trivial. On the other hand, generation of xi can be also nontrivial. The above
problems can be solved, at least partly, by more sophisticated versions of
the Markovian MC, generally using MC weights, see next section.

3.3. Weighted Markovian MC algorithms

In the simplest Markovian MC method with weighted events, which will
be referred to as an internal loop MMC, the real emission kernel in the
distribution used in the generation of xi is replaced by the simplified one
KR

fifi−1
(ti, xi, xi−1) → K̄R

fifi−1
(ti, xi, xi−1), such that KR ≤ K̄R. Variables

xi are generated according to normalised distribution

P̄ (xi) =
1

Φ̄fifi−1
(ti, ti−1|xi−1)

xi

xi−1
K̄

R
fifi−1

(ti, xi, xi−1) , (3.8)

where

Φ̄f ′f (t1, t0|u) =

t1
∫

t0

dt

u
∫

0

dx

u
x K̄

R
f ′f (t, x, u) (3.9)

is also simpler than Φ. The above simplification is corrected by the MC
weight

wz
i =

KR
fifi−1

(ti, xi, xi−1)

K̄R
fifi−1

(ti, xi, xi−1)
≤ 1 , (3.10)
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which is used in the local rejection loop, for every forward step separately, us-
ing uniform random number r: if r > wz

i then generation of xi is repeated. In
this method generation of ti is still done using the exact Sudakov form-factor
Φfi−1

(ti, ti−1|xi−1). This type of MMC algorithm is shown schematically in
Fig. 2 and it is essentially a particular realization of the basic algorithm of
Fig. 1. In the second method, which will be referred to as a global loop MMC
the approximate form-factor Φ̄fi−1

(ti, ti−1|xi−1) =
∑

fi
Φ̄fifi−1

(ti, ti−1|xi−1)
is used for generation of both ti, fi and xi. Global correcting weight w is
applied at the very end of the Markovian chain. However, the weight is not
just

∏

wz
i , but it can be deduced as follows. According to Eq. (3.6) the

normalised probability of the froward step (i − 1) → i reads

dPfi

dxidti
(ti−1, fi−1, xi−1) = ω(i−1)→i = ωR

(i−1)→i + ωδ
(i−1)→i

= θti−1≤ti<t
xi

xi−1
K

R
fifi−1

(ti, xi, xi−1)e
−Φfi−1

(ti,ti−1)

+δti=tδfifi−1
δxi=xi−1 e−Φfi−1

(t,ti−1) . (3.11)

The desired distribution of all variables in MMC event with n emission is

ω(n) = ωδ
n→n+1

n
∏

i=1

ωR
(i−1)→i . (3.12)

However, in the actual global loop MMC method the distribution of these
variables (before applying correcting MC weight) is the following

ω̄(n) = ω̄δ
n→n+1

n
∏

i=1

ω̄R
(i−1)→i , (3.13)

where barring means substitution of exact kernels and form-factors with
the approximate ones: K → K̄, Φ → Φ̄. Global correcting MC weight is,
therefore, just the usual ratio of the exact and approximate distributions

w(n) =
ω(n)

ω̄(n)
= eΦ̄fn(t,tn)−Φfn (t,tn)

(

n
∏

i=1

wz
i eΦ̄fi−1

(ti,ti−1)−Φfi−1
(ti,ti−1)

)

.

(3.14)

The above weight is tested against the random number after the entire
MC event generation is completed, see the external return loop in Fig. 3.
Note that, although approximate form-factor Φ̄fi−1

(ti, ti−1) and its inverse
is used here for generation of ti, the exact form-factor is still needed to
calculate the global weight8.

8 Note that in our older papers describing this method we were denoting Tf = Φ̄f and
∆f = Φ̄f − Φf .
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Fig. 2. Scheme of Markovian Monte Carlo with the internal rejection loop.
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Fig. 3. Scheme of Markovian Monte Carlo with the global rejection loop.

Finally, we are going to derive the third method which will be referred to
as MMC with pseudo-emissions. This method is also known in the literature
under the name of the Markovian MC algorithm with veto or shortly veto
algorithm. In this case we do the following modification of the evolution
kernel

K̃
V
ff ′(t, x, u) = K

V
ff ′(t, x, u) − δff ′δx=uK

S
ff (t, x) ,

K̃
R
ff ′(t, x, u) = K

R
ff ′(t, x, u) + δff ′δx=uK

S
ff (t, x) , (3.15)

where KS
ff (t, x) is positive and its magnitude is judiciously chosen as the

integral difference of the exact kernel KR and the approximate kernel K̄R ≥
KR (typically the same as in the previous methods)

K
S
ff (t, u) =

∑

f ′

1
∫

0

dx
x

u

(

K̄
R
f ′f (t, x, u) − K

R
f ′f (t, x, u)

)

. (3.16)

In this way we are artificially adding to the real emission kernel finite pos-
itive contributions, which represents real emission of a gluon with exactly
zero momentum! This extra real emission is compensated immediately and
exactly by enlarging negative virtual correction. Since the total evolution
kernel remains unchanged,

Kff ′(t, x, u) = K̃
V
ff ′(t, x, u) + K̃

R
ff ′(t, x, u) , (3.17)

the same time-ordered exponential solution remains valid, D(t) =
GK(t, t0)D(t0). However, the difference will occur when resumming vir-
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tual negative corrections, because we are now resumming the enlarged K̃V .
The basic solution used as a starting point for MMC now reads

D(t) =
∞
∑

n=0







n
∏

i=1

t
∫

ti−1

dti






G

K̃
V (t, tn)

[

n
∏

i=1

K̃
R
(ti)G

K̃
V (ti, ti−1)

]

D(t0) ,

{G
K̃

V (t, t′)}ff ′(x, u) = δff ′δx=u e−Φ̃f (t,t′|x) , Φ̃f (t, t′|x)=

t
∫

t′

dt′′K̃v
ff ′(t′′, x) .

(3.18)

The momentum sum rule still holds and can be used to evaluate modified
form-factor

Φ̃f (t1, t0|u) =

t1
∫

t0

dt K̃
v
ff (t, u) =

t1
∫

t0

dt
∑

f ′

u
∫

0

dx

u
x K̃

R
f ′f (t, x, u)

=

t1
∫

t0

dt





∑

f ′

u
∫

0

dx

u
x K

R
f ′f (t, x, u) + K

S
ff (t, u)





=

t1
∫

t0

dt
∑

f ′

u
∫

0

dx

u
x K̄

R
f ′f (t, x, u) = Φ̄f (t1, t0|u) . (3.19)

Obviously, KS was adjusted such that Φ̃f = Φ̄f holds. The immediate im-
portant gain is that simplified form-factor Φ̄f is used to generate ti, instead
of more complicated Φf .

However, there is one more possible gain from Φ̃f = Φ̄f in the algorithm

of generating fi and xi. Due to K → K̃, the probability of choosing fi should
be

P̃fi
=

Φ̃fifi−1
(ti, ti−1|xi−1)

Φ̃fi−1
(ti, ti−1|xi−1)

=
Φ̃fifi−1

(ti, ti−1|xi−1)

Φ̄fi−1
(ti, ti−1|xi−1)

. (3.20)

The next xi should be generated according to K̃R
fifi−1

(ti, xi, xi−1), including

singular part proportional to δxi=xi−1δff ′ . However, generating xi and fi

according to this distribution can be inconvenient and the following clever
trick may be helpful. Let us consider for a moment the internal loop MMC
algorithm with P̄fi

= Φ̄fifi−1
/Φ̄fi−1

for which xi is generated according to

K̄(xi, . . . ). Give uniform random number r, the fraction of MC events obey-

ing r > wz
i will be (Φ̄fi−1

−Φfi−1
)/Φ̄fi−1

. Now, due to Φ̃f = Φ̄f this fraction
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happens to be exactly the same as the fraction of events (Φ̃fi−1
−Φfi−1

)/Φ̄fi−1

located in the δxi=xi−1δff ′ term!

One can therefore proceed almost exactly as in the internal loop MMC
algorithm, that is generate fi according to P̄i and xi according to kernel K̄,
and next, for events with r > wz

i , instead of repeating generation of fi and
xi for the same ti, one sets fi = fi−1 and xi = xi−1 (zero momentum real
gluon!) and proceeds to generation of the next ti+1. This completes descrip-
tion and derivation of the algorithm of MMC with pseudo-emissions. The
advantage of this algorithm is that the numerical evaluation and inversion
of the possibly complicated exact form-factor Φff ′(t, t′|u) is not required —
only the simplified version Φ̄ff ′(t, t′|u) is used. This type of MMC algorithm
with pseudo-emissions is shown schematically in Fig. 4.

i
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Fig. 4. Scheme of Markovian Monte Carlo with pseudo-emissions (veto).

Comparing to other derivations of the veto MMC, in our derivation we
reduce veto MMC to the standard MMC without the need of repetition of
the explicit resummation of the contributions form Ḡs (which is typically
done in the derivations of veto MMC in the literature). We believe that the
proof presented here is both simpler and more rigorous.

Finally let us comment on one purely technical point. One may get false
impression that the above algorithm with pseudo-emissions visualised in
Fig. 4 cannot be reduced to a superposition of the three elementary methods
of Ref. [5]. In fact it can be done rather easily — the above algorithm is
just a variant of the basic algorithm of Fig. 1, in which the branch with
W z < r representing emission of another type of real gluon Ḡ with exactly
zero momentum is present.

4. Kernels and form-factors

Our main interest is in the CCFM-like evolution with the evolution time
being rapidity and running coupling constant αS dependent on the trans-
verse momentum of the emitted gluon. The LL DGLAP will be shown as
a reference case, while another with rapidity ordering and z-dependent αS

will be also discussed. as a useful intermediate case between CCFM and
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DGLAP. Running coupling constant

α
(0)
S (q) =

2π

β0

1

ln q − lnΛ0
(4.1)

is taken in the LL approximation. All three types of evolution in this work
are essentially the same as in Ref. [3], so we shall reduce to a minimum
presentation of the corresponding three kernels and form-factors.

4.1. Kinematics

As already stressed we define explicit mapping of the evolution variables
to four-momenta, because of possible applications in the parton shower MCs.
It will be the same as in Ref. [3] and is basically that of CCFM model [2].
We define kµ

i to be the momenta of emitted partons, whereas qµ
i denote the

virtual partons along the emission tree. The initial hadron carries q+
h = 2Eh.

For each emitted parton we define

k+
i = q+

i−1 − q+
i = 2Eh(xi−1 − xi) = 2Ehxi−1(1 − zi) , ηi = 1

2 ln
k+

i

k−
i

.

(4.2)

Consequently, the transverse momentum of emitted massless parton reads

kT
i =

√

k+
i k−

i = k+
i e−ηi = xi−1(1 − zi)2Ehe−ηi . (4.3)

This suggests the convenient definition of the rapidity-based evolution time
as

ti = −ηi + ln(2Eh) . (4.4)

Now, the transverse momentum of the emitted parton (in units of 1 GeV)
becomes:

kT
i = etixi

1 − zi

zi
= etixi−1(1 − zi) = eti(xi−1 − xi) . (4.5)

4.2. Three types of kernels

In the following we are going to define matrix elements of the kernels

(K)ff ′(x, u) = Kff ′(t, x, u) = K
V
ff ′(t, x, u) + K

R
ff ′(t, x, u) , (4.6)

starting with the real emission part KR
ff ′(t, x, u). It includes implicitly IR

cut-off u − x < ∆(x, u). The virtual part KV
ff ′(t, x, u) will be determined
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unambiguously by imposing momentum sum rule. It includes implicitly
δff ′δx=u. We will use as a basic building block the real emission part of
the LL DGLAP kernel. In order to facilitate numerical calculation it is
decomposed as follows

zP
(0)
f ′f (z) = δf ′f

(

Aff

1 − z
+ Fff (z)

)

+ (1 − δf ′f )Ff ′f (z) , (4.7)

(z = x/u), with the coefficients Aff and functions Ff ′f (z) defined in Ref. [6].
Let us start with pure bremsstrahlung case, real emission part.

Case (A): DGLAP LL is introduced here as a reference case:

K
R(A)
ff (t, x, u) =

αS(Q0e
t)

π

1

u
P

(0)
ff

(x

u

)

θu−x≥uǫ , (4.8)

where ǫ is infinitesimally small and z = x/u.
Case (B): The argument in αS is (1 − z)q = (1 − z)et = kT/u; as

advocated in Ref. [7]. For the IR cut-off we use ∆(t, u) = λue−t:

K
R(B)
ff (t, x, u) =

α
(0)
S ((1 − x/u)et)

π

1

u
P

(0)
ff

(x

u

)

θu−x≥uλe−t . (4.9)

Case (C): The coupling constant αS depends on the transverse momen-
tum kT = (u−x)et, while for an IR cut-off we choose ∆(t, u) = ∆(t) = λe−t.
The kernel reads:

K
R(C)
ff (t, x, u) =

α
(0)
S ((u − x)et)

π

1

u
P

(0)
ff

(x

u

)

θu−x≥λe−t . (4.10)

The generalised kernels beyond the case of the pure bremsstrahlung, for
the quark–gluon transitions, valid for all three cases X = A,B,C, we define
as follows

xK
R(X)
f ′f (t, x, u) = δf ′f xK

R(X)
f ′f (t, x, u)+(1−δf ′f )

αS(et)

π
Ff ′f (z)θu−x>∆(X)(u) ,

(4.11)
where αS in the flavour changing elements have no z- or kT-dependence and
the IR cut-off ∆

(X) is the same as in the bremsstrahlung case.
Note that the case (C) is fully compatible with the CCFM evolution [2],

except that for the gluon–gluon transitions (bremsstrahlung) the non-
Sudakov form-factor assuring the compatibility with BFKL [8] is not shown
(although it is already present in the MC program)9.

9 The original CCFM was formulated for pure gluonstrahlung, without quark–gluon
transitions.
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As in Ref. [3], for cases (B) and (C), we also introduce slightly modified
version of the quark–gluon changing kernels elements:

xK
R(B′)
f ′f (t, x, u) = δf ′f xK

R(B)
f ′f (t, x, u)

+(1 − δf ′f )
αS((1 − z)et)

π
Ff ′f (z)θ1−z>λe−t ,

xK
R(C′)
f ′f (t, x, u) = δf ′f xK

R(C)
f ′f (t, x, u)

+(1 − δf ′f )
αS(u(1 − z)et)

π
Ff ′f (z)θy>λe−t , (4.12)

with the same arguments of αS and IR cut-off as for gluonstrahlung. New
variants are referred to as cases (B′) and (C ′). One can go back from cases
(B′) and (C ′) to (B) and (C) by means of applying well behaving MC weight.

4.3. Form-factors

Sudakov form-factor resulting from resummation of the virtual part in
the kernel was defined in Eq. (2.9). The virtual part of the kernel is deter-
mined through momentum sum rule, see Eq. (2.15), leading to the following
expression

Φf (t1, t0|u) =
∑

f ′

t1
∫

t0

dt

u
∫

0

dx

u
xK

R
f ′f (t, x, u)

=
∑

f ′

t1
∫

t0

dt

u
∫

0

dy

u
(u − y)K

R
f ′f (t, u − y, u)

=
∑

f ′

t1
∫

t0

dt

1
∫

0

dz uzK
R
f ′f (t, uz, u) , (4.13)

where z ≡ x/u and y ≡ u − x = (1 − z)u, see also Eq. (3.7).
Following decomposition of the LL kernel into three parts

zP
(0)
f ′f (z) = δf ′f

Aff

1 − z
+ δf ′fFff (z) + (1 − δf ′f )Ff ′f (z) , (4.14)

the Sudakov form-factor for practical reasons is split into three corresponding
parts:

Φf (t1, t0|u) = Φf (t1, t0|u) + Φ
b
f (t1, t0|u) + Φ

c
f (t1, t0|u) . (4.15)
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We show in the following explicit expressions for the above form-factor
components for most complicated case (C), referring the reader to Ref. [3]
for simpler cases (A) and (B):

Φf (t1, t0|u) =

t1
∫

t0

dt

1
∫

0

dz
αS((1 − z)uet)

π

Aff

1 − z
θ(1−z)u>λe−t

= Aff
2

β0
̺2(t̄0 + ln u, t̄1 + ln u; t̄λ) ,

Φ
b
f (t1, t0|u) =

t1
∫

t0

dt

1
∫

0

dz
αS((1 − z)uet)

π
Fff (z) θ(1−z)u>λe−t ,

Φ
c
f (t1, t0|u) =

t1
∫

t0

dt
αS(e

t)

π

∑

f ′ 6=f

1
∫

0

dz Ff ′f (z) θ(1−z)u>λe−t , (4.16)

where t̄i ≡ ti−lnΛ0, t̄λ ≡ tλ−lnΛ0, while function ̺2 is defined in Appendix
of Ref. [3] in terms of log functions. Two other components Φ

b
f and Φ

c
f are

evaluated numerically for every MC event. This is feasible, provided one
integration is performed analytically (typically that over v = ln(1− z)) and
second integration is done numerically, see Ref. [3] for the details.

4.4. Discussion

In all three cases (A–C) the distributions of the single forward step (par-
ton emission) are relatively simple — they are build out of LL DGLAP
kernels and αS depending on ti zi or kT. The same distributions enter into
form-factor of Eq. (4.13). Practical problems in the MC implementations
are not so much in the distribution shapes as in the kinematic limits. We
shall therefore concentrate in the following on this subject. For this purpose
we will draw the limits of the available phase space in the emission of sev-
eral gluons in the two-dimensional Sudakov logarithmic plane parametrised
with variables (k+, k−) and (η, ln kT) simultaneously. The same integration
limits are used in the calculation of the form-factors. The translation from
evolution times and lightcone variables, ti, xi, to rapidities and transverse
momenta, (ηi, ln kT

i ), will be done using mapping of Section. 4.1 in all three
cases (A–C)10.

In in Fig. 5 we start with case (C). The total emission phase space has
triangular shape and is limited by maximum rapidity (from right) minimum

10 This mapping is primarily adequate for (C). In principle it could be different for (A)
and (B).
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kT (from below) and conservation of lightcone plus variable, k+
i < Ehxi−1.

Within the above phase space, momenta of three emitted gluons kµ
i , i =

1, 2, 3 are represented by the black numbered circles. They are ordered
in rapidity. The integration domains for the four consecutive form-factors
Φfi

(ti|ti−1) in the forward step distributions in Eqs. (3.11)–(3.12) are also
shown in Fig. 5 as a triangle and three trapezoids.
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Fig. 5. Sudakov plane parametrised two sets of variables (k+, k−) and (η, ln kT).

Emission of three gluons. Their momenta kµ
i , i = 1, 2, 3 are marked as black num-

bered circles. Position of the Landau pole marked as dashed red line at kT = Λ0.

Phase space limits as in case (C), that is CCFM evolution.

It is now interesting to compare the phase-space limits in the Sudakov
plane between the case (C) and the two other cases (A) and (B). The
corresponding plots are shown in Fig. 6. The main difference is in the
shape of the lower infrared (IR) boundary of the emission phase space. In
the case (A) of DGLAP it is at the same distance ln(1/ε) from the upper
limit, hence rhomboid shapes with the variable widths and constant heights.
In case (B) the IR limit in kT is lowered by the factor xi−1 which grows
after every emission, hence we see the trapezoids with the lower boundary
descending deeper and deeper into smaller kT. The above illustrates also
why the construction of the MMC programs evolution type (B) served the
role of an intermediate step on the way from DGLAP to CCFM. Last
not least, let us show kinematic limits in the extreme case of one zi → 0.
This limit is treated in CCFM evolution better than in DGLAP, because
CCFM in this limit coincides with the BFKL evolution [8]. Such a case is
illustrated in Fig. 7, where the second emitted gluon is very hard, that is
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i , i = 1, 2, 3 are marked as black numbered circles.

Position of the Landau pole marked as dashed red line at (A) Q = Λ0 or (B)

kT = Λ0. Phase space limits as in case (A) and (B).

Φ(0,1)

Φ(1,2)

klnln

kln

k

T

+ −

k  =T λ

3
ηη21η

tη

lnx0

0

η t

k 3 k 1

x0x1x2x3

2k

Φ(3,η)

lnx1

ln 2x

lnx3

ha
dr

on

2

1
3

Fig. 7. Sudakov plane with emission of three gluons, case (C). For z2 ∼ 0 the

second gluon has large kT.
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with high kT, in fact larger than the scale of the hard process. (In this part
of the phase space the non-Sudakov form-factor plays significant role.) The
above kinematic region is properly included in the MMC case (C) and also
in the CMC of Ref. [3].

5. Monte Carlo implementations

Studies of the DGLAP evolution, case (A), using the Markovian MCs
were already covered in Refs. [9–11] in particular NLO case was exten-
sively studied in Ref. [6]. The main aim of these papers was to show
that MC method, although slower, is equally precise and more versatile
as compared to older non-MC techniques, for example grid method based
QCDnum16 [12]. These MMCs were also used to test first examples of the
constrained MCs [13, 14] for DGLAP-type evolution. The main advantage
of MC method turns out to be very good and stable estimator of the error.
The slowness of MMCs is mainly the problem in any attempt of fitting deep-
inelastic ep data. Here, special pretabulation procedures are necessary, see
Refs. [15]. The above studies of the evolution type (A) using MMCs were
fairly complete, hence there is no need to repeat them here.

As already said, we do not show/repeat in this work tests of MMC type
(A) and we will limit numerical results to comparisons of MMC versus non-
MC program APCheb [16] for evolutions class (B) and (C). It should be
stressed that APCheb was originally working only for DGLAP and was up-
graded to evolutions type (B) and (C) for the purpose of the tests with
MMCs. Comparisons of MMC and CMC programs for evolutions type (B)
and (C) were also done and have been presented in Ref. [3]. In this way we
have in our disposal three completely different programs (sometimes even
four) which solve numerically evolution equations of all three types (A), (B)
and (C) and provide identical results within precision of 0.2%!

5.1. Reusing MMC type (B) as type (C)

Historically, the MMC for evolution type (B) with αS(e
t(1− z)) and IR

cutoff 1 − z > λe−t was developed first, before CCFM-like scenario (C).
While testing first versions of MMC type (C) the following observation was
helpful. Examining carefully the probability distributions of the single for-
ward step ω(i−1)→i of Eqs. (3.11,3.6) one may notice that the whole addi-

tional dependence on the xi−1 variable in ω
(C)
(i−1)→i

can be absorbed into λ

and Λ0:

ω
(C)
(i−1)→i

(λ,Λ0) = ω
(B)
(i−1)→i

(λ/xi−1,Λ0/xi−1) . (5.1)

Of course, this is the consequence of the relations αS(k
T
i ) = αS(eti(1 −

zi)xi−1) and kT
i = eti(1 − zi)xi−1 > λ. As a results, we could in the tests
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of MMC class (C) reuse the MMC for αS(et(1 − z)) by means of reset-
ing λ → λ/xi−1 and Λ → Λ/xi−1, before generating each single forward
step. The above trick was quite helpful in testing MMC class (C), for pure
bremsstrahlung.

6. Solving evolution equations with Chebyshev polynomials

In the previous section the Monte Carlo method for solving the evolution
equations was presented. For the sake of the comparison, we are going to
present an alternative method based on the expansion in the Chebyshev
polynomials.

We start from the general form (2.1) of the evolution equations

∂tDf (t, x) =
∑

f ′

1
∫

0

duKff ′(t, x, u)Df ′(t, u) (6.1)

with the kernel (2.8). The momentum sum rule (2.11) imposed on the parton
distributions allows to determine the virtual part of the kernel (2.8) from
the condition (2.14). As a result, we arrive at the most general form of the
evolution equations

∂t(xDf (t, x)) =
∑

f ′

1
∫

0

du xKR
ff ′(t, x, u)Df ′(t, u)

−Df (t, x)
∑

f ′

1
∫

0

duuKR
f ′f (t, u, x) . (6.2)

As an illustration, we consider in detail the evolution equations for the
case (C) from Section 4.2. The evolution parameter t in this case is related
to the rapidity y = η of the emitted real parton by the relation (4.3), which
now reads

kT = 2Ehe−y(u − x) = et(u − x) . (6.3)

Here u and x are the longitudinal momentum fraction before and after the
emission. In the leading logarithmic approximation the real emission kernel
takes the form

xKR
ff ′(t, x, u) =

αS(kT)

π

x

u
P

(0)
ff ′

(x

u

)

θ(u − x) , (6.4)

where P
(0)

ff ′ are the leading order splitting functions. In order to avoid the
Landau pole in αS, we assume that the transverse momenta of the emitted
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partons are bounded from below,

kT ≥ λ ≫ ΛQCD . (6.5)

This further restricts the momentum fractions u for the real emission (see
the theta function in Eq. (4.10)):

u ≥ x + λe−t . (6.6)

Changing the integration variable, z = x/u, we obtain for the real emission
part of the evolution equations (6.2)

∑

f ′

zR(x,t)
∫

x

dz
αS(e

tx(1 − z)/z)

π
P

(0)
ff ′ (z)

x

z
Df ′

(

t,
x

z

)

, (6.7)

with the upper integration limit given by

zR(x, t) =
1

1 + λe−t
> x . (6.8)

For the virtual part of the evolution equations we interchange u ↔ x in
the kernel (6.4). Now, the conditions which restrict the u-values read

u < x , kT = et(x − u) ≥ λ . (6.9)

Changing the integration variable, z=u/x, in the second integral of Eqs. (6.2),
we obtain for the virtual term

−xDf (t, x)
∑

f ′

zV (x,t)
∫

0

dz
αS(e

tx(1 − z))

π
zP

(0)
f ′f (z) , (6.10)

where now
zV (x, t) = 1 − λe−t > 0 . (6.11)

In summary, we find the following evolution equations

∂t(xDf (t, x))=
∑

f ′

zR(x,t)
∫

x

dz
αS(e

tx(1 − z)/z)

π
P

(0)
ff ′ (z)

x

z
Df ′

(

t,
x

z

)

−xDf (t, x)
∑

f ′

zV (x,t)
∫

0

dz
αS(etx(1 − z))

π
zP

(0)
f ′f (z) . (6.12)

These equations are complicated enough to be solved only numerically. In
the next section we will present the method based on the expansion in the
Chebyshev polynomials.
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6.1. Chebyshev polynomial method

In this method we use the Chebyshev polynomials defined by

Tk(y) = cos(k arccos(y)) , y ∈ [−1, 1] . (6.13)

The index k = 0, 1, 2, . . . denotes the polynomial order. Fixing the order,
k = N , we consider the equation TN (y) = 0. It has N roots (nodes) given
by

yi = cos
π

N
(i − 1/2) , i = 1, 2, . . . , N . (6.14)

These roots allow to define the following discrete orthogonality relation for
the set of the Chebyshev polynomials {T0, T1, . . . TN−1}:

N
∑

i=1

Tj(yi)Tk(yi) = Cjδjk , (6.15)

where j, k = 0, 1, . . . , (N − 1). The coefficients C0 = N and Cj≥1 = N/2.
A function f(x) with x ∈ [a, b] can be approximated with the help of the

specified set of Chebyshev polynomials in following way

f(x) ≈

N
∑

n=1

vn cn Tn−1(y(x)) , (6.16)

where v1 = 1/2, vn≥1 = 1 and y = y(x) is an arbitrary, invertible function
which transforms [a, b] → [−1, 1]. The coefficients cn of the expansion can
be calculated from the orthogonality relation (6.15),

cn =
2

N

N
∑

i=1

f(xi)Tn−1(yi) , (6.17)

where xi = y−1(yi) are images of the roots (6.14) in the interval [a, b]. From
relations (6.16) and (6.17) we see that one only needs the values f(xi) at the
Chebyshev nodes to reconstruct the function at any other x ∈ [a, b]. This
observation is a starting point of the method of the solution of the evolution
equations (6.12). We simply solve them at the Chebyshev nodes x = xk.

Therefore, writing Eqs. (6.12) in a prototype form,

dD(t, xk)

dt
=

z(xk,t)
∫

xk

dz P (t, z)D(t, xk/z) , (6.18)
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we consider the finite set of the first order differential equations for k =
1, 2, . . . , N . The integration on the r.h.s. needs the values of D at any
point, thus we use the Chebyshev approximation

D(t, xk/z) ≈
2

N

N
∑

n=1

N
∑

i=1

vn D(t, xi)Tn−1(yi)Tn−1(y(xk/z)) . (6.19)

Substituting into (6.18), we find the following set of equations

dD(t, xk)

dt
=

N
∑

i=1

Aki(t)D(t, xi) (6.20)

which can easily be solved numerically [16]. The matrix Aki(t) in these
equations,

Aki(t) =
2

N

N
∑

n=1

vn Tn−1(yi)

z(xk,t)
∫

xk

dz P (t, z)Tn−1(y(xk/z)) , (6.21)

is computed numerically in the process of finding the solution of Eqs. (6.20).
The differential equations which we consider need initial conditions at

some initial scale D(t = t0, x). They are usually specified analytically such
that the initial values D(t0, xk) at the Chebyshev nodes are easily calculated.

The results of the comparison of the solutions of the evolution equations
obtained using the Monte Carlo and Chebyshev methods are discussed in
the next section. In general, a very good agreement between the results of
these two methods is found.

7. Numerical results

Although our MMC program was systematically tested against non-MC
programs APCheb and QCDnum16 for all evolution types (A–C), we shall show
examples of the numerical results for the more sophisticated and difficult
evolution types (B) and (C).

Fig. 8 demonstrates distributions xDf (t, x) from MMC and APCheb [16]
programs and the corresponding ratios MMC/APCheb for the evolution type
(B), that is with α((1 − z)Q). The four curves represent xDf (t, x) for Q =
et = 1, 10, 102 , 103GeV. The upper plots are for f = G, gluon while lower
plots are for f = q + q̄, quarks and antiquarks taken together. The starting
quark and gluon distribution at Q = et = 1GeV are defined exactly the same
as in previous works of Refs. [9–11]. Results for all Q = 1, 10, 102 , 103GeV
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Fig. 8. For evolution type (B) with α((1 − z)Q) plotted are distributions xDf (x)

and their ratios MMC/APCheb for f=gluon (upper) and f = q + q̄ (lower plot).
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their ratios MMC/APCheb for f=gluon (upper) and f = q + q̄ (lower plot).
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were obtained in the single MC run of ∼ 1010 MC events. As we see the
distributions from two programs agree within the statistical MC error of
about 0.2%.

In Fig. 9 we show the same type of comparison of MMC and APCheb, but
for evolution type (C). Again precision agreement within the statistical MC
error is reached.

For the LL DGLAP, case (A), we have reproduced results of Ref. [9] with
smaller statistical errors and removing certain numerical biases which were
seen in this paper in the gluon case, f = G. We do not show explicitly the
corresponding numerical results.

8. Summary

We have developed and tested Markovian MC programs for two ad-
ditional types of the QCD evolution equations, in addition to DGLAP.
One of them is identical with the so-called all-loop CCFM (modulo non-
Sudakov form-factor). The corresponding MC programs were tested to a
high-precision level by means of comparison with the other non-MC pro-
gram APCheb. MMC of this work is also used to test another class of the
constrained MCs in other independent works, for the same class to QCD
evolutions. The aim of these exercises is to build basis for the new par-
ton shower implementations. The mapping of the evolution variables into
four-momenta was also introduced and tested.

We would like to thank A. Siódmok for useful discussions. We acknowledge
the warm hospitality of the CERN Physics Department, where part of this
work was done.
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