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The τ -decay library TAUOLAhas gained popularity over the last decade.
However, with the continuously increasing precision of the data, some of
its functionality has become insufficient. One of the requirements is the
implementation of decays into five mesons plus a neutrino with a realis-
tic decay amplitude. This note describes a step into this direction. For
the 2π−π+2π0 mode the three decay chains τ− → a−

1 ν → ρ−(→ π−π0)ω
(→ π−π+π0)ν, τ− → a−

1 ν → a−

1 (→ 2π−π+)f0(→ 2π0)ν, and τ− → a−

1 ν →
a−

1 (→π−2π0)f0(→π+π−)ν are introduced with simple assumptions about
the couplings and propagators of the various resonances. Similar am-
plitudes (without the ρω contributions) are adopted for the π−4π0 and
3π−2π+ modes. The five-pion amplitude is thus based on a simple model,
which, however, can be considered as a first realistic example. Phase-space
generation includes the possibility of presampling the ω and a1 resonances,
in one channel only, however. This is probably sufficient for the time being,
both for physics applications and for tests. The technical test of the new
part of the generator is performed by comparing Monte Carlo and analyti-
cal results. To this end a non-realistic, but easy to calculate, purely scalar
amplitude for the decay into five massless pions was used.

PACS numbers: 13.35.Dx, 12.40.Vv, 02.70.Uu

1. Introduction

Early studies of semileptonic tau decays have concentrated on final states
with few mesons only. The recent advent of high-statistic samples in exper-
iments at LEP and CESR, and the perspective of further increasing event
rates at B-meson factories allow and require the study of relatively rare
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decay modes and thus of multibody final states. These configurations are of
particular importance for a precise determination of the semileptonic branch-
ing ratio and for an improved limit on the mass of the tau neutrino. Final
states with up to six pions have been observed up to now.

Complementary to the experimental studies, Monte Carlo simulations
are required to determine the efficiencies of the detectors. The generator
TAUOLA [1–3] has been specifically designed to simulate a wide variety of
tau-decay modes and includes spin effects in the case of polarized τ decays.
These simulations necessarily include form factors that model the resonant
structure of intermediate hadronic states, such as ρ, ω or a1 mesons. The
combination of Monte Carlo simulation and experimental studies thus allows
us to test the model input and leads to additional information about hadron
physics at low energies.

For a few channels only, and in a limited kinematical range, the form fac-
tors can be predicted from a firm theoretical basis. In many cases additional
input, such as vector dominance and phenomenological parametrizations are
required. At present only final states with up to four pions can be simulated
on the basis of realistic form factors [3], which have their basis in chiral La-
grangians and vector-dominance models. In the present paper we describe
an extension of TAUOLA to five-pion final states. The model for the am-
plitude is based on the observation that the 2π−π+2π0 decay is dominated
by the ωπ−π0 channel, with only about 20% left for the remainder, which
does not exhibit sharp resonance structures. The amplitude is therefore con-
structed to accommodate this feature. It includes the dominant W ∗ → ω2π
amplitude and an amplitude of the form W ∗ → a1(→ ρπ)f0(→ ππ) with
various charge assignments. The second amplitude is also used to describe
the two remaining charge combinations, π−4π0 and 3π−2π+. (The charge-
conjugate combinations for the τ+ decay are considered in parallel.) In the
narrow-width approximation, important technical tests of the generator can
be performed. The details of the new amplitude (effectively the transition
matrix element of the hadronic current, often just denoted “current”) and of
the phase-space generation are described in Sec. 2. Tests of the program and
results for some characteristic distributions are collected in Sec. 3. Sec. 4
contains our summary and conclusions.

2. Hadronic currents and phase-space generation

For each decay mode the basic ingredients for TAUOLA can be grouped
into three parts: (i) the phase-space generator for a fixed number of particles
in the final state, (ii) the algorithm for the calculation of the spin-dependent
matrix element from the hadronic currents and from the properties of the
electroweak interaction between the W boson, the τ lepton and its neutrino,
and (iii) the hadronic current per se.
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The structure of the program is decscribed in detail in Refs. [1, 3] (see
also [4]) and there is no need to recall it here. The relation between the
hadronic current and the matrix element remains the same as for the two-,
three- and four-meson case presented before.

Some comments are required concerning the five-pion phase-space gen-
erator, although its structure is very similar to the well-documented case
of four pions. The number of generated angles and invariant masses is, of
course, increased. Since no extensive studies of amplitudes with narrow res-
onances are foreseen for the moment, the phase-space presampler is only
prepared to compensate for possible sharp peaks in the invariant mass of
the five-pion system as a whole and in one subsystem of the three-pion
(single channel) only. To improve the efficiency, this mode of generation is
merged with the flat phase-space subgenerator, again according to the rules
described in detail in [1, 3].

The most interesting ingredient necessary for this generator is the matrix
element of the hadronic current. For the decay into an n-pion state, it is
given by

Jµ(q1, q2, . . . , qn) ≡ 〈π(q1), π(q2), . . . , π(qn)|Jµ(0)|0〉 , (1)

where the same letter J has been used for the operator and its matrix ele-
ment. The decay into an odd number of pions proceeds through the axial
part of the current only.

We now construct the amplitude as a sequence of (partly virtual) reso-
nance decays and transitions, and concentrate, in a first step, on the most
complicated channel 2π−π+2π0. From experiment we observe that the de-
cay through ω seems to constitute the dominant mode in this case, with
a branching ratio Br(τ → h−ωπ0) = (4.4 ± 0.5) × 10−3, to be compared
with Br(τ → h−h−h+2π0(exl. K0, ω, η)) = (1.1 ± 0.4) × 10−3 [5]. The first
part will be implemented in a first step (current A), and the remainder (cur-
rent B) afterwards. Normalizations will be appropriately set, as can be seen
in Sec. 3. From isospin conservation — and the fact that the total hadronic
system has isospin one, and the ω, however, isospin zero — it follows that the
two pions are also in an isospin-one configuration, corresponding to a state
with ρ-meson-like quantum numbers. We thus have to find a convenient de-
scription for the amplitude that specifies the transition W ∗(Q) → ωρ. Let
us denote the polarization and momentum of the ρ meson by ερ and pρ, and
similarly for the ω meson. Three possible amplitudes describing the decay
of a 1++ to two 1−− states can be constructed:

F 1
µ = (ερ, εω, Q, µ) ,

F 2
µ = (ερ, εω, pρ − pω, µ) − (ερ, εω , pρ − pω, Q)

Qµ

Q2
,
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F 3
µ = (ερ, εω, pρ, pω)

(

(pρ − pω)µ − (pρ − pω)Q
Qµ

Q2

)

, (2)

each of which is, of course, multiplied by a function of Q2, where Q =
∑

i qi.
For simplicity we adopt amplitude F 1, which depends on the lowest power
of the relative momentum pρ−pω. Furthermore, we multiply this amplitude
by a Breit–Wigner factor

c(Q2) = c0BWa(Q
2) ≡ c0

m2
a

m2
a − Q2 − imaΓa

(3)

simulating the a1 enhancement. For the constant c0, which is determined
by the product of W ∗a1- and a1ωρ-coupling we adopt the value c0 = 3, so
as to reproduce the desired branching ratio of 0.4%. Furthermore, we take
ma = 1.26GeV and Γa = 0.4GeV. With the symbol (ερ, εω, Q, µ) we denote
the totally antisymmetric Levi–Civita symbol, contracted with three four-
vectors ερ, εω (polarization vectors for ρ and ω), and Q; the last index µ
remains open.

The amplitude for the “subsequent” decay of the virtual ρ is given by

Mµ
ρ = gρππ(q4 − q5)

µ , (4)

which leads to the decay rate

Γρ =
|gρππ|2
48π

(m2
ρ − 4m2

π)3/2

m2
ρ

. (5)

To reproduce the input parameters mρ = 776MeV and Γρ = 150MeV the
value gρππ = 6.0 is adopted. For the ω we adopt the corresponding decay
chain ω → πρ, where all three π and ρ charges contribute with equal weight.
We start from an ω–ρ–π coupling of the form

Mωρπ =
1

2
fωρπ(εω, pω, ερ, qπ) , (6)

where the coupling fωρπ has dimension (mass)−1. Including the ρ decay
according to Eq. (4), and taking the antisymmetric isopin wave function of
the three points into account, which implies an antisymmetric momentum
wave function, we finally arrive at

Mω3π =
fωρπgρππ

m2
ρ

(εω, q1, q2, q3)(BWρ(s1) + BWρ(s2) + BWρ(s3)) , (7)
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where q1, q2, q3 denote the momenta of π+, π−, π0, and s1 = (q2 + q3)
2 etc.

This leads to the decay rate

Γω =
1

3

1

128

1

(2π)3
1

m3
ω

(fωρπgρππ)2

m4
ρ

∫

ds1ds2

∣

∣

∣
BWρ(s1)+BWρ(s2)+BWρ(s3)

∣

∣

∣

2

×
(

s1s2s3 − m2
π(Q2 − m2

π)2
)

. (8)

If the sum of the three ρ Breit–Wigners is dropped (i.e. replaced by a con-
stant taken to be 1) and the pion masses are set to zero, one finds

Γω =
1

3

1

128

1

(2π)3
m7

ω

(fωρπgρππ)2

120m4
ρ

. (9)

This formula will be useful for cross checks of the program. Whenever nu-
merical values are required, we take fωρπ = 0.07MeV−1, that is only the
first significant digit, gρππ = 6 was defined earlier, mω = 782MeV and
Γω = 8.5MeV.

The full five-pion amplitude is obtained by including the ρ and ω prop-
agators

JA
µ (q1, q2, q3, q4, q5) = c0

fωρπg2
ρππ

m4
ρm

2
ω

BWa(Q
2)BWρ

(

(q4 + q5)
2
)

×BWω((q1 + q2 + q3)
2)(µ, q4 − q5, α,Q)(α, q1, q2, q3)

× (BWρ(s1) + BWρ(s2) + BWρ(s3)) . (10)

The pictorial illustration of this decay amplitude is shown in Fig. 1(a).
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Fig. 1. Dominant decay amplitude for the decay of τ into five pions through an ω

plus a ρ resonance (a) and through an f0 plus a1(→ ρπ) (b).
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This formula is directly applicable to the case of a narrow ω, if we identify,
as stated above, q1, q2, q3 with the momenta of π+, π− and π0 from the ω
decay, q4 and q5 with the momenta of the remaining π− and π0. Without
this approximation the symmetrization between q2 and q4 on the one hand,
and q3 and q5 on the other hand has to be performed

JA;total
µ (q1, q2, q3, q4, q5) = JA

µ (q1, q2, q3, q4, q5) + JA
µ (q1, q4, q3, q2, q5)

+JA
µ (q1, q2, q5, q4, q3)+JA

µ (q1, q4, q5, q2, q3) (11)

and the phase space has to be divided by 4 to take the identical particle
statistical factor into account.

For a test of the proper implementation of the matrix element (Eq. (10)),
the narrow-width approximation for a1, ρ and ω is employed. (For this test
(mρ + mω) < ma must be assumed.) In this approximation the rate derived
from the current JA can be integrated analytically. (Again the sum of three ρ
Breit–Wigner amplitudes in the ω decay is replaced by 1 and mπ is set to
zero for this test.)

ΓA

Γ e
=

1

4

m2
a1

m2
τ

(

1−m2
a1

m2
τ

)2(

1+2
m2

a1

m2
τ

)

c2
0

ma1
π

Γa1

f(m2
a1

,m2
ρ,m

2
ω)R ,

f(m2
a1

,m2
ρ,m

2
ω) ≡ 2

2p

ma1

( p2

m2
ρ

+
p2

m2
ω

+ 3
)

,

p ≡
λ1/2(m2

a1
,m2

ρ,m
2
ω)

2ma1

. (12)

The factor R =
Γ p

ρ

Γρ

Γ p

ω

Γω
consists of the product of the partial widths for ρ and

ω as given by Eqs. (5) and (9), divided by total widths used as numerical
inputs in the Breit–Wigner amplitudes, and the decay rate is normalized to
Γe ≡ Γ (τ → eν̄eντ ).

For a test of the generator, in particular of the phase-space integration,
the following, totally unphysical form of the current

JC
µ = c1 Qµ ,

c1 =
1

m3
τ

4! (4π)3
√

20 (13)

was used, with the pion mass again set to zero1. The analytical result,

ΓC

Γe
= cos2 θCabbibo = 0.950625 , (14)

1 As an alternative, in principle we could also use c2 = 4!(4π)3/Q3 and obtain the same
result. In such a case, numerical-stability problems could appear as, for massless
pions, 1/Q3 may approach integrable infinity within the allowed phase space.
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is well reproduced by the generator. The numerical results of the second test,
based on the narrow-width approximation of Eq. (12), will be discussed below.

The decay mode into ωππ is obviously only possible for the 2π02π−π+

final state. In contrast the amplitude introduced in the following will con-
tribute to all three charge combinations π−4π0, 2π−2π0π+ and 3π−2π+.
For this second amplitude we use the transition of the virtual W into an a1,
with subsequent transition into a1 plus two pions in an isospin zero, angular-
momentum zero configuration, parametrized by the broad f0 resonance. For
the a1a1f0 coupling the simplest Lorentz structure with minimal momen-
tum dependence has been adopted. The a1 subsequently decays into a ρ
meson plus a pion, with equal amplitude for the two charge modes π−2π0

and π+2π−, similar to the parametrization of the tau decay into three pions.
This leads to the following current:

JB
µ (p1, p2, p3, p4, p5) ≡

c

m4
am

2
fm2

ρ

faaf ffππ gaρπ gρππ

×BWa((p1 + p2 + p3 + p4 + p5)
2)BWa((p1 + p2 + p3)

2)BWf2
((p4 + p5)

2)

×
[(QµQν

Q2
− gµν

)( p2(p1 − p3)

(p1 + p2 + p3)2
(p1 + p2 + p3)

ν − (p1 − p3)
ν
)

×BWρ((p1 + p3)
2) + (1 ↔ 2)

]

, (15)

with the momentum assignments

a1(→ π−(p1)π−(p2)π+(p3)) + f(→ π0(p4)π0(p5)) .

The pictorial illustration is shown in Fig. 1(b). (In the program, we have
used: mf = 0.8 GeV, Γf = 0.6 GeV, Gaρπ = 6, faaf = 4, ffππ = 5 and
c = 4.) The last constant was introduced to normalize the branching ratio
for this channel to 0.11%. The amplitude is, by construction, symmetric
under the exchange p1 versus p2 and p4 versus p5, as requested from Bose
symmetry for the f0 and a1 decays. Alternatively, the two π0 may origi-
nate from the a1 with the f0 then decaying into π−π+. In this case the
symmetrization with respect to the momenta of the π− has to be performed
explicitly. For consistency we have to adopt the same momentum assignment
as before: π+(q1)π

−(q2)π
0(q3)π

−(q4)π
0(q5). The properly symmetrized am-

plitude thus reads:

JB;total
µ (q1, q2, q3, q4, q5) = JB

µ (q2, q4, q1, q3, q5) + JB
µ (q3, q5, q2, q1, q4)

+ JB
µ (q3, q5, q4, q1, q2) . (16)



154 H. Kühn, Z. Wąs

We include the same statistical factor of 1
4

as before into the normaliza-
tion of the phase space. The relative rate [f(+−)+a(00)] : [f(00)+a(−+)]=
2:1 is recovered in the narrow width approximation for a1 and f0. At present
there is no analytical benchmark for the overall normalization available for
this channel.

The extension of this model to the description of the remaining charge
configurations is straightforward. Let us start with π−4π0 and adopt the
following momentum assignment: π−(q3)π

0(q1)π
0(q2)π

0(q4)π
0(q5). Using

the definition (15) for JB as in Eq. (16), the amplitude has to be symmetrized
with respect to the momenta of π0. Since JB is already symmetric with
respect to the first two and the last two momenta, only 6 out of the 4!
permutations have to be considered. This leads to the current

J00−00
µ (q1, q2, q3, q4, q5) = JB

µ (q1, q2, q3, q4, q5) + JB
µ (q5, q2, q3, q4, q1)

+ JB
µ (q2, q4, q3, q1, q5) + JB

µ (q1, q4, q3, q2, q5)

+ JB
µ (q1, q5, q3, q4, q2) + JB

µ (q4, q5, q3, q1, q2). (17)

For the evaluation of the rate the statistical factor of 1/4! must be included.
In complete analogy we obtain for the 3π−2π0 mode

J−−++−

µ (q1, q2, q3, q4, q5) = JB
µ (q1, q2, q3, q4, q5) + JB

µ (q5, q2, q3, q4, q1)

+ JB
µ (q1, q5, q3, q4, q2) + JB

µ (q1, q2, q4, q3, q5)

+ JB
µ (q5, q2, q4, q3, q1) + JB

µ (q1, q5, q4, q3, q2) ,

(18)

where themomentumassignment π−(q1)π
−(q2)π

+(q3)π
+(q4)π

−(q5) has been
adopted and a statistical factor 1/2!3! = 1/12 is used in the evaluation of
the rate.

For the “non-ω” decays and in the narrow-width approximation, this
ansatz predicts the following abundances of the subchannels:

f(00)a(− −+):f(−+)a(00−) :f(00)a(00−) :f(−+)a(− −+)=1:2:1:2 (19)

and the following relative rates

2π02π−π+ : π−4π0 : 3π−2π+ = 3 : 1 : 2 . (20)

Note that this prediction is specific to the resonance and isospin structure
of the model. Once more experimental information on the five-pion channel
will be available, more elaborate possibilities can be considered.
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3. Results from the Monte Carlo program

The new version of TAUOLA includes new channels, numbered 31 to 35,
which will be discussed in turn. Channels 31, 32 and 33 refer to 2π02π−π+,
channel 34 to π−4π0 and channel 35 to 3π−2π+. Channels 31 and 32 are
implemented for tests, channels 33, 34 and 35 for physics simulations.

Let us start with channel 31, which is based on current JA, without
symmetrization, as defined in Eq. (10). The order of the pions generated
by TAUOLA is (− − + 00). This ordering is necessary for the test and
the requirements of the presampler running in the narrow-resonance mode,
which is only partly optimized. The result, based on the default parameter
values listed after Eq. (3), is given in the first line of Table I. This channel is
then used to test the program against Eq. (12), which is valid in the narrow-
width approximation for ρ, ω, and a, using massless pions. This simulation
was quite demanding on the phase-space generator. A precision of about
1% only was reached. Because of the complex structure of the resonances
a1, ρ and ω it was impossible to generate events efficiently. The ρ Breit–
Wigner was only generated from a flat distribution. The variance of the
generated raw sample was deteriorating quite fast with decreasing width, not
only rendering the generator slow, but also risking to arrive at numerically
unstable results. We nonetheless completed this test for several choices of
masses and widths of a1, ρ and ω. A typical result is listed in Table I, line 4,
where Γω = Γa = 1MeV, Γρ = 5MeV, mρ = 373MeV, was adopted for
the parameters, and other parameters were left at their default values, in
particular mω = 782MeV and ma = 1260MeV was kept. The remaining
2.5% difference between Monte Carlo and analytical calculation is due to
contributions from the tails, which remain large, even for the extremely
narrow widths adopted in this example. This illustrates the importance
of non-resonant contributions and interferences, in particular for realistic
values of the parameters.

Current JC , which also serves to test the generator, is implemented
in channel 32. In the case of massless pions, Eq. (14) is reproduced with
a precision better than 0.1% (see line 5 of Table I). This result is stable

TABLE I

Test results of the generator for unphysical choices of parameters; see text.

Current ΓX/Γe (TAUOLA) ΓX/Γe (analytical) Comment

A 0.02404 ±3 ×10−5 — without symm.

B 0.00928 ±9 ×10−6 — without symm.
C 0.10690 ±2 ×10−4 — massive pions

A 1.38×107± 1 ×105 1.41×107 massless pions

C 0.95030 ± 3 ×10−5 0.950625 massless pions
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and independent of the choice of options for our phase-space presampler,
providing an important test of its correct operation. The result for JC ,
taking the pion mass into account, is listed in line 3.

In the second line of Table I the result is listed for current JB , as defined
in Eq. (15), again without symmetrization.

The results for physical input parameters, and with properly symmetrized
amplitudes, are listed in Table II, column 4. The first three lines refer again
to 2π02π−π+, as implemented in channel 33, and are based on Eqs. (11) and
(16). For the order of the pion momenta, in the program the convention2

(+−−00) has been used. The first line is based on the ωππ channel (JA;total)
alone, and the symmetrization evidently increases the result by about +5%.
The second line is based on JB;total alone, and the symmetrization decreases
the result3 by 11%. Adding coherently JA;total and JB;total one arrives at the
result given in line 3. Keeping in mind our previous experiences with inter-
ferences, it is amazing that the result is exactly the sum of the two previous
entries. This implies that the two amplitudes do not lead to interferences in
the rate in any significant manner! But of course, perfect agreement for all
significant digits is due to statistical fluctuations.

TABLE II

Test results of the generator for realistic choices of parameters; see text.

Nchannel Final state Current ΓX/Γe × 103 ΓX/Γe × 103 ΓX/Γe

TAUOLA experiment [5] narrow width

33 2π−π+2π0 A; total 25.30 ±0.1% 25 ± 3 —

33 2π−π+2π0 B; total 6.05 ±0.2% 6.2 ± 2 2192± 22

33 2π−π+2π0 A+B; total 31.35 ±0.1% 31 ± 2 —

34 π−4π0 B; total 9.37 ±0.1% 5.5+3.4
−2.8 788 ± 4

35 3π−2π+ B; total 11.03 ±0.1% 4.6 ± 0.3 1469± 7

The charge configurations π−4π0 and 3π−2π+ (with the momentum or-
dered (−0 0 0 0) and (−+ +−−) in the TAUOLA output, again differently
as in Sec. 2) correspond to channels 34 and 35, respectively. The results are
based on the amplitudes given in Eqs. (17) and (18) and the numerical pre-
dictions are listed in lines 4 and 5. These numbers are contrasted with the
experimental results listed in Table II, column 5. The result for 2π−π+2π0

as obtained with JA;total alone is compared with the mode h−ωπ0, the result
for JB;total alone with the mode h−h−h+π0π0 (exl. K0, ω, η). The π−4π0

mode is compared with h−4π0 (exl. K0, η) and 3π−2π+ with h−h−h−h+h+.
Let us emphasize again that the rates for the two submodes of channel 33

2 Note the difference in order with respect to Sec. 2 and channel 31.
3 This property is obscured by π0, π± mass difference.
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are fitted to the data, the rates for channels 34 and 35 are then the result
of our ansatz.

The relative rates as displayed in lines 2, 5 and 6, column 4, are seemingly
in contradiction with the expectations based on the narrow-width approx-
imation for the intermediate states, Eq. (20). We, therefore, perform the
simulation also in the narrow-width approximation, with the following pa-
rameters: mf = 0.45GeV, Γf = 10MeV. For the a saturating intermediate
3-pion state, we took ma = 1.16GeV and Γa = 10MeV, while width and
mass of the a1 coupled directly to the τ lepton were kept at their standard
value; this was also true for the mass and width of the ρ meson. Indeed,
in this completely fictitious case, Eq. (20) is recovered within the statistical
error (column 6).

Eq. (20) is only reproduced for very small widths of the resonances. For
realistic parameters, the predictions for ratios of branching fractions are sig-
nificantly affected by interferences, and this applies even more so for differ-
ential distributions. This observation has to be taken into account from the
very beginning in the formulation of a realistic current and the construction
of Monte Carlo programs where cascade decay chains must be implemented.

4. Summary

In this note, recent developments in TAUOLA for τ decays into five
mesons are described. For the 2π−π+2π0 mode, two amplitudes were intro-
duced. The first is motivated by the experimental observation of a domi-
nant ωππ channel, the second corresponds to a non-ω contribution and is
parametrized by the transition through an intermediate a1+f0 combination.
This second amplitude was also used to predict the two remaining charge
combinations for τ decays into five pions. Both amplitudes are implemented
into TAUOLA. A third current, JC , was introduced for tests of the phase-
space generator. With the help of these currents basic technical tests of
the algorithm were successfully completed. No sophisticated fits to the data
were attempted. The model amplitude can, however, be used as a starting
point for more detailed theoretical and experimental investigations.

We observed that effects due to interferences between different resonant
amplitudes are often large. This is due to various threshold effects and
may be specific for the choice of our amplitude. It may result, for example,
from those various threshold effects or from simplifying assumptions adopted
for our currents, such as the choice of constant instead of running, final-
state mass-dependent widths. For different parametrizations, the influence
of interferences on the total rates could be significantly smaller.

This issue is of great practical importance for the design of a genera-
tor used in fits to data during their analysis, when the general form for the
currents often has to be changed several times. If the constraint of zero inter-
ference between various currents, standing for different subresonances, was
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imposed on the algorithm, as was the case e.g. with EURODEC [8,9], the fit-
ting procedures would become unnecessarily difficult (even impossible), or
might even not lead to a correct description of the amplitude. Therefore,
distinct currents for each final state, which are labeled by stable decay prod-
ucts, will be also used in the future. Resonances such as ρ, a1, ω are can
only be used as intermediate states in the amplitudes.

Finally, let us point out that the extensions for TAUOLA as presented in
this paper are available from the directory tauola-BBB of the standard distri-
bution system for TAUOLA versions. The usage of the directory tauola-BBB

is not documented yet; it is, however, identical to the one of the tauola-F

subdirectory as explained in [4]. The most recent version of the code is avail-
able from the web page [7]. Test results for differential distribution, obtained
with the help of MC-TESTER [10], are available from the web page [11].
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