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The effects of interpreting classical phase-space distributions as Wigner
functions, which is common in models of multiparticle production, are dis-
cussed. The temperature for the classical description is always higher than
that for its Wigner function interpretation. A rough estimate shows that
the corresponding correction is proportional to R−2, where R is the radius
of the interaction region, and that it is negligible for heavy ion scattering,
but at the few percent level for e+e− annihilations.

PACS numbers: 25.75.Gz, 13.65.+i

1. Introduction

Much work is being done on the femtoscopy of the interaction regions.
One of the main problems is to find the space-time distribution of the set of
the freeze-out points, i.e. of the points where the hadrons are finally freed.
This is known to depend on the momenta of the particles, which significantly
complicates the problem. For reviews of the work in this field see e.g. [1–3].

One can use several functions to describe the geometry of the interaction
region in connection with the corresponding momentum distribution of the
final state particles. The simplest is the classical phase-space distribution for
the particles at freeze-out F (p,x, t). Many models provide just that. This is
immediately seen when classical equations are being used as e.g. the Euler
equations from hydrodynamics or the classical Boltzmann kinetic equation.
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Education grant 1P03B 045 29 (2005–2008).
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For a discussion of a number of cascade models from this point of view see [4].
The classical approach is intuitive and most useful to get a general picture
of the situation. In principle it contradicts quantum mechanics, because it
is not possible to ascribe to a particle simultaneously a position in space and
a momentum. In practice, however, often the quantum corrections are not
very significant.

Another possibility is to use the Wigner function W (p,x, t). This is well
defined in quantum mechanics. Its relations to the density matrices in the
momentum and coordinate representations are

W (K,X , t) =

∫

d3q

(2π)3
ρ(K,q, t) eiqX , (1)

W (K,X , t) =

∫

d3y

(2π)3
ρ̃(X ,y, t) e−iKy , (2)

where

K = 1
2(p + p′) , q = p − p′ ,

X = 1
2(x + x′) , y = x − x′ . (3)

In a rigorously understood sense [5, 6] the Wigner function is the best
quantum–mechanical replacement for the classical phase-space density.
Heisenberg’s uncertainty principle is reflected by the inequality

|W (p,x)| ≤ π−3 , (4)

which follows from the definition of the Wigner function. Wigner functions
integrated over momenta give the correct space distributions and integrated
over the space give the correct momentum distributions. The quantum me-
chanical averages of the type 〈x̂mp̂n

x〉 cannot, in general, be reliably calcu-
lated using the classical product with the Wigner function as weight, because
they depend on the ordering of the noncommuting operators x̂ and p̂x. (Here
and in the following the hats are used to distinguish operators from the cor-
responding classical quantities.) The averages calculated with the Wigner
function always give the quantum mechanical average for the symmetrised
(Weyl’s ordering) product. E.g.

∫

dxdp W (p, x) p2
xx = 1

4

〈

p̂2
xx̂+ 2p̂xx̂p̂x + x̂p̂2

x

〉

. (5)

The most annoying feature of the Wigner function is that only in very excep-
tional cases it is nonnegative. In fact, for pure states the Wigner function is
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nowhere negative if and only if the corresponding wave function is a Gaus-
sian [7]. Fortunately, for mixed states this implies that any average over
Gaussians satisfying (4) can be a Wigner function,which is enough to repro-
duce almost any shape, provided there are no peaks violating the bound (4).
According to the class of models described in the following section, in or-
der to describe the multiparticle momentum distributions it is necessary to
know the single particle density matrix ρ1(p;p′). As seen from (2), this
can be calculated when the Wigner function is known. It cannot, however,
be obtained directly from the classical phase-space distribution F (p,x, t).
Therefore, models which yield the classical density usually tacitly assume
that it is sufficiently similar to the corresponding Wigner function to re-
place it in formula (2).

The purpose of the present paper is to study the relation between the
functions F (p,x, t) and W (p,x, t). Our analysis suggests that this replace-
ment is legitimate for heavy ion scattering, but overestimates the tempera-
ture of the system by several per cent for e+e− annihilations.

Still another possibility is to use the emission function [8–10], related to
the density matrix by the relation

ρ(p,p′) = N

∫

d4X S(K,X)eiqX , (6)

where K, q and X are four-vectors, N is a constant factor and the fourth
components of K and q are defined by the mass shell condition: K0 =

(
√

m2+p2+
√

m2+p′2 )/2 and q0 =
√

m2+p2−
√

m2+p′2. This formula is
applicable for times after freeze-out has been completed. Then, in the in-
teraction representation, the density matrix does not depend on time any
more. The emission function is particularly convenient when the time spread
of the freeze-out process is of interest. In the present paper only simulta-
neous freeze-out will be considered, so the emission function will not be
needed.

2. Simplifying assumptions

The multiparticle system just after freeze-out is in some complicated,
highly correlated state. Therefore, in order to deal with it, it is necessary to
introduce approximations. The simplest choice would be to neglect all the
correlations. Then the diagonal elements of an n-particle density matrix in
the momentum representation, which is what one needs to get the n-particle
momentum distribution, would be given by the formula

ρnu(p1, . . . ,pn;p1, . . . ,pn) =

n
∏

j=1

ρ1(pj;pj) , (7)

where u in the subscript stands for uncorrelated. In this approximation,
however, for n identical mesons there are no Bose–Einstein correlations.
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Since the Bose–Einstein correlations yield important information about the
particle distributions in coordinate space, a better approximation must be
used. The next choice [11] (for reviews see e.g. [1–3]) is to introduce proper
symmetrisation over the momenta of identical particles. Then for n identical
mesons

ρn(p1, . . . ,pn;p1, . . . ,pn) = Cn

∑

P

n
∏

j=1

ρ1(pj;pPj) . (8)

The summation is over all the permutations of the second arguments of ρ1.
Symmetrising also over the first arguments would just produce a constant
factor n!, so there is no point in doing it. The normalisation constant Cn is
now necessary to ensure the proper normalisation of ρn. With this choice,
the single-particle and two-particle momentum distributions are

P (p) = C1ρ1(p;p) , (9)

P (p1,p2) = C2

(

P (p1)P (p2) + |ρ1(p1;p2)|2
)

, (10)

where Cn are normalising constants and the hermiticity of the density matrix
ρ1 has been used. Ansatz (8) leaves out the final state interactions. For
a study of e.g. resonance production this would be unacceptable, but for
analyses of the interaction regions the available methods of removing the
effects of final state interactions from the data are good enough [3] and
Ansatz (8) is widely used.

Let us assume further that, freeze-out for all the particles happens in-
stantly and simultaneously at some time t = 0. With this assumption the
emission function reduces to δ(t)W (p,x) multiplied by a normalising con-
stant. Thus, there is no need to introduce an emission function besides the
Wigner function, which greatly simplifies the discussion. Moreover, using the
interaction representation one has, for t ≥ 0, time independent density ma-
trices and consequently time-independent Wigner functions. This assump-
tion corresponds to a crude approximation. It would be better (cf. e.g. [3])
to assume that for each particle at its freeze-out its proper time τ has some
fixed value, common for all the particles. Then, however, the problem of
comparison would become much more difficult.

Finally, we assume that the particle density at freeze-out is given by
the canonical distribution corresponding to some non-relativistic problem
for noninteracting particles of mass m at temperature T in a force field
corresponding to some potential V (x). The assumption of a non-relativistic
potential is not realistic, but it is sufficiently general to reproduce any size
and shape of the interaction region, so it seems sufficiently flexible to provide
qualitatively reliable results. The canonical distribution is being used in
many models.
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An implication of this assumption is that the space extension of the
interaction region increases with increasing temperature. One could worry
that this contradicts the well-known observation that in models of heavy ion
scattering increasing the freeze-out temperature decreases the interaction
region. Here two effects should be distinguished. According to the equations
of state of most phases, when temperature increases at constant pressure the
system expands. There are exceptions, e.g. water for temperatures from 0◦C
to 4◦C shrinks when the temperature is raised, but usually the rule holds.
In particular it holds for most of the equations of state used in descriptions
of heavy ion scattering and for the present model.

Another effect is adiabatic expansion, where the volume grows and, usu-
ally, temperature drops. This is an important process in heavy ion scatter-
ing, which is ignored in the model. However, here we are interested only
in the difference between the classical distributions and the corresponding
Wigner functions. As shown further, this difference is due to quantum fluc-
tuations, which depend on the state of the system, but not on its history.
Therefore, if the state at freeze out is described reasonably well, it is not
important for our purpose whether it was reached with or without adiabatic
expansion. Therefore, our model can be a good guide.

3. The low- and high-temperature limits

In the low temperature limit, classically, the particle rests (p = 0) at the
minimum of the potential. Let us put there x = 0. Thus,

F (p,x) = δ(x)δ(p) . (11)

Because of the sharp peak this cannot be interpreted as a Wigner function.
In order to get a candidate Wigner function, F (p,x) must be smeared.

The quantum-mechanical result is also easy to find. The particle must
be in its ground state. Denoting the corresponding wave function ψ0(x) we
get

W (p,x) =

∫

d3y

(2π)3
ψ0

(

x +
y

2

)

ψ∗
0

(

x − y

2

)

e−ipy . (12)

Now both position and momentum are spread around the point p = 0,x = 0.
In the theory of fluctuations this effect is referred to as quantum fluctuations.
Formula (12) can be obtained by smearing (11). Therefore, smearing can
be interpreted as a way of introducing quantum fluctuations. However, for
each potential a different smearing prescription would be needed. Thus, at
low temperatures the predictive power of the recipe: start with the classical
distribution and smear it, is poor.

According to our assumptions, the classical distribution is in general

F (p,x) = Ne−
βp2

2m
−βV (x) . (13)
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Here and in the following N denotes the correct normalising factor. Thus,
it correspond to different numbers in different formulae. Sometimes the
actual value of the normalising factor is important, then it is written down
explicitly. The quantum-mechanical density operator is

ρ̂ = Ne−
β

ˆp2

2m
−βV (x̂) . (14)

The difference between the classical and the quantum-mechanical expres-
sions is that in the latter the kinetic energy does not commute with the
potential energy. Let us note, however, that in the high-temperature limit
β tends to zero. The commutator of the potential energy and kinetic energy
terms in the exponent of (14) is proportional to β2 and, therefore, is neg-
ligible. Accordingly, in the high-temperature limit the two descriptions are
equivalent, as will be demonstrated more rigorously latter.

The results from this section correspond to an effect which is well known
from statistical physics. In the high-temperature limit the thermal fluctua-
tions, common to the classical and quantum descriptions, usually dominate
while in the low-temperature limit the quantum mechanical fluctuations,
absent in the classical case, are the important ones.

4. The smearing density operators

When a classical phase-space distribution violates the bound (4), it is
necessary to smear it. A way of doing this, is to introduce a (smearing)
density operator as close as possible to the classical density distribution.
Once a density operator is given, one can calculate from it a Wigner function
which satisfies all the consistency conditions.

Let us try, as a smearing density operator, the operator

ρ̂sm = Ne
βp̂2

4m e−βV (x̂)e
βp̂2

4m . (15)

The kinetic energy term has been split in order to make this operator hermi-
tian, as it should be. The corresponding density matrix in the momentum
representation is

〈p|ρ̂sm|p′〉 = Ne−
β

2m
(K2+ 1

4
q2)

∫

dx e−βV (x)−iqx , (16)

and for the Wigner function one gets

Wsm(K,X) = Ne−
βK2

2m

∫

dx e−βV (x)e
− 2m

β
(X−x)2

. (17)

In the high temperature limit, β → 0, the second exponent in the integrand,
taken with a suitable part of the normalising factor, tends to δ(X −x) and,
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after integrating over x, one obtains the classical density distribution. For
low temperatures, of course, no Wigner function can reproduce the classical
distribution.

Let us consider as example the harmonic oscillator with V (x) = 1
2kx

2.
One gets

Wsm(p,x) = Ne−
βp2

2m∗ −
β
2

k∗x2

, (18)

where

m∗ = m, k∗ =
1

1 + η2
k , (19)

and

η =
1

2
βω . (20)

The parameter ω =
√

k/m is the frequency of the oscillator. Note that with

this smearing prescription the effective frequency ωeff =
√

k∗/m∗ depends
on temperature. In order to get after smearing a distribution identical with
F (p,x) one would have to make before smearing the substitution

k → (1 + η2)k . (21)

At high temperatures k∗ ≈ k and the classical result is reproduced. At
low temperatures, when η is large, k∗ ≪ k and the x-distribution is smeared
which avoids the contradiction to Heisenberg’s uncertainty principle.

As another example let us choose

ρ̂sm = Ne−
1

2
βV (x̂)e−

βp̂2

2m e−
1

2
βV (x̂) . (22)

For the harmonic oscillator this yields again formula (18), but with

m∗ =
(

1 + η2
)

m, k∗ = k . (23)

This time the smearing is in momentum space. A popular smearing pre-
scription [12, 13] is

ρ̂sm =

∫

dpdx F (p,x, t)|ψ(p,x)〉〈ψ(p,x)| , (24)

where the state vector |ψ(p, x)〉 represents a bound state of one particle with
positions close to x and momenta close to p.

It is seen that various choices of ρ̂sm correspond to various smearing pre-
scriptions. Each of them gives a reasonable Wigner function, but only with
(14) chosen as the smearing density operator the correct Wigner function
is obtained. We will compare now in the general case the smearing density
operator (15) with the exact one (14).
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5. Effective Hamiltonian

The results obtained in the preceding section for the harmonic oscillator
can be generalised to other potentials. One always finds that the smeared
Wigner function corresponds to some Hamiltonian, but in general not to the
true one for the system being studied. We will call this Hamiltonian effective
Hamiltonian. It is defined by the relation

ρ̂sm = Ne−βĤeff . (25)

The smearing density operator (15) has the form

ρ̂sm = NeX̂eŶ eX̂ . (26)

Thus, ignoring the irrelevant constant logN ,

−βĤeff = log
(

eX̂eŶ eX̂
)

. (27)

The right-hand side can be evaluated from a simple extension of the famous
Baker–Campbell–Hausdorff formula. The result is a series, in general in-
finite, of iterated commutators constructed from the operators X̂ and Ŷ .
Since both X̂ and Ŷ are proportional to β, this is a power series expansion
in β. An elegant and convenient method for calculating the coefficients of

this series for a more general case, i.e. for log
(

eX̂eŶ eẐ
)

, has been described

in Ref. [15]. In our case an additional simplification occurs. Note that the

operator e−X̂e−Ŷ e−X̂ is the inverse of the operator eX̂eŶ eX̂ . Therefore, its
logarithm equals +βĤeff . On the other hand, the expansion of this loga-
rithm can be obtained by taking the expansion for (27) and changing the

signs of all the X̂-s and Ŷ -s. These two prescription are consistent if and
only if all the commutators with even numbers of factors have coefficients
zero. For instance, for the smearing density operator (15) one finds

Ĥeff = Ĥ − β2

6

[

Ĥ,

[

p̂2

4m
,V (x̂)

]]

+ · · · , (28)

where Ĥ = (p̂2/2m) + V (x̂) is the original Hamiltonian. The contribution
of the single commutator vanishes as it should.

In particular, for the harmonic oscillator

Ĥeff = Ĥ +
η2

3

(

p̂2

2m
− kx̂2

)

+ · · · . (29)

Using a program in MATHEMATICA given in [15] it is easy to calculate more
terms of this series. In order to get an effective Hamiltonian corresponding
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to the original phase-space density, and not to its smeared version, one must
make in the Hamiltonian on the right-hand side the substitution (21). This
yields the Hamiltonian

Ĥ∗ =

(

1 +
1

3
η2

)

Ĥ , (30)

which reproduces, to second order in η the classical distribution (13).
For the harmonic oscillator, it is easy to compare directly, without using

a smearing density operator, the Wigner function with the corresponding
classical distribution. This is discussed in the following section.

6. Classical density and Wigner function

for the harmonic oscillator

For a harmonic oscillator at temperature T , the Wigner function, or
equivalently the density matrix, has been calculated by a variety of methods
[6, 16, 17]. The result is

W (p,x) = Ne
−β

tanh η
η

„

p2

2m
+ 1

2
kx2

«

. (31)

This is to be compared with the corresponding classical density

F (p,x) =
(ηclass

π

)3
e
−βclass

„

p2

2m
+ 1

2
kx2

«

. (32)

According to condition (4), if ηclass ≡ 1
2βclass ω > 1 the classical density must

be smeared before being interpreted as a Wigner function. The distributions
(31) and (32) coincide, if

ηclass = tanh η . (33)

At high temperatures, where η and ηclass are both small, ηclass ≈ η and there
is no harm in interpreting the classical distribution as a Wigner function.
At low temperatures, however, η can be arbitrarily large, while ηclass never
exceeds unity. Then, interpreting the classical distribution as a Wigner
function can lead to serious errors.

An obvious question is, where on this scale are situated the temperatures
in the range of some (100–200)MeV relevant for high energy scattering? The
difficulty is that, what matters is the temperature in units of ω, and ω is
not known. In order to get a rough estimate, let us make the admittedly
crude assumption that the results for the harmonic oscillator can be used as
a guide. For the harmonic oscillator

σ2(pi) =

√
km

2 tanh η
, σ2(xi) =

1

2
√
km tanh η

, i = 1, 2, 3 . (34)
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This yields

tanh η =
1

2
√

σ2(xi)
√

σ2(pi)
. (35)

Choosing a value typical for high energy scattering,
√

σ2(pi) = 300MeV,
one gets as an approximation (which is very good when |η− ηclass| is small)

T =

(

1 − 0.036

σ2(xi)

)

Tclass , (36)

where σ2(xi) should be expressed in squared fermis. It is seen that for

heavy ion high energy scattering, where typically
√

σ2(xi) ≈ 5 fm, the cor-

rection is negligible. For e+e− annihilations, however, where
√

σ2(xi) can
be as small as 0.7 fm, the correction is about seven percent. We conclude
that, interpreting the classical distribution as a Wigner function one always
finds that the classical temperature is higher than the one corresponding
to the Wigner function interpretation. Qualitatively this conclusion seems
unavoidable. The quantum fluctuations are not included in the classical de-
scription. In order to reproduce their effect it is necessary to increase the
thermal fluctuations, which means increasing the temperature. The corre-
sponding correction is probably negligible for heavy ion collisions, but may
be at the few percent level for e+e− annihilations.

In order to obtain a Wigner function of the form (13) with βclass = β,
one has to start with the Hamiltonian

Ĥ∗ =
η

tanhη
Ĥ =

(

1 +
1

3
η2 + · · ·

)

Ĥ , (37)

which agrees with (30) to second order in η.

7. Conclusions

Numerous models provide classical phase-space distributions for the
particles produced in multiparticle production processes. When describing
Bose–Einstein correlations these densities, sometimes smeared, are being
used as if they were Wigner functions. Therefore, it is an interesting ques-
tion how close, in situations encountered in particle physics, are the classical
phase-space distributions to their corresponding Wigner functions.

Converting a classical phase-space distribution to a Wigner function,
when temperature is not very high, one should in principle consider quantum
fluctuations. The simplest way is to assume that they are negligible. Our
discussion, based on the analogy with the harmonic oscillator, suggests that
this could be legitimate for high-energy heavy ion collisions, but probably
not for e+e− annihilations.
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In general, quantum fluctuations are negligible at high temperatures and
important at low temperatures. For a given potential this means that, they
are important when the interaction region is small, and unimportant when it
is large. For the specific model discussed in the present paper, the correction
goes like R−2 as seen from formula (36). The correction always reduces the
inferred temperature of the system.

For potentials more complicated than that of the harmonic oscillator,
it is convenient to perform the comparison of the classical phase-space dis-
tribution with the corresponding Wigner function in two steps. First one
introduces a smearing density operator, which should provide a Wigner func-
tion easy to compare with the classical distribution. This is equivalent to
the familiar smearing and yields a Wigner function which satisfies all the
general consistency conditions. It can be done in an infinity of ways. Three
are described in the text. The introduction of the smearing density operator
is equivalent to the introduction of an effective Hamiltonian which yields the
same Wigner function as the smeared density operator. In the first two ex-
amples discussed here, using the Baker–Campell–Hausdorff formula, one can
obtain this effective Hamiltonian as a power series in β. The leading term
is the true Hamiltonian which confirms that in the high temperature limit
(β → 0) the crude estimate of the quantum fluctuations, as done by intro-
ducing smearing, is good enough. This is implied by the fact that quantum
fluctuations are negligible.

The author thanks Mark Gorenstein and Krzysztof Redlich for helpful
discussions.
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