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The possibility to simulate an effective medium with a permittivity close
to zero in some frequency band with as consequence that such a medium
suitably excited behaves for the outside world as an ultrarefractive an-
tenna with a narrow radiation pattern was recently proved. We prove here
that slabs and cylinders made of a Tellegen chiral metamaterial with zero
permittivity excited with a time harmonic filamentous current respecting
the symmetry of these structures constitute ultrarefractive antennas. We
also analyze the equations satisfied by the electromagnetic field inside and
outside a metaTellegen paraboloid of revolution excited with an electric
current running along its axis.

PACS numbers: 41.20.Jb, 42.25.Bs

1. Introduction

Numerical evidence of ultrarefractive optics was recently proved with
the conclusions that a dielectric photonic crystal can simulated an effec-
tive medium having a permittivity close to zero in some frequency band [1].
Then, introducing a radiation source in such a structure with an excita-
tion frequency that lies within the specified pass band, builds up an an-
tenna having a significantly narrow pattern in the far field outside the struc-
ture [2–5].

These results stimulated further investigations, for instance, metaslabs
are considered in [6], as well as cylinders and spheres, made of a Drude
material with zero index of refraction and matched to surrounded free space.
These structures excited by a proper electric current are shown to behave
as antennas with a narrow far field pattern.
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A similar analysis is performed here in a somewhat different context with
slabs and cylinders made of a lossy Tellegen chiral metamaterial [7] with
zero permittivity in some frequency band so that the constitutive relations
become

D = −iξH , B = µH + iξE , i =
√− 1 . (1)

Permeability µ and chirality ξ are complex functions of the angular fre-
quency ω. These structures are excited with a time harmonic current, of
the filament type, respecting the slab and the cylinder symmetry. Thus,
fields are not disturbed by reflections at boundaries, but this condition is
impossible to satisfy for a sphere. These metaslabs and cylinders, excited in
this way in a convenient frequency band are shown to be antennas with an
ultranarrow radiation pattern. We also consider a meta-Tellegen paraboloid
of revolution around the z-axis with its apex at the origin of coordinates
while an excitation current runs along 0z and, we analyze the equations sat-
isfied by the electromagnetic field inside and outside this structure but we
do not discuss their solutions.

Maxwell’s equations in presence of a charge e and of a current j have
the general expressions for harmonic fields with the factor exp(iωt) implicit
throughout and c = 1

∇×H−iωD = j , ∇×E+iωB = 0 , ∇·D = e, ∇·B = 0 , (2)

with the conservation relation ∇ · j + iωe = 0.
In a Tellegen medium of zero permittivity with the constitutive rela-

tions (1) these equations become

∇× H − ωξH = j , e + iξ∇ · H = 0 ,

∇× E − ωξE + iωµH = 0 , µ∇ · H + ξ∇ · E = 0 . (3)

We start with a discussion of 1D-slab antennas.

2. 1D-Tellegen metaslabs with zero permittivity

As a preliminary, we consider a situation in which the fields depend only
on z, e = 0, and the current j has the components

jx = j0 δ(z) , jy = jz = 0 , (4)

in which j0 is a constant and δ(z) the Dirac distribution. Then, Ez = Hz = 0
the divergence in Eqs. (3) are satisfied and the curl in Eqs. (3) become

∂zHy + ωξ Hx + j0δ(z) = 0 , ∂z Hx − ωξ Hy = 0 , (5a)

∂zEy + ωξ Ex − i ωµ Hx = 0 , ∂zEx − ωξ Ey + i ωµ Hy = 0 . (5b)
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Eliminating Hy from (5a), Ey from (5b) gives the 1D-inhomogeneous wave
equations

∂2
zHx + ω2ξ2 Hx = −ωξ j0 δ(z) , (6a)

∂2
zEx + ω2ξ2 Ex = iωµ [2ωξ Hx + j0δ(z)] . (6b)

Now, the solution of the differential equation y′′ + ω2ξ2y = f(z) is

y = c1(z) sin(ωξz) + c2(z) cos(ωξz) , (7a)

in which the amplitudes c1(z), c2(z) have the derivatives

c′1(z) = (1/ωξ) f(z) cos(ωξz), c′2(z) = −(1/ωξ) f(z) sin(ωξz) . (7b)

For the right hand side of (6a), f(z) = −ωξ j0 δ(z) and the corresponding
primitives c1,2(z) are given in Appendix A: c1(z) = U(z), c2(z) = 0. Then,
according to (7a), the solution of (6a) is

Hx = −j0 sin(ωξz)U(z) , (8a)

while we get from (5a) and (8a)

Hy = −j0 cos(ωξz)U(z) . (8b)

In these expressions, U(z) is the Heaviside function U(z) = 1 for z ≥ 0,= 0
for z < 0.

Let us now write the right hand side of Eq. (6b)

f(z) = f0(z) + f1(z), f0(z) = iωµ j0 δ(z) , f1(z) = 2i ω2µξ Hx . (9)

We get Ex = E0
x + E1

x and comparing f0(z) with the right hand side of (6a)
gives at once according to (8a):

E0
x = −(iµ/ξ)Hx = (iµ j0/ξ) sin(ωξ z)U(z) , (10)

while for f1(z) the derivatives of (7b) become

c′1 = 2iωµ Hx cos(ωξz) = −iωµ j0 sin(2ωξz)U(z) ,

c′2 = −2iωµ Hx sin(ωξ z) = 2iωµ j0 sin2(ωξ z)U(z) . (11)

The primitives c1,2(z) are also obtained in Appendix A and we get

c1 = −(ij0µ/ξ) sin2(ωξ z)U(z) , c2 = (ij0µ/ξ[ωξ z − sin(2ωξ z)/2] (12)

so, according to (7a)

E1
x = (ij0µ/ξ)[ωξ z cos(ωξ z) − sin(ωξ z)]U(z) , (13)
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and taking into account (10)

Ex = E0
x + E1

x = iµj0 ωz cos(ωξ z)U(z) = −iµω z Hy . (14)

Now, we get from (5b)

Ey = (1/ωξ) ∂zEx + iµ/ξ Hy , (15a)

and according to (8b) and (14)

Ey = −iµj0 ωz sin(ωξ z)U(z) = iµωz Hx . (15b)

The average Poynting’s vector at the angular frequency ω has only a non-
null component in which the asterisk denotes the complex conjugation

Sz = 1/2Re(ExH∗
y − EyH

∗
x) , (16a)

and taking into account (14), (15b) we get according to (8a) and (8b)

Sz = Im[(µω z/2)(HxH∗
x + HyH

∗
y )]U(z)

= Im[(µωz j2
0/2) cos{ω(ξ − ξ∗)}]U(z) , (16b)

so that in a lossless medium Sz = 0 since µ is real.
We now consider a 1D-Tellegen slab with filamentous boundaries −∞ <

x < ∞ at z = −d and z = d. A time harmonic filamentous current exists
along the axis z = 0 with the expression (4). Then, the electromagnetic field
inside this 1D-slab has the components (8a), (8b) and (14), (15b) since by
symmetry the reflected fields on the boundaries cancel each other.

To analyze the behavior of this Tellegen metaslab as an antenna, we
need the solutions of Maxwell’s equations in the outward free space. Now,
in a medium with permittivity ε0, permeability µ0, Maxwell’s equations for

fields depending only on z reduce to E†
z = H†

z = 0 and to

∂zH
†
y = −iωε0 E†

x , ∂zH
†
x = iωε0 E†

y , (17a)

∂zE
†
y = iωµ0 H†

x , ∂zE
†
x = −iωµ0 H†

y . (17b)

Eliminating E†
x,y gives the wave equations (∂2

z + n2
0ω

2)H†
x,y = 0, n2

0 = ε0µ0,
with the solutions

H†
x,y = Ax,y cos(ωn0z) + Bx,y sin(ωn0z) , (18a)

and substituting (18a) into (17a), we get

iε0 E†
x = n0Ay sin(ωn0z) − n0By cos(ωn0z) ,

iε0 E†
y = −n0Ax sin(ωn0z) + n0Bx cos(ωn0z) . (18b)
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In (18a,b), Ax,y, Bx,y are the four amplitudes of the fields in the half-space
z ≥ d determined by the boundary conditions on the face z = d of the
Tellegen 1D-slab and we have

H†
x,y(d) = Hx,y(d) , E†

x,y(d) = Ex,y(d) , (19)

in which Hx,y(d), Ex,y(d) are the expressions (8a), (8b), (14), (15b) for z = d.
Then using (18a,b) we get

Ax,y cos(ωn0d) + Bx,y sin(ωn0d) = Hx,y(d) ,

−iε0n0[Ay sin(ωn0d) − By cos(ωn0d)] = Ex(d) ,

iε0n0[Ax sin(ωn0d) − Bx cos(ωn0d)] = Ey(d) . (20a)

The solution of (20a) is

{Ay, By} = {cos(ωn0d), sin(ωn0d)}Hy(d)

+iε0/n0{sin(ωn0d), − cos(ωn0d)}Ex(d) ,

{Ax, Bx} = {cos(ωn0d), sin(ωn0d)}Hx(d)

−iε0/n0{sin(ωn0d), − cos(ωn0d)}Ey(d) . (20b)

We are, of course, interested in the Poynting vector with the nonnull com-
ponent

S†
z(z) = 1/2Re(E†

xH†
y
∗ − E†

yH
†
x
∗
)(z) . (21a)

Taking into account (18a,b), a simple calculation gives

S†
z(z) = n0/2ε0Im[{AyB

∗
y sin2(ωn0z) − A∗

yBy cos2(ωn0z)}
+{AxB∗

x sin2(ωn0z) − A∗
xBx cos2(ωn0z)}] . (21b)

Now for z = d we have according to (20b)

Im(AyB
∗
y) = −Im(A∗

yBy) , Im(AxB∗
x) = −Im(A∗

xBx) (22)

so that
S†

z(z) = n0/2ε0Im(AyB
∗
y + AxB∗

x) . (23a)

But, still using (20b):

Im(AyB
∗
y) = ε0/n0[Ex(d)H∗

y (d) + E∗
x(d)Hy(d)] ,

Im(AxB∗
x) = −ε0/n0[Ey(d)H∗

x(d) + E∗
y(d)Hx(d)] , (23b)

implying
Im(AyB

∗
y + AxB∗

x) = 2ε0/n0Sz(d) , (24)

and substituting (24) into (23a) gives finally S†
z(d) = Sz(d).

The electromagnetic flow in free space surrounding the Tellegen 1D-slab
with zero permittivity is constant in the z direction with the amplitude of
the inner energy flow reaching the surface z = d. This excited structure is
an antenna with an ultra-narrow radiation pattern.
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3. Tellegen circular metacylinder medium with zero permittivity

We now consider a circular metacylinder Tellegen medium with zero
permittivity, centered along the z-axis materialized by an electric current
filament (ρ, φ, z are the cylindrical coordinates)

jz = I0δ(ρ)/2πρ , jρ = jϕ = 0 . (25)

The components of the electromagnetic field inside such a medium are ob-
tained in Appendix B and we get Hρ = Eρ = 0 and

Hz(ρ) = (ωξI0/4)[vY (ρ)J0(ωξρ) − vJ(ρ)Y0(ωξρ)] , (26a)

Hϕ(ρ) = (ωξI0/4)[vY (ρ)J1(ωξρ) − vJ(ρ)Y1(ωξρ)] , (26b)

in which J0,1, Y0,1 are the Bessel functions of first and second kind, of order
zero, one and

vY (ρ) = ∂−1[Y0(ωξρ)δ(ρ)] , vJ(ρ) = ∂−1[J0(ωξρ)δ(ρ)] . (26c)

∂−1 is the primitive operator defined in Appendix A. The components of the
electric field are

Ez = iµ/ξHz(ρ) − 2iω2ξµ[hY (ρ)J0(ωξρ) − hJ(ρ)Y0(ωξρ)] ,

Eφ = (1/ωξ)∂ρE
1
z = 2iω2ξµ[hY (ρ)J1(ωξρ)hJ(ρ)Y1(ωξρ) , (27a)

with

hY (ρ) = ∂−1[Hz(ρ)Y0(ωξρ)] , hJ(ρ) = ∂−1[Hz(ρ)J0(ωξρ)] . (27b)

The only nonnull component of the Poynting vector is

Sρ = (1/2)Re[EφH∗
z − EzH

∗
φ] . (28)

The energy flow is radial with a rather intricate analytical expression.
This Tellegen medium is now supposed to be a tube of radius a, sur-

rounded by free space with the time harmonic current j moving along the
z-axis of this tube and generating the electromagnetic field with the com-
ponents (26a), (27a), the only field present inside the cylinder since the
symmetry of the structure makes null the reflected field at boundaries.

In the surrounding free space, the Maxwell equations in cylindrical ge-

ometry for fields that depend only on ρ reduce to E†
ρ = H†

ρ = 0 and to

−∂ρE
†
z + iωµ0H

†
φ = 0 , ρ−1∂ρ(ρE†

φ) + iωµ0H
†
z = 0 , (29a)

∂ρH
†
z + iωε0E

†
φ = 0 , ρ−1∂ρ(ρH†

φ) − iωε0E
†
z = 0 , (29b)
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and we look for the solutions of these equations in the form

H†
φ,z = hφ,z(ρ) , iωε0E

†
φ = −∂ρhz(ρ), iωε0E

†
z = ρ−1∂ρ[ρhφ(ρ)] (30a)

supplying the wave equations

∂2
ρhz + ρ−1∂ρhz + ω2n2

0hz = 0 , n2
0 = ε0µ0 ,

∂2
ρhφ + ρ−1∂ρhφ − ρ−2hφ + ω2n2

0hφ = 0 . (30b)

The Bessel functions J0, Y0, J1, Y1 are the respective solutions of (30b), so
according to (30a)

H†
z = AzJ0(n0ωρ) + BzY0(n0ωρ) ,

H†
φ = AφJ1(n0ωρ) + BφY1(n0ωρ) ,

iε0E
†
φ = n0[AzJ1(n0ωρ) + BzY1(n0ωρ)] ,

iε0E
†
z = n0[AφJ0(n0ωρ) + BφY0(n0ωρ)] , (31a)

since [8]

∂t{J0(t), Y0(t)} = −{J1(t), Y1(t)} ,

t−1∂t[t{J0(t), Y0(t)}] = {J0(t), Y0(t)} . (31b)

The amplitudes Az, Bz, Aφ, Bφ, are determined by the boundary conditions
on the surface ρ = a of the Tellegen cylinder

H†
φ,z(a) = Hφ,z(a) , E†

φ,z(a) = Eφ,z(a) (32)

and, taking into account (31a), we get the four relations

AzJ0(n0ωa) + BzY0(n0ωa) = Hz(a) ,

AφJ1(n0ωa) + BφY1(n0ωa) = Hφ(a) ,

(−in0/ε0)[AzJ1(n0ωa) + BzY1(n0ωa)] = Eφ(a)

(−in0/ε0)[AφJ0(n0ωa) + BφY0(n0ωa)] = Ez(a) . (33)

Using the Wronskian [8]: J1(n0ωa)Y0(n0ωa)−J0(n0ωa)Y1(n0ωa)=2/(πn0ωa)
and deleting the arguments of the functions since no confusion is possible,
the solution of (33) is

Az = −(πn0ωa/2)[Y1Hz − (iε0/n0)Y0Eφ] ,

Bz = (πn0ωa/2)[J1Hz − (iε0/n0)J0Eφ)] ,

Aφ = (πn0ωa/2)[Y0Hφ − (iε0/n0)Y1Ez] ,

Bφ = −(πn0ωa/2)[J0Hφ − (iε0/n0)J1Ez] . (34)
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The only nonnull component of the Poynting vector in free space is

S†
ρ = (1/2)Re(E†

φH† ∗
z − E†

zH
† ∗
φ ) , (35a)

and using (33) a simple calculation gives

S†
ρ = n0/ε0 Im[BφA∗

φJ1Y0 + B∗
φAφJ0Y1

−BzA
∗
zJ0Y1 − B∗

zAzJ1Y0] . (35b)

But, according to (34)

Im(BφAφ∗) = −Im(B∗
φAφ) , Im(BzA

∗
z) = −Im(B∗

zAz) , (36a)

and substituting (36a) into (35b) we get since J1Y0 − J0Y1 = 2/(πωan0)

S†
ρ = [2/(πωaε0)][Im(BφA∗

φ) + Im(BzA
∗
z)] . (36b)

Then, still using (34) and the Wronskian, we have

Im(BφA∗
φ) = −(π2ω2a2n0ε0/4)Re[HφE∗

zJ0Y1 − H∗
φEzJ1Y0]

= (πωaε0/2)Re(H∗
φEz) , (37a)

and similarly

Im(BzA
∗
z) = −(πωaε0/2)Re(H∗

z Eφ) . (37b)

These two relations imply

Im(BφA∗
φ) + Im(BzA

∗
z) = (πωaε0/2)Sρ(a) . (38)

Substituting (38) into (36b) gives finally S†
ρ(a) = Sρ(a). The electromagnetic

energy flow in the outward free space is radial, constant with the value of
the inner energy flow on the surface ρ = a of the cylinder. This excited
structure is, as the Tellegen slab, an antenna with an ultra-narrow radiation
pattern.

4. Tellegen metaparaboloid with zero permittivity

We consider twin paraboloids of revolution around the z-axis, with apex
at x = y = z = 0. Then, using the polar coordinates ρ, φ, z, the equation
of this structure is z = ±ρ2/2R in which R/2 is the distance apex focus
along 0z. This paraboloid is supposed made of a Tellegen meta material
with zero permittivity in a specified frequency band and characterized by the
constitutive relations (1), the excitation current (25) being directed along 0z.
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4.1. Field inside the upper paraboloid

We get from Eqs. (B.4b), (B.5b) of Appendix B the wave equations
satisfied by the components of the magnetic field

∂2
zHρ + (∂2

ρ + ρ−1∂ρ − ρ−2 + ω2ξ2)Hρ = 0 ,

∂2
zHφ + (∂2

ρ + ρ−1∂ρ − ρ−2 + ω2ξ2)Hφ = 0 ,

∂2
zHz + (∂2

ρ + ρ−1∂ρ + ω2ξ2)Hz = −ωξjz . (39)

As an important difference with the situations met in the previous two sec-
tions, we have to take into account the reflected field on the paraboloid
surface and consequently, we look for the solutions of (39) in the form

Hρ = H0
ρ(ρ, z) , Hφ,z = H0

φ,z(ρ, z) + H1
φ,z(ρ) , (40)

in which the components of H0 are solutions of (39) with jz = 0 while the
(ϕ, z)-components of H1 are the solutions (26a). Now, the solutions H0

bounded for ρ = 0 may be written

H0
ρ,φ, (ρ, z) =

∞∫

0

dλ exp(−λz)f0
ρ,φ(λ)J1(γρ) , γ2 = ω2ξ2 + λ2 ,

H0
z (ρ, z) =

∞∫

0

dλ exp(−λz)f0
z (λ)J0(γρ) . (41a)

Substituting (41a) into (B.5b) and into the first equation ∂zHϕ + ωξHρ = 0
of the set (B.4b), still using the relations (31b) gives f0

z,φ in terms of f0
ρ

λf0
φ = ωξf0

ρ , λf0
z = γf0

ρ . (41b)

To sum up, taking into account (26a), we have with vJ , vY given by (26c)

H0
ρ(ρ, z) =

∞∫

0

dλ exp(−λz)f0
φ(λ)J1(γρ) ,

Hz(ρ, z) = H0
z (ρ, z) + (ωξI0/4)[vY (ρ)J0(ωξρ) − vJ(ρ)Y0(ωξρ)] ,

Hφ(ρ, z) = H0
φ(ρ, z) + (ωξI0/4)[vY (ρ)J1(ωξρ) − vJ(ρ)Y1(ωξρ)] , (42a)

in which according to (41a) and (41b)

H0
z (ρ, z) =

∞∫

0

γλ−1dλ exp(−λz)f0
ρ (λ)J0(γρ) ,

H0
φ(ρ, z) =

∞∫

0

ωξλ−1dλ exp(−λz)f0
ρ (λ)J1(γρ) . (42b)
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Similarly, we look for the electric field in the form

E = E0(ρ, z) + E1(ρ) (43a)

in which H1
ρ (ρ) = 0 while the E1

φ,z(ρ)’s are the solutions (27a) and

E0
ρ,φ(ρ, z) =

∞∫

0

dλ exp(−λz)g0
ρ,φ(λ)J1(γρ) ,

E0
z (ρ, z) =

∞∫

0

dλ exp(−λz)g0
z (λ)J0(γρ) . (43b)

Substituting (43a) into the Maxwell equations (B.4a) of Appendix B, taking
into account (43b) (27, 41) and using the relations (31b) gives a set of
equations supplying the amplitudes g0 in terms of f0:

−λg0
φ − ωξg0

ρ + iωµf0
ρ = 0 ,

−λg0
ρ + γg0

z − ωξg0
φ + iωµf0

φ = 0 ,

−λg0
φ − ωξg0

z + iωµf0
z = 0 , (44)

a system easy to solve. According to (43a) and (27a), the components of the
electric field are

E0
ρ(ρ, z) =

∞∫

0

dλ exp(−λz)g0
ρ(λ)J1(γρ) ,

Ez(ρ, z) = E0
ρ(ρ, z) + (iµ/ξ)H1

z − 2iω2ξµ[hY (ρ)J0(ωξρ) − hJ(ρ)Y0(ωξρ)] ,

Eφ(ρ, z) = E0
φ(ρ, z) + 2iω2ξµ[hY (ρ)J1(ωξρ) − hJ (ρ)Y1(ωξρ) , (45)

with hJ , hY given by (27b).
Taking into account (41b) and (44), we see that the electromagnetic

field inside the paraboloid structure is not fully determined, as in slabs and
cylinders, but depends on a arbitrary constant f0

ρ to be determined by the
boundary conditions at the surface of the paraboloid. And, the boundary
conditions to be satisfied come from the continuity imposed on the tangential
components of the E, H fields and on the normal component of the B field.
Now, at the altitude z on the surface of the paraboloid z = ρ2/2R, we have
ρs = (2Rz)1/2 and the tangential components are

{Eϕ,Hϕ}(ρs, z) ,

{ET,HT}(ρs, z) = [ρs{Hz, Ez} + R{(Hρ, Eρ}](ρs, z) , (46a)
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while the normal component BN = −RBz + ρsBρ of B becomes taking into
account (1)

BN(ρs, z) = −R(µHz + iξEz)(ρs, z) + ρs(µHρ + iξEρ)(ρs, z) . (46b)

4.2. Outside field, boundary conditions

To get the electromagnetic field in free space surrounding the twin para-
boloids, we use the equations (B.1), (B.2) of Appendix B which become

∂zE
†
φ − iωµ0H

†
ρ = 0 , ∂zH

†
φ + iωε0E

†
ρ = 0 ,

∂zE
†
ρ − ∂ρE

†
z + iωµ0H

†
φ = 0 , ∂zH

†
ρ − ∂ρH

†
z − iωε0E

†
φ = 0 ,

ρ−1∂ρ(ρE†
ϕ) + iωµ0H

†
z = 0 , ρ−1∂ρ(ρH†

ϕ) − iωε0E
†
z = 0 , (47a)

and

ρ−1∂ρ(ρH†
ρ) + ∂zH

†
z = 0 , ρ−1∂ρ(ρE†

ρ) + ∂zE
†
z = 0 . (47b)

It is easy to get the wave equations satisfied by the components of the
magnetic field

(∂2
z + ∂2

ρ + ρ−1∂ρ − ρ−2 + ω2n2
0)H

†
ρ,φ = 0 , n2

0 = ε0µ0 , (48a)

(∂2
z + ∂2

ρ + ρ−1∂ρ + ω2n2
0)H

†
z = 0 , (48b)

from which the components of the electric field are obtained by the relations

iωε0E
†
φ =−∂zH

†
φ , iωε0E

†
z =ρ−1∂ρ(ρH†

φ) , iωε0E
†
φ =∂zH

†
ρ − ∂ρH

†
z . (49)

We may write the solutions of (48a) in terms of the Bessel functions J1, Y1

for z > 0

H†
ρ,φ(ρ, z) =

∞∫

0

dλ exp(−λz)[f †
ρ,φ(λ)J1(νρ) + g†ρ,φ(λ)Y1(νρ)] ,

ν2 ∼= ω2n2
0 + λ2 , (50a)

while the solutions of (48b) depend on J0, Y0

H†
z(ρ, z) =

∞∫

0

dλ exp(−λz)[f †
z (λ)J1(νρ) + g†z(λ)Y0(νρ)] . (50b)
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Then, substituting (50a), (50b) into (49) and using the relations (31a), (31b)
give for the electric field

iωε0E
†
ρ =

∞∫

0

λdλ exp(−λz)[f †
φ(λ)J1(νρ) + g†φ(λ)Y1(νρ)] , (51a)

iωε0E
†
z =

∞∫

0

νdλ exp(−λz)[f †
φ(λ)J0(νρ) + g†φ(λ)Y0(νρ)] , (51b)

iωε0E
†
φ =

∞∫

0

dλ(exp(−λz)[{νf †
z (λ) − λf †

ρ(λ)}J0(νρ)

+{νg†z(λ) − λg†ρ(λ)}Y0(νρ)] . (51c)

But all the functions f †, g†, in (50), (51) are not independent and substi-

tuting (50a), (51c) into the equation ∂zE
†
φ − iωµ0H

†
ρ = 0 of the set (47a)

gives the relations

νf †
ρ(λ) = λf †

z (λ) , νg†ρ(λ) = λg†z(λ) , (52)

and the solution (51c) becomes

iωε0E
†
φ =

∞∫

0

ω2n2
0ν

−1dλ exp(−λz)[f †
z (λ)J1(νρ) + g†z(λ)Y1(νρ)] . (53)

It is easily checked that for λ = 0 these expressions give the electromagnetic
field outside the Tellegen cylindrical antenna of Section 3.

So, we are left with four unknown functions f †
z,φ, g†z,φ obtained from the

boundary conditions on the surface of the parabolic structure which supplies
in addition, as previously noticed, the amplitude f0

ρ characteristic of the

inner field. The tangential components of the E†, H† fields at the altitude
z on the surface of the paraboloid z = ρ2/2R, are with ρs = (2Rz)1/2

{E†
ϕ, H†

ϕ}(ρs, z) ,

{E†
T
, H†

T
}(ρs, z) = [ρs{H†

z , E†
z} + R{H†

ρ , E†
ρ}](ρs, z) , (54a)

and the normal component of the B field is

B†
N
(ρs, z) = −µ0RH†

z(ρs, z) + µ0ρsH
†
ρ(ρs, z) . (54b)

Then, taking into account (46a,b) the boundary conditions are

{E†
φ,T , H†

φ,T}(ρs, z) = {Eφ,T , Hφ,T }(ρs, z) , B†
N
(z, ρs) = BN(ρs, z) . (55)
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We illustrate these boundary conditions on the -component of the magnetic
field: taking into account (50a), we get

∞∫

0

dλ exp(−λz)[f †
φ(λ)J1(νρs) + g†φ(λ)Y1(νρs)] = Hφ(ρs, z) , (56)

in which Hφ(ρs, z) is the expression (42a) on the paraboloid surface.
This integral equation is not easy to solve and, with the only objective

to make clear the type of difficulties to be met, we suppose null the g†φ(λ)

function so that (56) reduces to

∞∫

0

dλ exp(−λz)f †
φ(λ)J1(νρs) = Hφ(ρs, z) . (57)

Now on the paraboloid surface z = ρ2
s/2R, then multiplying (57) by ρ2

s and
performing the ρs integration gives

∞∫

0

dλf †
φ(λ)

∞∫

0

ρ2
sdρs exp(−λρ2

s/2R)J1(νρs) = α ,

α =

∞∫

0

ρ2
sdρsHφ(ρs, ρ

2
s/2R) . (58)

But [9]

∞∫

0

ρ2
sdρs exp(−λρ2

s/2R)Jm(νρs) = νm(R/λ)m+1 exp(−ν2R/2λ) , (59)

so that the equation (58) becomes

∞∫

0

dλf †
φ(λ)ν(R/λ)2 exp(−ν2R/2λ) = α , (60a)

with the solution since ν2 ∼= ω2n2
0 + λ2

f †
φ(λ) = αλ2/2n0R exp(ω2n2

0R/2λ) . (60b)

Unfortunately, relations similar to (59) do not exist for the Bessel functions
Ym and clearly the boundary conditions (54a), (54b) put a challenge.



206 P. Hillion

4.3. Poynting vector

The Poynting vector S(ρ, z) inside the Tellegen paraboloids has the com-
ponents

Sφ(ρ, z) = (1/2)Re{EzH
∗
ρ − EρH

∗
z}(ρ, z) ,

Sρ(ρ, z) = (1/2)Re{EφH∗
z − EzH

∗
φ}(ρ, z) ,

Sz(ρ, z) = (1/2)Re{EρH
∗
φ − EφH∗

ρ}(ρ, z) . (61)

The part of the energy flow able to radiate outside the Tellegen structure is
supplied by the normal component SN = −RSz + ρSρ which takes the value
on the surface of paraboloids

SN(ρs, z) = −RSz(ρs, z) + ρsSρ(ρs, z) , z = ρ2
s/2R . (62a)

Substituting (61) into (62a) and taking into account (46a) gives

SN(ρs, z) = (1/2)Re{EφH∗
T − ETH∗

φ}(ρs, z) . (62b)

The Poynting vector S†(ρ, z) in the free space outside the Tellegen struc-
ture has components formally similar to (61) and the radiation in the far
field comes from the normal component of S† which takes the values on the
surface of the Tellegen structure

S†
N
(ρs, z) = (1/2)Re{E†

φH†
T

∗ − E†
T
H†

φ

∗}(ρs, z) , (63)

and the boundary conditions (55) imply

S†
N
(ρs, z) = SN(ρs, z) (64)

a result expected from those obtained in the previous two sections. This
meta-Tellegen structure behaves as a parabolic antenna with a narrow radi-
ation pattern.

5. Discussion

So, the theoretical calculations performed in the previous three sections,
for longitudinally unbounded slabs, circular cylinders, paraboloids of revo-
lution, made of chiral Tellegen material with zero permittivity, prove that
these structures become directive antennas with a narrow radiation pat-
tern when they are excited by an electric filament along their symmetry
axis. When the excitation current is constant, inward and outward electro-
magnetic fields have simple analytical expressions for slabs but, concerning
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cylinders, coherent approximations will be necessary to make manageable
these fields obtained in the form of integrals requiring Bessel functions.

Only the equations satisfied by the field components are given for para-
boloids of revolution and numerical codes will have to be developed to get
their solution. To conclude on a practical design, we may think of a meta
Tellegen long straight (tape) antenna with a length appreciable compared
with wavelength as in most of practical antennas. Several other types of
constitutive relations exist for isotropic chiral media proposed by Drude,
Born, Fedorov, Condon, Post. . . with debatable merits. It has been shown
to be equivalent to each other for time harmonic fields [10], an equivalence
not necessary valid for chiral materials of zero permittivity and fields gen-
erated with an electric filament. Then if narrow pattern antennas appear
to become an important tool in future technology, it could be interesting
to devote further works to materials with different constitutive relations.
To assume a constant excitation current is a bit restrictive which leads to
consider what happens with a time dependent current. With this objective,
we discuss in Appendix C a Tellegen chiral metaslab of zero permittivity
excited by a current with time history J(t)

Jx = J(t)δ(z) , Jy = Jz = 0 . (65)

Using the Laplace transform [11, 12] f(s) = L[F (t)] shows that, roughly
speaking, we have just to change in the previous calculations: iω into s and
j into j(s) to obtain the fields {e(s), h(s)}. Of course, the inverse Laplace
transform is necessary to get the time dependent fields {E(t), H(t)} but
there now exist powerful techniques to do this job efficiently [13]. Concern-
ing slabs and, assuming the chirality parameter ξ real positive, the inverse
Laplace transform of fields inside the slab have simple analytical expressions,
for instance

Hx = −(i/2)J(t − ξz/c) , Hy = −(1/2)J(t − ξz/c) , 0 ≤ ξz/c < t (66)

(see (C.8) for electric field components). Outward fields are sums of similar
functions such as J [t−n0z/c± (n0±ξ)d/c] with different delays (n0±ξ)d/c,
2d being the slab thickness.

Thus, for metachiral structures with zero permittivity, conveniently ex-
cited with currents respecting the symmetry source-structure there is a po-
tential application as highly directive antennas and this result carries on
theoretical and numerical works [3] on the design of directive antennas.

The antennas discussed here, infinite along 0z, should be truncated to
represent realistic structures. From a mathematical point of view, it suffices
to multiply the field expressions by the function U(z−z0)−U(z−z1) in which
U is the Heaviside function, z0, z1, the lower and upper coordinates, with
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as consequence, to make calculations a bit more intricate. But, one should
have to introduce boundary conditions at z = z0 and z = z1. An interesting
situation happens for z-periodic antennas since it has been proved [14] that
these structures support infinite wavelength.

Appendix A

Primitives

Using the relations where δ(z), U(z) are the Dirac distribution and the
Heaviside unit function

δ(z)dz = d[U(z)] , U(z)dz = d[zU(z)] , (A.1)

and integrating by parts, we get for the primitive ∂−1[f(z)δ(z)]=
∫
f(z)δ(z)dz

∫
f(z)δ(z)dz = gd(z)U(z) , gd(z) =

∞∑
n=0

(−1)nzn/n!∂n
z f(z) , (A.2)

and similarly for ∂−1[f(z)U(z)] =
∫

f(z)U(z)dz

∫
f(z)U(z)dz=gu(z)U(z), gu(z)=

∞∑
n=0

(−1)nzn+1/(n+1)!∂znf(z) .(A.3)

There exist similar relations with U(−z). In particular for exp(az) we get
from (A.2) and (A.3)

∂−1[exp(az)δ(z)] = U(z) ,

∂−1[exp(az)U(z)] = a−1[exp(az) − 1]U(z) , (A.4)

these relations imply

∂−1[cos(ωξz)δ(z)] = U(z) , ∂−1[sin(ωξz)δ(z)] = 0 , (A.5)

∂−1[sin(2ωξz)U(z)] = (1/ωξ) sin2(ωξz)U(z) ,

∂−1[cos(2ωξz)U(z)] = (1/ωξ) sin(2ωξz)U(z) , (A.6)

and
∂−1[sin2(ωξz)U(z)] = [z/2 − (1/4ωξ) sin(2ωξz)]U(z) . (A.7)

These simple results are not the general rule, they do not hold for the Bessel
functions Y0(ωξρ), J0(ωξρ) solutions of the cylindrical wave equation, we
get in this case

∂−1[Y0(ωξρ)δ(ρ)] = vY (ρ)U(ρ) , ∂−1[J0(ωξρ)δ(ρ)] = vJ(ρ)U(ρ) , (A.8)
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vY (ρ) =

∞∑
n=0

(−1)nρn/n!∂n
ρ Y0(ωξρ) ,

vJ(ρ) =
∞∑

n=0

(−1)nρn/n!∂n
ρ J0(ωξρ) . (A.9)

It is difficult to get consistent approximations of these sums, even with small
ρ, specially for vY (ρ) because of its logarithmic behavior in this domain.

Appendix B

Electromagnetic field in a zero permittivity cylinder

For fields that do not depend on azimuth, Maxwell’s equations in cylin-
drical coordinates ρ, φ, z with a current j and a charge e are

−∂zEφ + iωBρ = 0 ,

∂zEρ − ∂ρEz + iωBφ = 0 ,

ρ−1∂ρ(ρEϕ) + iωBz = 0 , (B.1a)

−∂zHφ − iωDρ = jρ ,

∂zHρ − ∂ρHz − iωDφ = jφ ,

ρ−1∂ρ(ρEϕ) − iωDz = jz , (B.1b)

with the divergence equations

ρ−1∂ρ(ρBρ) + ∂zBz = 0 , (B.2a)

ρ−1∂ρ(ρDρ) + ∂zDz = 0 . (B.2b)

For the zero permittivity Tellegen medium with constitutive relations (1)
and with the electric current

jz = I0δ(ρ)/2πρ , jρ = jϕ = 0 (B.3)

these equations become

−∂zEφ − ωξEρ + iωµHρ = 0 ,

∂zEρ − ∂ρEz − ωξEφ + iωµHφ = 0 ,

ρ−1∂ρ(ρEφ) − ωξEz + iωµHz = 0 , (B.4a)

∂zHφ + ωξHρ = 0 ,

∂zHρ − ∂ρHz − ωξHφ = 0 ,

ρ−1∂ρ(ρHϕ) − ωξHz = jz , (B.4b)
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and

ρ−1∂ρ(ρEρ) + ∂zEz = 0 , (B.5a)

ρ−1∂ρ(ρHρ) + ∂zHz = 0 , (B.5b)

the charge e est null and the electromagnetic field depends only on ρ, so that
the equations (B.4a), (B.4b) imply Hρ = 0 and reduce to

ρ−1∂ρ(ρHϕ) − ωξHz = −ωξI0δ(ρ)/2πρ, (B.6a)

∂ρHz + ωξHφ = 0 , (B.6b)

while we get from (B.4a) Eρ = 0 and

∂ρEz + ωξEφ = iωµHφ, ρ−1∂ρ(ρEϕ) − ωξEz = −iωµHz . (B.7)

Eliminating Hφ from (B.6) and Eφ from (B.7) gives the inhomogeneous
equations

∂2
ρHz+ρ−1∂ρHz+ω2ξ2Hz = −ωξI0δρ/2πρ , (B.8a)

∂2
ρEz + ρ−1∂ρEz+ω2ξ2Ez = iωµ(∂ρHϕ+ρ−1Hϕ+ωξHz) . (B.8b)

We first look for the solutions of Eq.(8b): consider the inhomogeneous dif-
ferential equation

y′′ + ρ−1y′ + ω2ξ2 = f(ρ) (B.9)

the homogeneous wave equation y′′ + ρ−1y′ + ω2ξ2 = 0 has the Bessel
functions of the first and second kind of order zero J0(ωξρ), Y0(ωξρ) as
solutions so that since ∂ρ(J0, Y0) = −(J1, Y1) and since the Wronskian
J1Y0 − J0Y1 = 2/(πωξρ) [8] the solution of (B.9) is

y = C1(ρ)J0(ωξρ) + C2(ρ)Y0(ωξρ) , (B.10a)

in which the amplitudes C1,2(ρ) are defined by their derivatives

C ′
1(ρ) = −πρ/2f(ρ)Y0(ωξρ) , C ′

2(ρ) = πρ/2f(ρ)J0(ωξρ) . (B.10b)

For f(ρ) = −ωξI0δ(ρ)/2πρ which is the right hand side of (B.8a), we get

C1(ρ) = (ωξI0/4)vY , C2(ρ) = −(ωξI0/4)vJ , (B.11a)

vY (ρ) = ∂−1[Y0(ωξρ)δ(ρ)] , vJ(ρ) = ∂−1[J0(ωξρ)δ(ρ)] , (B.11b)

obtained in the form of two infinite series in Appendix A. Substituting (B.11a)
into (B.10a) gives the solution of (B.8a)

Hz(ρ) = (ωξI0/4)[vY (ρ)J0(ωξρ) − vJ(ρ)Y0(ωξρ)] , (B.12a)
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and taking into account (B.12a), we get from (B.6b)

Hϕ(ρ) = (ωξI0/4)[vY (ρ)J1(ωξρ) − vJ(ρ)Y1(ωξρ)] . (B.12b)

We now look for the solution of (B.8b) which becomes, taking into ac-
count (B.6a),

∂2
ρEZ + ρ−1∂ρEZ + ω2ξ2EZ = iωµ[2ωξHZ + I0δ(ρ)/2πρ] (B.13)

and we write the right hand side of (B.13)

f(ρ)=f0(ρ)+f1(ρ) , f0(ρ)= iωµI0δ(ρ)/2πρ , f1(ρ)=2iω2ξµHz . (B.14)

Then, the solution of (B.13) takes the form Ez = E0
z + E1

z and comparing
f0(ρ) with the right hand side of (B.6a) gives at once

E0
z (ρ) = iµ/ξHz(ρ) , (B.15)

while for f1(ρ)

C ′
1(ρ) = −2iωξµHz(ρ)Y0(ωξρ) , C ′

2(ρ) = 2iωξµHz(ρ)J0(ωξρ) , (B.16)

with the primitives

C1(ρ) = −2iω2ξµhy , C2(ρ) = 2iω2ξµhj , (B.17a)

where

hY (ρ) = ∂−1[Hz(ρ)(Y0(ωξρ)] , hJ (ρ) = ∂−1[Hz(ρ)(J0(ωξρ)] , (B.17b)

so that according to (B.10a)

E1
z = −2iω2ξµ[hY (ρ)J0(ωξρ) − hJ (ρ)Y0(ωξρ)] , (B.18a)

and since Ez = E0
z + E1

z we get, taking into account (B.15),

Ez = iµ/ξHz(ρ) − 2iω2ξµ[hY (ρ)J0(ωξρ) − hJ(ρ)Y0(ωξρ)] . (B.18b)

Now, according to (B.7a)

Eφ = (1/ωξ)∂ρE
0
z − (iµ/ξ)Hφ + (1/ωξ)∂ρE

1
z (B.19a)

but, according to (B.6b) and (B.15) (1/ωξ)∂ρE
0
z = (iµ/ξ)Hφ, so that

Eφ = (1/ωξ)∂ρE
1
z = 2iω2ξµ[hy(ρ)J1(ωξρ) − hj(ρ)Y1(ωξρ)] . (B.19b)
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Appendix C

Time dependent excitation current

For fields depending only on z and for a source driven according to

Jx = J(t)δ(z) , Jy = Jz = 0 , (C.1)

the Maxwell equations inside a Tellegen metamedium with the constitutive
relations (1) reduce to

∂zHy−iξc−1∂tHx =−J(t)δ(z) , ∂zHx+iξc−1∂tHy =0 ,

∂zEy−c−1∂t(µHx+iξEx)=0 , ∂zEx+c−1∂t(µHy+iξEy)=0 . (C.2)

Using the Laplace transform [11,12] f(s) = L[F (t)], Eqs. (C.2) become

∂zhy−iξc−1shx =−j(s)δ(z) , ∂zhx+iξc−1shy =0 , (C.3a)

∂zey−c−1s(µhx+iξex)=0 , ∂zex+c−1s(µhy+iξey)=0 . (C.3b)

The comparison of the relations (C.3a,b) and (C.5a,b) shows that we have
just to change ω into −isc−1 and j0 into j(s) in the expressions of Section 2
to get the solutions of (C.3a,b) and this substitution applied to (8a), (8b),
assuming to simplify ξ real, positive gives

hx = ij(s) sinh(sξz/c)U(z) , hy = −j(s) cosh(sξz/c)U(z) , (C.4)

while according to (14) and (15b)

ex = [(−iµ/ξ)j(s) sinh(sξz/c) − µsc−1zj(s)]U(z) ,

ey = (iµ/ξ)j(s)[2 cosh(sξz/c) − 1]U(z) . (C.5)

Now, we have the inverse Laplace transforms [11]

L−1[exp(±sξz/c)] = δ(t ± ξz/c) ,

L−1[j(s) exp(±sξz/c)] =

t∫

0

dτJ(t − τ)δ(τ ± ξz/c) . (C.6)

Assuming the source launched at t = 0 : δ(t + ξz/c) = 0 in the half
space z > 0 while with δ(t − ξz/c) the convolution integral is nonnull for
0 ≤ ξz/c ≤ t so that the inverse Laplace transform of the (C.4) fields is

Hx = −(i/2)J(t − ξz/c)U(z) , Hy = (1/2)J(t − ξz/c)U(z) , (C.7)
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and from (C.5) with the current derivative J ′(t)

Ex = [(−µ/ξ)J(t − ξz/c) − µc−1zJ ′(t − ξz/c)]U(z) ,

Ey = [(iµ/ξ)J(t − ξz/c) − J(t)]U(z) . (C.8)

We have a similar result in the half space z < 0 with J(t + ξz/c) and an
opposite sign for Hx. In the free space surrounding the Tellegen metaslab,
the Maxwell equations have the Laplace transform

∂zh
†
y + ε0c

−1se†x = 0 , ∂ze
†
y − µ0c

−1shx = 0 ,

∂zh
†
x − ε0c

−1se†y = 0 , ∂ze
†
x + µ0c

−1sh†
y = 0 . (C.9)

Here also, the comparison of (C.9) and (17a,b) shows that we have only to
change iω into s/c in the relations (18a,b) to get the solutions of (C.9)

h†
x,y = Ax,y cosh(sn0z/c) + Bx,y sinh(sn0z/c) ,

iε0e
†
x = n0Ay sinh(sn0z/c) − n0By cosh(sn0z/c) ,

iε0e
†
y = −n0Ax sinh(sn0z/c) + n0Bx cosh(sn0z/c) . (C.10)

The boundary conditions h†
x,y(d) = hx,y(d), e†x,y(d) = ex,y(d) supply the

amplitudes Ax,y, Bx,y and we get for instance from (20b)

Ay = hy(d) cosh(sn0d/c) − (ε0/n0)ey(d) sinh(sn0d/c) . (C.11)

To illustrate the form of the electromagnetic field in the outward free

space, we consider the truncated expression h†
y = Ay cosh(sn0z/c) in (C.10),

with as approximation of Ay, the first term of (C.11) which becomes accord-
ing to (C.4)

Ay = hy(d) cosh(sn0d/c) = −j(s) cosh(sξd/c) cosh(sn0d/c) . (C.12)

Substituting (C.12) in the first relation of the set (C.10) and also only keep-
ing the first term of the resultant expression give

h†
y = −j(s) cosh[s(n0z/c − n0d/c − ξd/c)] (C.13)

with, according to (C.6) the inverse Laplace transform,

H†
y = −J [t − (n0z/c − n0d/c − ξd/c)] . (C.14)

So, the electromagnetic field in the outward free space has the same form as
inside the Tellegen metaslab and is made of a sum of terms similar to (C.14)
with n0z/c instead of ξz/c and different delays ±n0d/c ± ξd/c).
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