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A clusterization process in two-dimensional system of granular hard
disks is investigated by two novel numerical methods: the nearest neigh-
bourhood density and the anti-percolation function. The tendency of the
band like structures in the clustered state is recognized to be driven by two
factors: the stretching forces at the junction of two clusters (or two parts
of one cluster) with different kinetic energies and the density fluctuations,
which act as a seed for the empty ponds (voids free of particles). More-
over, the examples (and animations) of the collision of two clusters and the
breakup of the granular band are presented.

PACS numbers: 45.70.–n, 45.70.Qj, 45.70.Vn

1. Introduction

Granular media are an interesting subject, which in the last years at-
tracted a lot of attention [1–4]. The most popular example among different
cases of granular matter is the system of two-dimensional spheres (or hard
disks) [5, 6]. The reason of such a choice is the simplicity of the collision
principles and two-dimensional presentation. In general, the word “granu-
lar” applies to the situations, when the colliding particles lose their kinetic
energy during collisions because of the friction. This property solely leads
to many new interesting phenomena as compared to classical gases. Most
striking here is the growth of clusters [5–11], which are the areas, where the
particles gather if they have not enough kinetic energy to escape from their
collisional partners. At the same time one observes occurrence of large voids
free of particles. Other phenomena observed are the shear bands, which
are present in early stages of cooling, when the system is still homogeneous
and clusters migrations. During simulations, especially for strong dissipa-
tion, one can encounter also the inelastic collapse, i.e. the situation, when
the collision frequency becomes divergent. This, however, is an artefact of
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the simulations under the constraint of the binary collisions and is symp-
tomatic for the fact that multiparticle collisions are inherent to the granular
condensed matter.

The most crucial parameter in granular gases, besides the density, is the
so-called restitution parameter r, which gives, depending on the model, ei-
ther the fraction of the contact velocity or the fraction of the momentum
exchange that is preserved during the collision. According to the value of the
restitution parameter for the contact velocity in the system of 2D hard disks
McNamara et al. [5] have recognized four different regimes of the dynami-
cal state: kinetic, shearing, clustered and collapsed. In the kinetic regime,
where 0.98 ≤ r ≤ 1.0 (in this model r is connected to the contact velocity),
the configurations made of the disks are structureless and resemble the case
of a classical nondissipative gas. For 0.83 ≤ r ≤ 0.97 the system evolves
into the shearing state. This state has been first described by Goldhirsch
and Zanetti [7]. It is characterized by the fact that most of the energy and
momentum resides in the hydrodynamic shearing mode, whereas the density
does not exhibit inhomogeneities. On can imagine here two counterflowing
streams, whose global motion contains a large fraction of the total kinetic
energy. It has turned out that the transition from the kinetic to the shearing
state can be well described by the kinetic theories [7,8,12,13]. According to
these theories predictions, the presence of the shearing mode is determined
by the competition between the dissipation of thermal energy by the inelas-
tic collisions and the rate at which the viscosity transfers the macroscopic
kinetic energy into the thermal energy. This may happen, for instance, if
we introduce a short wavelength shear wave into the system that finds itself
in the kinetic regime. In this case the viscous forces will quickly transfer
the macroscopic energy of the wave into the thermal energy and then, as a
consequence, the system enters the purely kinetic regime again.

In the kinetic regime the energy of the system calculated after the same
number of collisions strongly depends on the restitution parameter; in the
shearing regime it is nearly independent on r. Smaller values of r, 0.59 ≤
r ≤ 0.82, lead to the clustered state with the pronounced cluster formation
and no shearing mode features. In this state the particles are gathered into
clusters, which collide, breakup and reorganize [8]. Many attempts have been
undertaken to describe its properties like, for instance, the size or number of
the clusters [6]. For the values of r smaller than 0.58 the simulated system
can enter once again the shearing state (and seems to remain in this state)
or evolve directly into the collapsed state. The collapsed state, also known
as the inelastic collapse, is characterized by the infinitely large collision rate
dN/dt (the number of collisions per unit of time). In practice this means
that the computer simulation no longer makes progress. For r < 0.62 the
probability of inelastic collapse is large, whereas for r > 0.62 the simulations
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stopped by the inelastic collapse are, if ever, occasional. It is also worth
noting that the collapsed state, in which more than two particles are at
contact, is dominated by the linear arrangements of the particles involved.

The above categories have been proposed on the basis of the behav-
ior of the N = 1024 particles system at the solid fraction ν = 0.25 (ν =
Nπσ2/(4L2), with L being the size of the simulation domain) within the
simulations runs of the length corresponding to 800 collisions per particle.
Note, however, that the systems, which are initially in the kinetic or shear
regimes, after longer simulations can also enter the clustered or the collapsed
states. Everything depends on the amount of energy that is still preserved
in the system.

As concerns the driving force of the origin of the clusterization process,
it can be found two different explanations in the literature. In [7] Goldhirsch
et al. indicate the nonlinear shear mode hydrodynamic effects, which dom-
inate the system dynamics, as the main factor responsible for the density
inhomogeneity. Another explanation can be found, for instance, in [14, 15],
where the initial density fluctuation is just a linear effect associated with
the fluctuation of the mode governing the linear evolution of the longitudi-
nal component of the flow field. On the basis of the Monte Carlo solutions
of the inelastic Boltzmann equation in [16] Javier Brey et al. have given
strong argument for the first explanation.

However satisfied one can be with these theoretical analysis of the origin
of clusterization, the description of the clusters themselves poses big diffi-
culty, especially the question how to differentiate among different stages of
the clusterizations process. In [6] Luding et al. have proposed an algorithm,
on the basis of which it is possible to describe the evolution of the clusters
sizes. In this approach the size of the cluster is calculated according to the
rule that two particles belong to the same cluster, if the distance between
them is smaller than s = 0.1 of the particle diameter. Then the evolution
can be investigated using the moments Mk of the cluster size distribution

Mk =
1

nc

∑

i

ikni , (1)

where nc denotes the total number of clusters and ni the number of clusters
of size i. Upon enlarging of the clusters, Mk increases until they reach a
saturation value (with large fluctuations).

The current paper provides another two numerical tools by the use of
which one can describe different degrees of the system clusterization. The
paper is organized as follows. After introduction in Section 1, we present the
event driven method for the molecular dynamics simulations together with
two models of dissipation, the contact velocity model and the momentum
exchange model (Section 2). Next, Section 3 presents the results for the
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collision number obtained for the evolutions of 2D hard spheres with dif-
ferent strengths of dissipation. In this paper, however, we do not compare
any theoretical results to the simulation data. Instead we propose useful
numerical methods for analyzing cluster formation. In particular we apply
the concept of the nearest neighborhood density from [17] (Section 4) and
introduce the anti-percolation function P (Section 5), which estimates the
transparency of the configuration to “the radiation” composed of the hard
particles of different sizes. If the statistics is large enough or, equivalently,
if the size of the system is large, the above functions are smooth and exhibit
regular features, which correspond to different states of clustering. More-
over, we present the illustrations (and appropriate time animations) of two
characteristic phenomena from the clustered state, i.e. a collision of two
clusters (Section 6) and the breakup of the band-cluster (Section 7). The
summary and discussion of results are given in the last section.

2. Event driven simulations

The method used in the current work is based on the “event driven al-
gorithm” [5, 18–21], which is suitable for hard particles, as compared to the
standard molecular dynamics of soft particles [22,23]. In our simulations we
consider a system of N = 90000 two-dimensional circular hard disks in a
doubly periodic domain, in which the particles collide with each other under
the constraint of a binary collision. The disks have diameter σ = 0.001666,
so the overall reduced density ρ∗ = Nσ2/L (L — the area of the simulation
box is here 1) is equal to 0.25. The simulations are performed according
to the event driven molecular dynamics [5, 20, 21]. This method is based
on the fact that knowing the positions and velocities of all the particles it
is possible to foresee the time τcol needed to the nearest collision. If there
are no external forces, the hard particles between collisions move at a con-
stant velocity, so calculating the particles new positions after the time τcol

is a simple task. Then, because of the binary collision assumption, two par-
ticles from the system are exactly at contact. At this stage of simulation
one applies the formulas imitating collision between these particles. Since
the system considered consists of the objects interacting via the hard core
potentials, the collision formulas simply predict the velocities and momenta
after the collision by the use of the conservation of momentum and the prin-
ciple for the energy transfer. In the elastic case the energy, of course, must
be preserved. For hard spheres this means that the relative velocity of the

particles V
‖
12, which lies within the plane that is tangent to the bodies at

the point of contact, remains unchanged, whereas the velocity normal to
this plane, V

⊥
12, is reversed. The concept of “the granular system” assumes

the loss of energy during the collisions. This, in practice, can be realized
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in two ways: (a) by imposing that the relative velocity perpendicular to
the mentioned tangent plane after the collision is not only reversed but also
diminished (contact velocity model) by the fraction according to the restitu-
tion parameter r (b) by reduction of the momentum exchange (momentum
exchange model) according the fraction number rM .

In our simulations the initial configurations for the granular case are ob-
tained from the molecular dynamics of the elastic disks system performed in
the standard way. At first, one prepares a system by placing the particles on
a regular array (to avoid mutual overlaps) and by assigning random veloci-
ties. Next, the velocities are adjusted to conform to the temperature kT = 1
and to the condition that the system as a whole is at rest, i.e. that the total
momentum is zero. Then, the MD simulation is initiated and runs until
one obtains a thermalized state, in which the velocities of the particles are
distributed with a Maxwellian velocity distribution. Independent initial con-
figurations for the granular case are generated by stopping the simulations
of the elastically interacting disks at different times. The system considered
consists of N = 90000 of the diameter σ placed in the rectangular simula-
tion box with doubly periodic boundary conditions, which, to some extent,
mimics the bulk system of the infinite size. This condition results in the
following fact: when a particle leaves the right (or bottom) side of the box,
its twin image reenters the left (or top) side. In this manner also the number
of particles is kept constant.

2.1. Contact velocity model

The crucial parameter in this model is the restitution parameter r, which
gives the fraction of the velocity preserved.

V
⊥
12

′ = −rV ⊥
12 . (2)

The sign ⊥ denotes here that only the velocities perpendicular to the tan-
gential surface at the point of contact are taken into account. At the same
time the relative tangential velocity does not change during a collision (the
particles slide over each other). The possible values of r remain within the
interval [0.0; 1.0]. The particular velocities after the collision can be written
as:

v1
′ = v1 − 1

2
(1 + r)

[

k̂ · (v1 − v2)
]

k̂ (3)

and

v2
′ = v2 + 1

2
2(1 + r)

[

k̂ · (v1 − v2)
]

k̂ , (4)

where k is the unit vector normal to the tangent surface to the bodies at
the point of contact. This model has been used, for instance, in [5].
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2.2. Momentum exchange model

In the momentum exchange model one utilizes the exchange of momen-
tum that is valid for the elastic case ∆P elas. Then the effective momentum
exchange in the granular case is given as

∆P granul = rM∆P elas . (5)

The possible values of r remain here within the interval [0.5; 1.0]. The
upper limit rM = 1.0 corresponds to the elastic case and the lower limit
rM = 0.5 describes the event, when the particles are at contact. If rM < 0.5,
then the particles are overlapping immediately after the collision. This case
is rejected as nonphysical.

The principle of the momentum conservation is

P 2
′ = P 2 − ∆P elas , (6)

P 1
′ = P 1 + ∆P elas (7)

and the conservation of the energy (if the particles have the same mass)

P
′
1

2 + P
′
2

2 = P
2
1 + P

2
2 , (8)

where
∆P elas = P 2 − P 1 . (9)

Now the exchange model for the granular case assumes that

∆P
⊥
granul = rM∆P

⊥
elas . (10)

As a result the formulas for the postcollisional momenta follow as:

P
′
2 = P 2 − rM k̂ · (P 2 − P 1)k̂ ,

P
′
1 = P 1 + rM k̂ · (P 2 − P 1)k̂ . (11)

Finally the postcollisional velocities can be written as

v
′
2 = v2 − rM k̂ · (v2 − v1)k̂ ,

v
′
1 = v1 + rM k̂ · (v2 − v1)k̂ . (12)

One observes here that the momentum exchange model and the contact
velocity model are equivalent to each other with the relation between their
restitution parameters as:

r = 2rM − 1 . (13)
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3. The collision number

The collision number Ncol is one of the most important property of the
dynamics. For the particles interacting through the elastic forces, when
there is no dissipation, this is a linear function in time, the slope of which
is given by the collision rate dN/dt. Inclusion of the dissipation results in
the departures from linearity and in different collision rates which depend
on the current state of the system.

In Fig. 1 we present the behavior of Ncol obtained from the simulations
of N = 90000 granular 2D disks performed with different restitution pa-
rameters rM . The thick line corresponds here to the collision number of
the elastic disks. One observes then that in the kinetic, shear and also in
the clustered states the dynamics is much slower than in the elastic case.
Upon diminishing of the restitution parameter the dynamics of the system
at the beginning slows down, then the tendency is reversed. The curve for
rM = 0.8 is already above the curve for rM = 0.9 and all subsequent curves
become gradually steeper. At some stages one observes also the parts, which
are almost perpendicular to the t axis. These very steep parts of the collision
number N(t) denote here the multiparticle events: either inelastic collapse
(the curve for rM = 0.51), when more than two particles are in contact or
the collision of two many-particle groups in which the condition of the binary
collision still holds (see the inset which corresponds to the part of the curve
for rM = 0.7 from the rectangular box). Although the collision between
clusters on the Ncol curve looks very similar to the inelastic collapse, there
is an important difference. Looking at the inset on Fig. 1 one sees that when
the cluster collision is over, Ncol becomes again flat.
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Fig. 1. The number of collisions Ncol(t) obtained in the simulations with different

restitution parameter rM .
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Characteristic is also the behavior of the collision number for strong
dissipations, here, for instance, for rM = 0.6 and rM = 0.7. In these cases
the dynamics of the system is dominated by large collision rates. At the
same time, however, the decay of the system energy is small. These two
facts indicate that most of the collision events here take place among the
low energy particles, which are placed very close together.

4. The nearest neighborhood density

In Fig. 2 we demonstrate the concept of the nearest neighborhood den-
sity n(ρ∗). To each particle from the system we associate a circular box
of the radius R = ασ, where σ is the diameter of the particle. The main
particle is assumed to be exactly in the center of the box. The radius R
should be taken of no more than few particles dimensions, let us say α < 10.
Otherwise, if the value of α is too large, the effect of the density inhomo-
geneities can be averaged out. Next we calculate how many boxes contain
a given number of the particles. The statistics presented on the Cartesian
coordinate system (upper panel of Fig. 3) turns out to be a regular function,
which can be perfectly fitted to the Gauss function. This feature is typical
for homogeneous systems, as already presented in [17]. For convenience the
number of the particles in the box can be recalculated into the density, then
all the Gaussian functions have the maxima almost at the same density,
however with different heights and widths (lower panel of Fig. 3).
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Fig. 2. The concept of the nearest neighborhood density.
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Fig. 3. The nearest neighborhood density distribution of the homogeneous case.

The neighborhood box is assumed as circular with the radius R given by the value

of α: R = ασ, where σ is the diameter of the particle. (upper panel) X axis: the

number of the particles in the neighborhood box; Y axis: the number of the boxes

with the same number of the particles inside. (lower panel) X axis: the density

in the box; Y axis: the number of the boxes with the same density. In the lower

panel the peaks occur almost at the same density, i.e. for: ρ∗ = 0.258 for α = 4,

ρ∗ = 0.252 for α = 7, ρ∗ = 0.251 for α = 10.

Figure 4 presents the nearest neighborhood density functions n(ρ∗) ob-
tained in the clustered states of the 2D disks system, which cools down
according to the restitution parameter rM = 0.9. In the legends we present
the following important values. E is the total percentage measure for the
energy per particle. Its value shows how large part of the energy is lost
before the clusterization begins. Ncol is the number of collisions after which
the configuration has been considered for the analysis. The corresponding to
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Fig. 4. The nearest neighborhood function obtained at different stages of the evo-

lution of the system with rM = 0.9. In the legends the following values are given:

E — the total percentage measure for the energy per particle, Ncol — the number

of collisions after which the configuration has been considered for the analysis and

the corresponding to these configurations dimensionless time τ (14). The panels

(a) and (c) are for α = 4; the panels (b) and (d) are for α = 7; In the panels (c)

and (d) the axis Y has been rescaled to adjust to the condition that the peak of

the Gaussian function for the nondissipated system has the height 1. The function

n(ρ∗) is sensitive to the choice of α.

these configurations dimensionless time τ , which had passed till the moment
the configuration has been registered, is calculated as the ratio of the actual
computational time tcomp (which attains its values according to the particle
mass, the particle size and the system temperature) to the averaged time
needed by a particle to cover the distance equal to its diameter taver.

τ =
tcomp

taver
, (14)
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where

taver =
σ

vmean

=
σ√

2Ekin

=
σ√
2kT

. (15)

The plots in Fig. 4 are obtained with two diameters of the circular neigh-
borhoods, for α = 4 (the panel (a) and (c)) and for α = 7 (the panel (b)
and (d)), where the neighborhood box diameter R = ασ.

Upon cooling, when the clusters grow larger, n(ρ∗) becomes asymmet-
rical with respect to the peak position and this asymmetry strengthens the
larger the clusters become. All the obtained profiles exhibit very smooth
and regular character, despite the fact that the procedure to construct n(ρ∗),
which is of the histogram type, rests on the discrete values of ρ∗.

We have tried also to rescale the figures to see to what extent the pre-
sentation is sensitive to the choice of α. The figures in the panels (c) and
(d) are recalculated in such a way that the peak of the Gaussian function
for nondissipative case is equal to 1. One sees then that the character of the
curves is preserved, however the heights of the profiles are different.

The visualization of the configurations corresponding to the profiles from
Fig. 4 are given in Fig. 5 and Fig. 6. The pictures of clusters in the panels
in Fig. 6 look so similar that one, just looking at them, may not be able to
tell the difference of the clusterization degree. The function n(ρ∗), however,
is sensitive enough to detect the difference. Look, for instance, at the curve
with squares and at the curve with triangles in the panel (a) of Fig. 4.

Fig. 5. Configurations obtained after 1 million (the left panel) and 2 millions (the

right panel) of collisions. The energy of the system in the left panel is 2.67% of

the initial state energy and 0.287% for the configuration in the right panel. The

restitution parameter used here is rM = 0.9.
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Fig. 6. Configurations obtained after 3 millions (the left panel) and 4 millions (the

right panel) of collisions. The energy of the system in the left panel is 0.122% of

the initial state energy and 0.0794% for the configuration in the right panel. The

restitution parameter used here is rM = 0.9.

5. The anti-percolation function

In this section we would like to introduce the anti-percolation function
P as a useful tool to study the clusterization process.

A general idea for this measure is the assessment of the chances that
a physical factor can interact with the members of the system. A similar
concept can be found in [5], where the authors consider a ray of light that
is passing through the system. According to the evaluations from [5], the
critical restitution parameters that separate different regimes of the kinetic
behavior depend on one physical parameter, which is the so-called optical

length. Its definition reads:

λ = ρ∗L =
σ

2

√

Nπ ρ∗ . (16)

The physical meaning of this property is as follows. Assuming first that the
disks are transparent, so the light can pass in an undisturbed way throughout
their bodies, one imagines next a ray passing directly across the system, from
one boundary to the other. The fraction of the area covered by disks is given
by ν, so νL corresponds to the distance over which the ray travels inside

the particles. This is also the reason that the name “optical path” is in use.
For the case in which the simulation box has the side equal to 1, the optical
length parameter λ coincides with the reduced density ρ∗.
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Our concept, which has rather two-dimensional character, is to estimate
transparency of the configuration to the “radiation” of the hard particles of
different sizes, in the form of the anti-percolation function P . To construct
this function we undertake the following steps. As first, spherical bullets of
different sizes are “thrown” at a target, which is formed by the investigated
configuration. If the bullet hits any of the particle from the system then
it is regarded as reflected. Otherwise, the bullet goes through the target
undisturbed. The anti-percolation function is constructed from the collected

2σ 4σ 6σ 8σ
bullet size

0

2000

4000

6000

8000

A
nt

i-
Pe

rc
ol

at
io

n 
Fu

nc
tio

n

E=100     Ncol=0  τ=0

E=2.67    Ncol=1  τ=77

E=0.287  Ncol=2  τ=431

E=0.122  Ncol=3  τ=999

E=0.079  Ncol=4  τ=1585 

E=0.059  Ncol=5  τ=2113

r
M

 = 0.9

0 2σ 4σ 6σ 8σ
bullet size

0

2000

4000

6000

8000

A
nt

i-
Pe

rc
ol

at
io

n 
Fu

nc
tio

n

E=100     Ncol=0  τ=0

E=0.815  Ncol=1  τ=137

E=0.257  Ncol=2  τ=436

E=0.161  Ncol=3  τ=716

E=0.136  Ncol=4  τ=843

E=0.101  Ncol=6  τ=1110

E=0.08    Ncol=8  τ=1402

E=0.072  Ncol=9  τ=1534

r
M

 = 0.8

(a) (b)

0 2σ 4σ 6σ 8σ
bullet size

0

2000

4000

6000

8000

A
nt

i-
Pe

rc
ol

at
io

n 
Fu

nc
tio

n 

E=100     Ncol=0   τ=0

E=1.206  Ncol=1   τ=93

E=0.744  Ncol=2   τ=147

E=0.632  Ncol=3   τ=172

E=0.539  Ncol=5   τ=201

E=0.491  Ncol=7   τ=221

E=0.458  Ncol=10 τ=238

r
M

 = 0.7

0 2σ 4σ 6σ 8σ
bullet size

0

2000

4000

6000

8000

A
nt

i-
Pe

rc
ol

at
io

n 
Fu

nc
tio

n E=100      Ncol=0  τ=0

E=5.478   Ncol=1  τ=24

E=3.754   Ncol=2  τ=33.5

E=2.851   Ncol=3  τ=42.8

E=2.11     Ncol=5  τ=56

r
M

 = 0.6

(c) (d)

Fig. 7. The anti-percolation functions obtained for inhomogeneous configurations

from the simulations performed under different dissipation conditions, given by the

restitution parameter rM . In the legends the following values are given: E —

the total percentage measure for the energy per particle, Ncol — the number of

collisions after which the configuration has been considered for the analysis and

the corresponding to these configurations dimensionless time τ (14).
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number of the bullets, which have passed through the target. This function
depends on the size of the bullet, P (σB), and on the bullet number used,
in our case it was 10000. The size of the bullets changes from σB = 0.2σ
to σB = 8σ, where σ is the diameter of the system disks. The expression
“anti-percolation” has been here chosen, instead of simply “percolation”, to
account for the fact that when the bullet size increases then the function
values decrease and finally drops to zero.

It turns out that for 10000 bullets the obtained anti-percolation functions
are sufficiently smooth. In Fig. 7 we present these functions at different
stages of cooling and for different restitution parameters. It is well seen that
if the system contains large clusters, when it also contains large voids free
of any particle, then the larger bullets have more chance to pass through
the system, so the anti-percolation functions gain nonzero values for larger
σ′

Bs. This process is well seen in the first two panels (a) and (b), which are
obtained for rM from the clustered regimes. (Comparing rM to r from [5], by
the use of Eq. (13), note that the kinetic regime occurs for rM ⊂ [0.99; 1.0],
the shearing state for rM ⊂ [0.915; 0.985], the clustering state for rM ⊂
[0.795; 0.91]. Also when rM < 0.795 the system can be in the clustered state
if not the simulation is halted by the inelastic collapse.)

A systematic change of P is apparent while the clusters gradually grow.
In the panels (c) and (d) of Fig. 7 the restitution parameters used are taken
from the regions, where the multiparticle collisions prevail and the cooling
process is slower. There is no illustration of P for rM = 0.51, since in this
case the inelastic collapse does not allow to make progress in the simulations.

More details can be seen if P is presented on the logarithmic scale, as
in Fig. 8. Here, in the panel (a) and (b) one can notice that in the state
where the clusters are well formed, the anti-percolation function is a single
exponent and its presentation on the logarithmic scale forms straight lines.
This feature seems to be a general for the clustered state. One observes also
that two systems with the same energy may be quite different as far as the
cluster formation is concerned. An immediate conclusion occurs that the
parameter of energy is not sufficient to describe the degree of clusterization.
The dotted line from (b) and the line with triangles from (a), for which cases
the energies are comparable, have completely different positions.
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Fig. 8. The logarithm of the anti-percolation functions P obtained for inhomo-

geneous configurations from the simulations performed under different dissipation

conditions, given by the restitution parameter rM . In the legends the following

values are given: E — the total percentage measure for the energy per particle,

Ncol — the number of collisions after which the configuration has been considered

for the analysis and the corresponding to these configurations dimensionless time

τ (its definition is given by (14)). For rM = 0.9 (r = 0.8) and rM = 0.8 (r = 0.6),

which belong to the clustered regime, the logarithms of P form the straight lines

indicating exponential character of the function.

6. Collision of two clusters

In this section we would like to present a collision of two clusters. Since
one of our task were the animations of the clustered state, we had to resort to
the simulations of smaller systems, in particular consisting of 10000 particles.
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The animations prepared can be downloaded from [24]. Please note that
even though they are not long and the system studied is rather small, the
files with animations are large.

In this section, however, we can present some snapshots from the ani-
mated films. In Fig. 9 we show the collision of two clusters that has been
encountered during the simulation with rM = 0.88.

(a) (b)

(c) (d)

(e) (f)

Fig. 9. The collision of two clusters.
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In the panels (a) and (b) one observes two well formed clusters of elon-
gated shapes, which approach each other. In the panel (c) the clusters are
even closer and in (d) they are about to collide. In fact this is the cluster on
the right hand side, which moves to the left. The cluster on the left almost
does not change its position. In the panel (e) we have already one big cluster
and in (f) the big cluster becomes thinner.
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Fig. 10. The collision rate dN/dt for the part of the system evolution where the

collision of two clusters (presented in Fig. 9) takes place. When two clusters collide

then many particles meet each other in the short time and the collision rate abruptly

grows (see details in the rectangular box).

It is also worth looking to realize how this phenomenon, the collision
of two clusters, manifests itself in the physical variables that are usually
monitored during simulations. For this purpose we present in Fig. 10 the
collision frequency (the time averaged number of collisions) dN/dt. The
area highlighted in the box in the middle of the picture corresponds to the
collision presented in Fig. 9. A sequence of sharp peaks occurs here at the
point, when two clusters are merging and refer to a multiparticle event, in
which, however, the principle of the binary collision still holds.

7. Breakup of the band-clusters

In Fig. 11 we present the illustration of the kinetic process, which leads to
the breaking of the granular band (stream of the particles). The first panel
presents a well-formed, thick band. From the panels (b), (c) and (d) one sees
that the particles move along the band, which becomes longer and thinner.
Note also that at the same time the number of particles in the vicinity of the
stream does not remarkably change, which suggest that the particles within
the band do not escape from it and only move along the chain. Only when the
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Breakup of the granular band. The thick band form the panel (a) is being

stretched with time. Intermediate stages are given in (b), (c) and (d). In the

panel (e) the band is already hardly visible and in (f) one can notice only a sea of

particles in the place where the band was observed before.

band is very thin, have the particles possibility to escape into the direction
perpendicular to the band. This behavior, stretching of the chain, must have
its own reason. Apparently, its is caused by the fact that the ends of the
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chains are anchored to the clusters, which move into opposite directions. In
the panel (a) the bottom end of the chain moves to the left and the upper end
moves to the right. In the panel (e) these ends are no longer “bottom” and
“upper”, but find themselves to the left and to the right of the picture. In (f)
one sees that the right anchor no longer exists. In Fig. 11 one can also find
a structure, the thick bottom cluster, which upon cooling reorganizes into
two bands encompassing a sort of empty pond. This process is originated
by a density fluctuation, which has resulted in small empty space within the
cluster (seen as the white spot at the bottom in the panel (b)). One realizes
then that the observed tendency of band structure in the clustered state is
just the result of the above two factors: density fluctuations within clusters
and the stretching forces that occur at the anchoring points between two
clusters moving in opposite directions. Figure 11 is the continuation of the
cluster migration presented in Fig. 9 for rM = 0.88.

After examination of many animations of the clustered state we got con-
vinced that the above mentioned two factors are indeed the most important
factors of the evolution.

8. Discussion and conclusions

In the present paper we have applied two new numerical methods to
study the clusterization process in the two-dimensional hard disks system.
The first method is based on the nearest neighborhood density, the concept
of which has been already introduced in the case of the hard needles sys-
tems [17]. Here, it considers circular neighborhoods to each of the particle in
the system. The density function is constructed by calculating the neighbor-
hoods with the same number of disks. In the elastic case this function has the
shape of the Gauss function. In the presence of clusters the neighborhood
density function becomes asymmetrical with the part on the side of higher
densities being the more pronounced the larger clusters are. Another prop-
erty, which reflects the degree of the clusterization, is the anti-percolation
function. This function is constructed from the number of circular bullets
of different sizes, which are thrown at the system at random and which have
not hit any particle from the system. One observes that for large restitu-
tion parameters the anti-percolation functions in the clustered state have
exponential character. We have also presented illustrations of two charac-
teristic events from the clusters dynamics: the collision of two clusters and
the breakup of the granular band. The latter event takes place if two ends
of the band are “anchored” to the parts of the system that are moving in
opposite directions or have different collective velocities.
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Animations showing different evolutions of granular streams can be found on
the web page http://pellegrina.strefa.pl/granulaty/granulki.html
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