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The Mathisson equations under the Frenkel–Mathisson supplementary
condition are studied in a Schwarzschild field. The choice of solutions,
which describe the motions of the proper center of mass of a spinning test
particle, is discussed, and the calculation procedure for highly relativistic
motions is proposed. The very motions are important for astrophysics while
investigating possible effects of the gravitational spin-orbit interaction on
the particle’s world line and trajectory.
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1. Introduction

70 years ago Myron Mathisson has presented the equations describing
the motions of a spinning test particle in a gravitational field [1]
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ds

(

muλ + uµ
DSλµ

ds

)

= − 1

2
uπSρσRλ

πρσ , (1)

DSµν

ds
+ uµuσ

DSνσ

ds
− uνuσ

DSµσ

ds
= 0 , (2)

where uλ is the 4-velocity of a spinning particle, Sµν is the antisymmetric
tensor of spin, m and D/ds are, respectively, the mass and the covariant
derivative with respect to the proper time s; Rλ

πρσ is the Riemann curvature
tensor of the spacetime. (Throughout this paper we use units c = G = 1.
Greek indices run 1, 2, 3, 4 and Latin indices 1, 2, 3; the signature of
the metric (−,−,−,+) is chosen.) Eqs. (1), (2) were supplemented by the
condition [1]

Sµνuν = 0 . (3)

(23)
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(In special relativity condition (3) was introduced by Frenkel [2].) It is known
[3,4] that in the Minkowski spacetime the Mathisson equations (1)–(3) have,
in addition to usual solutions describing the straight worldlines, a family of
solutions describing the oscillatory (helical) worldlines (as a partial case, this
family contains the circular solutions).

In [3] the oscillatory solutions of equations (1)–(3) were connected with
“Zitterbewegung”. Möller proposed another interpretation of these solutions:
he pointed out that 1. in relativity the position of the center of mass of
a rotating body depends on the frame of reference, and 2. condition (3) is
common for the so-called proper and non-proper centers of mass [5]. The
usual solutions describe the motion of the proper center of mass of a spinning
body (particle), and the helical solutions describe the motions of the family
of the non-proper centers of mass [5].

Later Papapetrou derived equations (1), (2) by the method which differs
from Mathisson’s one [6], and, instead of (3), the non-covariant condition

Si4 = 0 (4)

was used [7] in concrete calculations.
To avoid the superfluous solutions of equations (1), (2), Tulczyjew and

Dixon introduced the covariant condition [8]

SµνPν = 0 , (5)

where

P ν = muν + uµ
DSνµ

ds
(6)

is the particle’s 4-momentum. In contrast to relation (3) the Tulczyjew–
Dixon condition (5) picks out the unique worldline of a spinning test particle
in the gravitational field. That is, equations (1), (2) under (5) do not admit
the oscillatory solutions. However, the question arises: is this worldline
close, in the certain sense, to the usual (non-helical) worldline of equations
(1), (2) under condition (3), for example, in a Schwarzschild field? It is
simple to answer this question when the relation

m|uν | ≫
∣

∣

∣

∣

uµ
DSνµ

ds

∣

∣

∣

∣

(7)

takes place, because in this case condition (5) practically coincides with (3).
For example, these conditions are equivalent for post-Newtonian expan-
sions [9]. However, a priori another situation is possible for the highly
relativistic spinning particle. Naturally, this situation must be investigated
carefully.
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Note that the very condition (3) was derived in some papers by differ-
ent methods [10–12], and we agree with the conclusion that this condition
“. . . arises in a natural fashion in the course of the derivation”, [11], p. 112.
That is, the condition (3) is necessary, though often, with high accuracy, it
can be substituted by the condition (5).

We stress: the existence of the superfluous (oscillatory) solutions of equa-
tions (1), (2) under condition (3) is not a reason to ignore this condition.
The point of importance is that just among all solutions of equations (1)–(3)
the single solution describing the motion of the particle’s proper center of
mass can be found. Obviously, it is necessary to know how this solution can
be identified among others.

In the focus of this paper are just the initial Mathisson equations (1)–(3).
Our purpose is to investigate non-oscillatory solutions describing highly rel-
ativistic motions of the spinning particle in a Schwarzschild field.

Note that the information on all possible types of motions of the spinning
test particles in the gravitational fields is important for astrophysics, for
more fine investigations of the gravitational collapse and other astrophysical
phenomena.

This paper is organized as follows. The known integrals of the strict
Mathisson equations (1)–(3) in a Schwarzschild field, the energy and angular
momentum, are used in Section 2 for reducing the order of differentiation in
these equations. The possible procedure of finding the values of the energy
and momentum parameters, which correspond just to the motions of the
proper center of mass, is discussed in Section 3. This procedure is realized
in Section 4 for the motions close to highly relativistic equatorial circular
orbits in a Schwarzschild field. In Section 5 the illustrations of computer
calculation are presented. We conclude in Section 6.

2. Mathisson equations for equatorial motions
in a Schwarzschild field

Let us consider equations (1)–(3) for Schwarzschild’s metric in the stan-
dard coordinates x1 = r, x2 = θ, x3 = ϕ, x4 = t for the equatorial motions
of a spinning particle with spin orthogonal to the motion plane θ = π/2.
Then the non-zero components of the metric tensor gµν are:

g11 = −
(

1 − 2M

r

)

−1

, g22 = g33 = −r2 , g44 = 1 − 2M

r
, (8)

where M is the Schwarzschild mass. Due to the symmetry of Schwarzschild’s
metric equations (1), (2) have the integrals of the energy E and the angular
momentum L which for the equatorial motions can be written as [13]
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E = mu4 + g44uµ
DS4µ

ds
+

1

2
g44,1S

14 ,

L = −mu3 − g33uµ
DS3µ

ds
− 1

2
g33,1S

13 . (9)

For the equatorial motions with spin orthogonal to the motion plane
θ = π/2 equations (2) can be solved separately from (1). Indeed, taking
into account relations (3) and (8) it is not difficult to obtain from (2) all
non-zero components Sµν :

S13 =−S31 =−u4S0

r
, S14 =−S41 =

u3S0

r
, S34 =−S43 =−u1S0

r
,

(10)
where S0 is the known constant of spin [10]

S2

0 =
1

2
SµνS

µν . (11)

(We stress that expressions (10) satisfy all equations of set (2).)
Now we shall consider equation (1). It is known that these equations

under condition (3) contain the second order derivatives uµ with respect to s.
However, in our case of Schwarzschild’s metric, due to the integral E and L,
it is possible to reduce the order of differentiation by the standard procedure
of the differential equations theory. Using (8)–(10) and the relation uµuµ = 1
after direct calculations (which are quite simple but rather lengthly) we get
from equation (1) the two non-trivial equations for r(s) and ϕ(s):
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ṙ2

r
+ 2r
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)
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r
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)
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, (12)

ϕ̈ = − ṙϕ̇

r
+ r

(
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r

)

ϕ̇

ṙ
+

m + Lϕ̇

rS0ṙ

[

ṙ2+

(

1− 2M

r

)

(1 + r2ϕ̇2)

]1/2

, (13)

where a dot denote the usual derivatives with respect to s. (Two other
equations of set (1) are satisfied identically.) So, equations (12), (13) do not
contain the third coordinate derivatives. However, in these equations the
quantities E and L are present as the parameters which are not determined
by the initial values of r, ϕ, ṙ ≡ u1, ϕ̇ ≡ u3 only. (According to (9), for
the determination of E and L the second coordinate derivatives must be
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given as well.) That is, equations (12), (13), as well as the initial Mathisson
equations (1), describe the motions both of the proper center of mass and
the non-proper centers.

In other words, equations (12), (13) contain the non-oscillatory and os-
cillatory solutions. The question of importance is: which values E and L
correspond just to the proper center of mass at the arbitrary initial values
of r, ϕ, ṙ, ϕ̇ for a spinning test particle? It is easy to answer this question
when the motion of such a particle is close to the geodesic motion: then
approximately E = mu4 and L = −mu3, i.e., we write the relations for the
geodesic motion. However, we have not any proof that the worldline of a
spinning particle is close to the corresponding geodesic worldline for all phys-
ically admitted initial values of r, ϕ, ṙ, ϕ̇. On the contrary, our results of
investigations of the gravitational spin–orbit interaction in a Schwarzschild
field [14–16] show that just highly relativistic motions of a spinning particle
must be studied carefully. Therefore, in the next section we shall consider
the procedure of choosing the values E and L for the proper center of mass
for highly relativistic motions.

For further calculations it is convenient to write equations (12), (13) in
terms of the non-dimensional quantities

τ ≡ s

M
, Y ≡ dr

ds
, Z ≡ M

dϕ

ds
, ρ ≡ r

M
, ε ≡ S0

mM
. (14)

(In the following we shall put ε > 0, without any loss in generality.) Then
according to equations (12), (13) we have the set of the first-order differential
equations

dY

dτ
=

Y 2

ρ
+ ρ

(

1 − 3

ρ

)(

2Z2 +
1

ρ2

)

− µZρ

+
ν

ρ

[

Y 2 +

(
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ρ

)

(1 + Z2ρ2)

]1/2

, (15)

dZ
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= −Y Z

ρ
+ ρ

Z2 + 1/ρ2

Y
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ρ
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)
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1

ρY
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1

ε
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ρ

)
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, (16)

dρ

dτ
= Y , (17)

dϕ

dτ
= Z , (18)

where

µ ≡ ME

S0

, ν ≡ L

S0

. (19)
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For correct studying the physical conclusions of equations (15)–(18), it is
necessary to take into account the Wald condition for a test spinning particle
[17], therefore, we put

ε ≡ S0

mM
≪ 1 . (20)

Because in the following we shall compare some solutions of equations
(15)–(18) with solutions of the geodesic equations in Schwarzschild’s metric,
it is useful to write here the last equations for the equatorial motions in the
coordinates r, ϕ

r̈ = ϕ̇2r

(

1 − 3M

r

)

− M

r2
, (21)

ϕ̈ = −2

r
ṙϕ̇ . (22)

Using notation (14) we rewrite equations (21), (21) as the set of the first-
order differential equations

dY

dτ
= Z2ρ

(

1 − 3

ρ

)

− 1

ρ2
, (23)

dZ

dτ
= −2

Y Z

ρ
, (24)

plus two equations which coincide with (17), (18). Equations (15), (16) and
(23), (24) correspondingly are essentially different. As well as equations
(12), (13), the first two equations of set (15)–(18) contain the constants of
the energy and angular momentum of a spinning particle. According to the
discussion above, different values of the parameters µ and ν in (15), (16) at
the fixed values of Y,Z, ρ correspond to different centers of mass, namely to
the single proper center of mass and to the set of non-proper centers.

3. Possible way of finding the parameters µ and ν

for the proper center of mass

The right-hand sides of equations (15), (16) are too complicated for inves-
tigations in general case. However, a priori we cannot exclude the possibility
of showing the essential difference between the motions of the proper and
non-proper centers of mass during the short time interval after the beginning
of the corresponding motions, namely, when the displacement of the values
Y,Z, ρ, ϕ from their initial values Y0, Z0, ρ0, ϕ0 are considered in the linear
approximations in the quantities

ξ1 ≡ Y − Y0

Y0

, ξ2 ≡ Z − Z0

Z0

, ξ3 ≡ ρ − ρ0

ρ0

. (25)
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(In (25) we do not write the displacement ϕ − ϕ0 because the right-hand
sides of equations (15)–(18) do not depend on ϕ and equation (18) is trivial,
i.e., according to (18) the value ϕ is determined by simple integration of Z.)
Let us check this possibility, i.e., consider equations (15)–(17) in the linear
in ξ approximation. Then by direct calculations we obtain

dξ1

dτ
= (a10 + a11ν + a12µ) ξ1 + (a20 + a21ν + a22µ) ξ2

+ (a30 + a31ν + a32µ) ξ3 + a00 + a01ν + a02µ , (26)

dξ2

dτ
=

(

b10 + b11ν + b12µ + b13

1

ε

)

ξ1 +

(

b20 + b21ν + b22µ + b23

1

ε

)

ξ2

+

(

b30 + b31ν + b32µ + b33

1

ε

)

ξ1 + b00 + b01ν + b02µ + b03

1

ε
, (27)

dξ3

dτ
= c10ξ1 + c00 , (28)

where the coefficients a, b, c with the corresponding indexes are expressed
through Y0, Z0, ρ0. We shall use the expressions of these coefficients in the
approximation

Z2

0ρ2

0 ≫ 1 , Y 2

0 ≪ Z2

0ρ2

0 . (29)

According to notation (14), relations (29) mean that the tangential compo-
nent of the particle’s initial velocity is highly relativistic, and, in addition,
that the tangential component is much greater than the radial component.
First, it corresponds with our aim to investigate just highly relativistic mo-
tions. Second, because the deviation of a spinning particle is caused by
the gravitational spin–orbit interaction, most clearly this deviation can be
shown in the case when the tangential velocity is dominant (in particular,
for the circular or closer to the circular orbits [16]).

According to the theory of differential equations, the general solution of
linear equations (26)–(28) is determined by the combination of eλiτ (i =
1, 2, 3), where λi are the solutions of the third-order algebraic equation

λ3 + C2λ
2 + C1λ + C0 = 0 . (30)

Here the coefficients Cj (j = 0, 1, 2) can be expressed through a, b, c and
depend both on ρ0, Y0, Z0, ε and on the parameters µ, ν. Our task is to find
such concrete values µ, ν which at the fixed ρ0, Y0, Z0, ε determine just the
motion of the proper center of mass. We begin by analyzing the expressions
Cj for the simple case when the worldline of a spinning particle is close to
the corresponding geodesic worldline.
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3.1. Expressions Cj for quasi-geodesic motions

If the parameter ε in (20) is sufficiently small, for any fixed values
ρ0, Y0, Z0 the motion of the proper center of mass is close to the geodesic
motion. Then we can write approximately E = mu4 , L = −mu3 (see
expressions (9)), and according to (14), (19) we have

µ =
1

ε
|Z0|ρ0

(

1 − 2

ρ0

)1/2

, ν =
1

ε
ρ2

0Z0 . (31)

Let us consider expressions Cj at µ, ν from (31). It is easy to show that all
these expressions have a common feature: all greatest terms with the large
value 1/ε are canceled. It means that the corresponding largest terms with
1/ε are absent in the expressions λj as well. So, just the values µ, ν for the
proper center of mass give the minimum values of λj . We stress that the
similar situation takes place for motions of the proper center of mass in the
Minkowski spacetime: for the proper center λj = 0 (it corresponds to the
straightforward motions), and for the non-proper centers λj are proportional
to M/S0 (the oscillatory motions).

3.2. Expressions Cj for the highly relativistic circular motion with r = 3M

In [16] we have considered the case of the circular motion of the proper
center of mass in a Schwarzschild field with r = 3M . By the notation (14)
in this case we write

ρ = 3 , Y = 0 , Z = −3−3/4

√
ε

. (32)

For values (19), from (9) we obtain

µ = 3−1/4ε−3/2 , ν = −35/4ε−3/2 . (33)

Let us estimate the values Cj. Taking into account (33) it is easy to check
that, as well as in the previous case, in all expressions Cj the largest terms
with 1/ε are canceled.

It is naturally to suppose that the similar feature takes place not only in
the two partial cases above. Therefore, below we shell check do the criterion
of excluding the largest terms with 1/ε in the expressions Cj can be used
for finding the values µ and ν which pick out just the motion of the proper
center of mass.
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4. Expressions µ and ν for the motions of the proper center
of mass at 2 < ρ0 < 3 under condition (29)

As we pointed out in [16] equations (1)–(3) admit in a Schwarzschild field
the solutions describing the circular equatorial orbits in the region 2M < r <
3M . By notation (14) for these orbits we have

2 < ρ < 3 , Y = 0 , Z = −1

ρ

(

1 − 2

ρ

)1/4
∣

∣

∣

∣

1 − 3

ρ

∣

∣

∣

∣

−1/2

ε−1/2 . (34)

The expression Z from (34) is valid beyond the small neighborhood of the
value ρ = 3. (This neighborhood was considered in [16].) At expressions
(34), it follows from (9) that

µ ∼ ε−1/2 , ν ∼ ε−1/2 . (35)

It is interesting to consider the non-circular orbits which deviate from (34)
due to Y0 6= 0 under condition (29). Let us consider the expressions Cj in
the case

2 < ρ0 < 3 , 1 ≪ Y 2

0 ≪ Z2

0ρ2

0 , Z0 = kε−1/2 , (36)

where according to (34), (35)

k = − 1

ρ0

(

1 − 2

ρ0

)1/4
∣

∣

∣

∣

1 − 3

ρ0

∣

∣

∣

∣

−1/2

, (37)

µ = k1ε
−1/2 , ν = k2ε

−1/2 , (38)

and k1, k2 are some coefficients which do not depend on ε. Our task is to
find such values k1, k2 which ensure excluding the largest terms with 1/ε in
the expressions Cj.

Using µ, ν from (37) we obtain the conditions under which the largest
terms with 1/ε in the expressions Cj are canceled:

3k2(ρ0 − 3) − 2ρ0kk1 − 2k

(

1 − 2

ρ0

)1/2

k2 −
(

1 − 2

ρ0

)1/2

= 0 , (39)

−k2(ρ0 − 3) + ρ0kk1 + kk2

(

1 − 2

ρ0

)1/2

+

(

1 − 2

ρ0

)1/2

= 0 , (40)

k2ρ0 − ρ0kk1 − kk2

1

ρ0

(

1 − 2

ρ0

)

−1/2

− 1

ρ0

(

1 − 2

ρ0

)

−1/2

= 0 . (41)
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It is easy to check that at the value k from (37) among three linear in k1,
k2 algebraic equations (39)–(41) there are only two independent equations.
Then the solution of (39)–(41) is:

k1 = − 1√
ρ0

(

1 − 2

ρ0

)1/4
∣

∣

∣

∣

1 − 3

ρ0

∣

∣

∣

∣

−3/2 (

1 − 3

ρ0

+
3

ρ2
0

)

, (42)

k2 =
√

ρ0

(

1 − 2

ρ0

)

−1/4
∣

∣

∣

∣

1 − 3

ρ0

∣

∣

∣

∣

−3/2 (

1 − 9

ρ0

+
15

ρ2
0

)

. (43)

Relations (42), (43) can be used in computer integration of equations (15)–
(18) under conditions (36).

5. Examples of computer integration of equations (15)–(18)

Graphs of ρ(τ) and ρ(ϕ) according to equations (15)–(18) under relations
(42), (43) are shown by the thick lines in Fig. 1 and Fig. 2 correspondingly.
For comparison, the thin lines in the same figures show graphs of ρ(τ) and
ρ(ϕ) according to geodesic equations (23)–(24). If relations (42), (43) are
violated, computer integration shows the oscillatory solutions. Similar sit-
uation takes place for orbits with ρ0 = 3. An example of the oscillatory
solution is presented in Fig. 3.

0.5

1

1.5

2

2.5

ρ

0 0.001 0.002 0.003 0.004τ

Fig. 1. Graph of ρ(τ) according to equations (15)–(18) under relations (42), (43) at

ε = 10−6, ρ0 = 2.5, Y0 = 0.3 and Z0 determined by (36), (37) (thick line). Graph

of ρ(τ) according to geodesic equations (23)–(24) at the same ρ0, Y0, Z0 (thin line).

The horizontal line ρ = 2 corresponds to the horizon surface.
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–2

–1

1

2

–2 –1 1 2

Fig. 2. Graph of ρ(ϕ) in the polar coordinates according to equations (15)–(18)

(thick line) and (23)–(24) (thin line). The values ρ0, Y0, Z0 are the same as in

Fig. 1. The circle ρ = 2 corresponds to the horizon surface.

3

3.005

3.01

3.015

3.02

ρ

0 0.002 0.004 0.006 0.008 0.01 0.012
τ

Fig. 3. An example of the oscillatory solution for ρ(τ) according to equations (15)–

(18) at ε = 10−4, ρ0 = 3, Y0 = 2.5×10−3 and Z0 determined by (31) when relations

(33) are slightly violated.

6. Summary

The computer integration of equations (15)–(18) at relations (42), (43)
shows that these relations are suitable for choosing solutions, which describe
the motions of the proper center of mass. As a result, according to Fig. 1
and Fig. 2, we conclude that (under those conditions indicated in the cap-
tions at these figures) the force of the interaction of the particle’s spin with
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the gravitational field acts as the repulsive one. Due to this force the spin-
ning particle falls on the horizon surface during longer time as compared
to the corresponding particle without spin (Fig. 1). Moreover, according
to Fig. 2, considerable space separation of the corresponding spinning and
non-spinning particles takes place within a short time, i.e., within the time
of the particle’s fall on the Schwarzschild horizon.

There is also a possibility of generalizing the above onto case of a Kerr
field.

R.P. thanks Professors A. Trautman and E. Malec for useful discussions
and hospitality in Warsaw and Cracow.
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