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Some recent developments in theory and phenomenology of neutrino
mass and mixing are described. These include new results in theory of
neutrino propagation: neutrino oscillograms of the Earth and non-linear
neutrino physics with applications to supernova neutrinos. Results of the
bottom-up approach to understanding neutrino masses and mixing are sum-
marized. Emergence of the “standard neutrino scenario” and searches for
physics beyond this scenario are discussed.
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1. Introduction

1.1. 10 years after discovery

It took more than 70 years since Pauli’s original idea (1930) that neutrino
mass is of the order of the electron mass (or smaller) and the first Fermi’s
estimation (1934) that mν < 0.1me to conclude that at least one neutrino
mass is in the range

m = (0.04 − 0.20) eV . (1)

Behind this conclusion one finds marvelous work of several generations of
theoreticians and experimentalists. The scale (1) is about 10−7me, 10−10mp,
10−12mt, and the latter provides strong evidence that we are touching some-
thing really new.
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About 50 years ago in the paper “Mesonium and antimesonium” [1] Pon-
tecorvo has mentioned a possibility of neutrino oscillations which implied
non-zero neutrino mass and mixing. Incidentally, in the same year 1957,
discovery of the parity violation has been announced. This led to establish-
ing the V–A theory of the weak interactions, and theory of two component
massless neutrino which was dominating idea for almost 40 years. As we
know for 10 years, the first line won.

This review has two parts. The first one is devoted to recent develop-
ments in theory of neutrino propagation which includes effects of passage
of high energy neutrinos through the Earth and non-linear neutrino physics
with applications to supernova (SN) neutrinos. The second part is towards
the underlying physics, it covers the bottom-up approach in understanding
neutrino mass and mixing; emergence of the “standard neutrino scenario”,
and exploration of physics beyond this scenario.

1.2. Neutrino mass and mixing

The flavor neutrinos, νf ≡ (νe, νµ, ντ ) are defined as the neutrinos that
correspond to certain charge leptons: e, µ and τ . The correspondence is
established by the weak interactions: νl and l (l = e, µ, τ) form the charged
currents or doublets of the SU(2) symmetry group. Neutrinos, ν1, ν2, and
ν3, with definite masses m1, m2, m3 are the eigenstates of mass matrix as
well as the eigenstates of the total Hamiltonian in vacuum.

The vacuum mixing means that the flavor states do not coincide with the
mass eigenstates. The flavor states are combinations of the mass eigenstates:

νl = Uliνi , l = e, µ, τ , i = 1, 2, 3 , (2)

where the mixing parameters Uli form the PMNS mixing matrix UPMNS [1,2].
The mixing matrix can be conveniently parameterized as

UPMNS = V23(θ23)I−δV13(θ13)IδV12(θ12) , (3)

where Vij is the rotation matrix in the ij-plane, θij is the corresponding
angle and Iδ ≡ Diag(1, 1, eiδ) is the matrix of CP-violating phase.

Positive results on neutrino mass and mixing have been obtained from
the solar neutrino experiments, KamLAND, atmospheric neutrino studies,
MINOS, K2K [3]. A number of experiments provided important bounds:
beta decay, CHOOZ, supernova SN1987A, Cosmology, double beta decay.

Two sets of results should be considered separately. (1) The double
beta decay data of the Heidelberg–Moscow group [4] being interpreted as
due to exchange of light Majorana neutrinos would imply the degenerate
neutrino mass spectrum. This interpretation is, however, in conflict with the
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cosmological bounds [5–7]. It is not excluded that the Heidelberg–Moscow
result is dominantly due to some other mechanism of the lepton number
violation. (2) MiniBooNE [8] excluding interpretation of the LSND excess [9]
in terms of two neutrino oscillations (in the presence of sterile neutrinos),
has created a new (low energy) anomaly. Being confirmed these results can
be “seeds” of new physics which goes beyond the “standard” three-neutrino
scenario.

The present determination of the neutrino oscillation parameters is es-
sentially based on two effects of neutrino propagation driven by non-zero
mass squared differences and mixing:

1. vacuum oscillations (both averaged and non-averaged) [1, 2, 10];

2. adiabatic conversion in medium with monotonously changing density
— the MSW-effect [11, 12].

Another effect (at about 1σ level) — oscillations in matter — should
also be taken into account in the analysis. It is relevant for the solar and
atmospheric neutrinos passing through the Earth (see review [13]).

Information obtained from the oscillation experiments is encoded in the
neutrino mass and flavor spectrum shown in figure 1. Unknown yet are
(i) admixture of νe in ν3, Ue3; (ii) type of mass spectrum: related to the
value of the absolute mass scale, m1; (iii) type of mass hierarchy (ordering);
(iv) CP-violation phase δ.
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Fig. 1. Neutrino mass and flavor spectra for the normal (left) and inverted (right)

mass hierarchies. The distribution of flavors is shown by shaded (colored) parts of

boxes in the mass eigenstates; we take sin2 θ13 = 0.05.
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2. To the theory of neutrino conversion

2.1. Describing neutrino evolution

The master equation which describes flavor neutrino propagation in the
transparent media is

i
dνf

dt
≈ Hνf , (4)

where H is the Hamiltonian:

H =
MM †

2E
+ V , V = Diag(Ve, 0, 0) . (5)

Here MM † ≡ UPMNSM
2
DiagU

†
PMNS is the mass matrix squared in the flavor

basis and Ve ≡
√

2GFne is the matter potential due to the charged current
scattering of νe on electrons (νee → νee) [11], GF is the Fermi coupling
constant and ne is the number density of electrons.

The potential (refraction index) determines the refraction length:

l0 ≡ 2π

Ve
=

√
2π

GFne
(6)

— the distance over which an additional “matter” phase equals 2π. The
energy-quantity relevant for dynamics of neutrino propagation in vacuum is
the frequency

ω ≡ ∆m2

2E
. (7)

The dynamics of conversion is determined by the interplay of Ve and ω.
It is convenient to describe the flavor evolution of neutrinos (especially

in the cases of interest here) in terms of the neutrino polarization vectors
(or density matrix). Let us consider for simplicity the two flavor system
ψ = (νe, ν̃3), where ν̃3 ≡ (νµ + ντ )/

√
2. The neutrino polarization vector

with frequency ω is defined as

P ω ≡ ψ†
ω

σ

2
ψω , (8)

where σ are the Pauli matrices. Differentiating P ω and using equation of
motion for the wave functions (4) we obtain

∂tP ω = (ωB + λL) × P ω , (9)

where B ≡ (sin 2θ, 0, cos 2θ) is the mass direction and θ is the vacuum
mixing angle. (For the inverted mass hierarchy θ → π/2 − θ.) The unit
vector L = (0, 0, 1) is the flavor direction, so that B · L = cos 2θ. Here
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λ = Ve is the usual matter potential. (For antineutrinos ω → −ω.) The
Eq. (9) coincides with the equation for spin of the electron in the magnetic
field given by the vector ωB + λL. Graphic representation is based on this
analogy.

2.2. Conditions for maximal flavor transformations

Oscillation (transition) probability in vacuum or in matter with constant
density reads

P (νe → νx) = sin2 2θm sin2 φ , (10)

where θm is the mixing angle in matter, and φ ≡ πL/lm is the half-phase.
The oscillation length equals lm = 2π/(H2 −H1), where Hi are the eigen-
values of neutrinos in matter. The amplitude (depth) of oscillations is given
by sin2 2θm and sin2 φ(E,L) is the oscillatory factor.

The maximal transition probability, P = 1, implies that

1. sin2 2θm = 1 — the amplitude condition,

2. φ = π/2 + πk — the phase condition.

Generalizations of these conditions to the case of several layers with
varying density play a crucial role in understanding oscillation effects.

In matter with constant density the amplitude condition is nothing but
the MSW resonance condition: sin2 2θm = 1 or lν = l0 cos 2θ (oscillation
length in vacuum equals approximately the refraction length for small mix-
ing, or the frequency equals potential). The phase condition is determined
by dependence of the oscillation length on energy. At low energies (vacuum
dominated regime):

lm ≈ lν =
4πE

∆m2
. (11)

The oscillation length increases and reaches maximum (for small θ) at lν =
l0/ cos 2θ — slightly above the resonance. At further increase of energy, it
approaches the refraction length: lm ≈ l0 and the dependence on energy
disappears.

The resonance enhancement of oscillations [12] occurs when neutrino flux
propagates through the layer with constant or weakly varying density (the
situation relevant for neutrinos passing through the mantle of the Earth).

Parametric enhancement of oscillations is associated to certain condi-
tions for the phases [14]. This is another way of getting strong transitions.
No large vacuum mixing and no matter enhancement of mixing or resonance
conversion are required. The amplitude condition for the castle wall profile
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consisting of alternative layers with two different densities and lengths (rele-
vant for neutrino oscillations inside the Earth) is reduced to the parametric
resonance condition [15]:

sinφ1 cosφ2 cos 2θ1m + sinφ2 cosφ1 cos 2θ2m = 0 , (12)

where subscripts 1 and 2 denote the layers (see also [16]). One simple real-
ization of this condition which does not depend on mixing angles is

φ1 =
π

2
+ πk , φ2 =

π

2
+ πn . (13)

3. Passing through the Earth

Detailed consideration of the neutrino oscillations in the matter of the
Earth has important applications to the atmospheric neutrinos, accelerator
neutrinos and neutrinos of cosmic origins. The Earth density profile can be
considered as consisting out of several layers with slowly changing density
inside each and sharp change of the density at the borders. The most im-
portant structures being the core and the mantle, and factor of 2 density
jump between them. So, neutrino oscillations in the Earth are oscillations
in multi-layer medium with slowly changing density in the individual layer.

A comprehensive description of effects of this propagation can be given in
terms of the neutrino oscillograms of the Earth — lines of equal probabilities
(or certain combinations of probabilities) in the nadir angle, Θν , — neutrino
energy plain. In Fig. 2 we show the oscillograms for the total disappearance
probability of electron neutrinos (and antineutrinos), 1 − Pee, where Pee is
the survival probability. In a sense, the oscillograms are the Earth portraits
in the neutrino light or the neutrino images of the Earth.

3.1. Structure of oscillograms

The structure of oscillograms can be well understood using generaliza-
tions of the amplitude and phase conditions considered in Sec. 2.2 to the
non-constant density case.

There are three steps in this generalization [17]:

1. take the conditions for constant density;

2. write them in terms of elements of the evolution matrix defined as

S = Te−i
R

x

0
dyH(y) , (14)

3. apply the obtained conditions to the case of varying density.
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It turns out that this generalization not only reproduces the original
conditions but also leads to new realizations which explain other features
of oscillograms such as local maxima, minima and saddle points. Thus, the
generalization has more physics content.

The Earth is unique and the structures of oscillograms seen in Fig. 2
are well defined and unique. The main features of the oscillograms in the
resonance channel (upper panels) can be listed in the following way:
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Fig. 2. Neutrino oscillograms in the 3ν-mixing case. Shown are the contours of

constant probability 1−Pee (upper panels) and 1−Pēē (lower panels) for ∆m2
21 =

8 × 10−5 eV2, tan2 θ12 = 0.45 and different values of θ13. From [18].
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Resonance structures due to the 1–2 mixing and mass split at low energies
(E < 1GeV) include:

1. The three (and only three)MSW peaks withmaximal transition,Pee =0,
in the mantle domain (Θν > 33◦) at E = (0.12–0.15)GeV. These peaks
differ by values of the total half-phase acquired by neutrinos: π/2,
3π/2, 5π/2 from the outer peak to the inner one.

2. The parametric peak at E = 0.2GeV and Θν = 20◦ (in the core
domain) which corresponds to approximate realization of conditions
(13). The lower energy structures, although can be interpreted as due
to the parametric resonance, have small effect of interplay of the core
and mantle oscillations. Here we have the resonance enhancement
pattern. If 1–3 mixing is non-zero the resonance structure appears at
E > 2GeV. It includes:

3. One and only one resonance MSW peak at E ∼ 6GeV. This peak has
maximal height, Pee = 0, if sin2 2θ13 > 0.06.

4. One MSW resonance peak in the core (for core crossing trajectories)
at E ∼ 2.5GeV. Here the half-phases in the mantle layers are φ = π
and therefore the oscillations in mantle does not contribute to the
transition effect.

5. Three parametric resonance ridges in the range E ∼ (3–20)GeV. The
ridges differ by the phase acquired in the core.

The 1–3 pattern emerges at sin2 2θ13 ∼ 0.01 at zero nadir angle and then
with increase of θ13 moves along fixed lines of flow to large Θν .

For the non-zero 1–3 mixing one observes also an interference of the 1–2
and 1–3 oscillation patterns: the interference of the modes with 1–2 and 1–3
mass splits and mixings. In other channels the interference depends on the
CP-phase and manifests the CP violation effects.

3.2. Interference. CP violation

Let us consider the CP violation in the νµ → νe channel. The transition
probability can be written as

Pµe = | cos θ23Ae2̃ + sin θ23e
−iδAe3̃|2

= cos2 θ23|Ae2̃|2 + sin2 θ23|Ae3̃|2 + sin 2θ23|Ae2̃Ae3̃| cos(φ− δ) , (15)

where Ae2̃ is the amplitude of νe → ν2̃ ≡ (νµ − ντ )/
√

2 transition, and Ae3̃

is the amplitude of νe → ν3̃ ≡ (νµ + ντ )/
√

2 transition. Notice that these
amplitudes do not depend on θ23 and δ, and in Eq. (15) the dependence of
Pµe on these parameters is explicit. In the last equality,

φ ≡ Arg(A∗
e2̃
Ae3̃) (16)

is the interference phase.
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To assess the δ-dependent interference terms, one can consider the differ-
ence of the oscillation probabilities for two different values of the CP-phase:

∆PCP
µe (δ) ≡ Pµe(δ) − Pµe(δ0) . (17)

The condition ∆PCP
µe = 0 is equivalent to

|Ae2̃Ae3̃| cos(φ− δ) = |Ae2̃Ae3̃| cos(φ− δ0) . (18)

The same equality holds for the νe − ντ channel. This equality is satisfied if
at least one of the following three conditions is fulfilled

(A) Ae2̃(Eν , Θν) = 0 , (19a)

(B) Ae3̃(Eν , Θν) = 0 , (19b)

(C) φ(Eν , Θν) = (δ + δ0)/2 + πl . (19c)

Under conditions (A) and (B) the equality (18) is satisfied identically for all
values of δ and the transition probability does not depend on CP-phase.

Due to smallness of 1–3 mixing and strong hierarchy of mass squared
differences one finds [18]

Ae2̃ ≈ AS(∆m
2
21, θ12) , Ae3̃ ≈ AS(∆m

2
31, θ13) , (20)

that is, in the first approximation Ae2̃ depends only on the “solar” oscillation
parameters with small corrections from 1–3 mixing, whereas Ae3̃ depends
only on the “atmospheric” parameters with small corrections due to 1–2 mass
splitting. (Strictly speaking for Ae2̃ this is valid below the 1–3 resonance.)
We call equalities (20) the factorization approximation.

In the factorization approximation the conditions in (A), (B) and (C)
define three sets of lines in the oscillograms (see Fig. 3), which play crucial
role in understanding effects of CP violation. Along the lines determined
by (A) and (B) the probabilities Pµe as well as Peµ Pτe and Peτ do not
depend on the CP-phase. (The other probabilities only weakly depend on
the phase along these lines.) The lines shown in Fig. 3 were calculated in
the factorization approximation, without assuming constant-density matter.

At AS(Eν , Θν) = 0 (in factorization approximation) the “solar” contri-
bution to the amplitudes of the νµ ↔ νe and ντ ↔ νe transitions vanishes.
In Fig. 3 this condition determines nearly vertical lines at the values of the
nadir angle Θν ≈ 54◦, 30◦ and 12◦ [18–20]. This feature can be understood
using the constant density approximation [20], where the condition AS = 0
is fulfilled if

sinφS(Eν , Θν) = 0 , (21)
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or φS(Eν , Θν) = πk. As we mentioned in Sec. 2.2, at energies much higher
than the solar resonance energy, lm ≈ l0 , and the condition (21) becomes

L(Θν) ≃
2πn

Ve
. (22)

It is energy independent.
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Neutrino Physics: Recent Theoretical Developments 2727

When the condition AA(Eν , Θν) = 0 is satisfied, the “atmospheric”
contribution to the transition amplitude vanishes. Along the atmospheric
“magic” lines there are no effects of CP-phase on the oscillations involving
νe or ν̄e. For energies which are not too close to the 1–3 MSW resonance,
the condition AA = 0 in the constant density approximation reduces to

Eν ≃ ∆m2
31L(Θν)

|4πk ± 2V L(Θν)| . (23)

In the energy range between the two resonances one obtains φ ≈ −φm
31 ≈

φ31 and the interference phase condition does not depend on matter density

Eν =
∆m2

31L(Θν)

4πl − 2(δ + δ0)
. (24)

The solar (nearly vertical) and atmospheric (bent) lines divide the os-
cillograms into a set of domains (CP violation domains), which are in turn
divided by the grid of the interference phase lines into sub-domains (see
Fig. 3). CP violation is zero along the lines. The CP violation effects are
maximal in the centers of the domains and they have opposite signs in the
neighboring domains. With change of δ the solar and atmospheric lines do
not change, whereas the interference phase lines monotonously move chang-
ing configuration of sub-domains. One can show that for the µµ− and µτ−
channels the dependencies of the interference terms on φ and δ factorize,
e.g. Int[Pµµ] = sin 2θ23|Ae2̃Ae3̃| cosφ cos δ, and therefore borders of domains
do not change with δ. This behavior of oscillograms allows one to elaborate
criteria for measurements of the CP-phase.

3.3. Measuring oscillograms

Measurements of oscillograms open a possibility to (i) study various
oscillation effects, e.g. parametric enhancement of oscillations; (ii) determine
unknown neutrino parameters: 1–3 mixing, mass hierarchy and CP-phase;
(iii) search for non-standard physics; (iv) perform tomography of the Earth
with spatial resolution > 100 km.

What are possible tools for these measurements?

1. Operating and expected accelerator experiments (superbeams, beta
beams, muon factories) cover the energy range (0.5–30)GeV and sev-
eral baselines at cosΘν < 0.3, that is, the peripherical regions of oscil-
lograms with poor structure. This is the origin of various degeneracies:
the same modification of the oscillatory pattern can be produced vary-
ing different parameters (e.g. θ13 and δ).
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2. Atmospheric neutrinos cover huge ranges of energies, E=(0.1–104)GeV
and base-lines, (10–104) km. (The latter corresponds to whole range
of the nadir angles.) The problem here is low statistics (especially at
high energies) and uncertainties in the original neutrino fluxes. The
present large-scale underground and under-ice detectors (AMANDA,
IceCube, Antares) have high energy thresholds (E > (50–100)GeV)
thus missing the most interesting and structured region of oscillograms
at E = (2–10)GeV.

Both problems can be resolved with multi-Megaton detectors of the
TITAND type with energy threshold below (1–2)GeV [21]: high statistics
will allow one to measure oscillograms in wide E −Θν range and determine
both unknown neutrino parameters and original fluxes (uncertainties can be
parameterized by few quantities) simultaneously.

4. Non-linear neutrino physics

Detection of neutrino bursts from a Galactic supernova can substantially
contribute to determination of the neutrino parameters (1–3 mixing, mass
hierarchy) and reconstruction of neutrino mass spectrum [22–25]. This de-
termination is based on the effects of MSW conversions inside the star as
well as oscillations in the matter of the Earth [22].

Recently it has been realized that usual picture of the MSW transitions
in the envelope of star can be substantially modified by the collective effects
related to neutrino self-interactions (νν-scattering) in central parts of a star
[26–37]. This field is still in explorative phase.

4.1. Flavor exchange. Evolution equations

Non-trivial collective effects are related to phenomenon of coherent flavor
exchange which can be understood in the following way [26, 30]. Consider
scattering of the probe neutrino, e.g. νe, on the background neutrinos, νb.
The νν-scattering can proceed due to momentum exchange Z0-boson ex-
change in the t- and u- channels. In the first case the coherence requires
scattering onto zero angle (zero momentum transfer):

|e〉 + |b, b, ... b〉 → |e〉 + |b, b, ... b〉 . (25)

νb does not change momentum and therefore scattering on all components
of the background is coherent. This scattering is flavor diagonal and the
same for all neutrino species. Therefore, it does not contribute to the flavor
evolution. In the second case the original electron neutrino exchanges mo-
mentum with one of neutrinos in the background: νe goes into background
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whereas one of neutrinos from background picks up momentum of νe. So, the
process can be considered as the flavor exchange between the probe particle
and background:

|e〉 + |b, b, ... b〉 → |b〉 + |e, b, ... b〉 . (26)

Here νe is exchanged with the first component νb of background. Similarly
one should write exchange with all other components of the background:
|b〉 + |b, e, ... b〉, etc. Scattering on different components of the background
will be coherent if νb is not orthogonal to νe: |b〉 = ψeb|e〉 + ψxb|x〉, where
|νx〉 is orthogonal to |νe〉. Indeed, since |b〉 contains component of |x〉 and
|e〉 contains |b〉, the process (27) will have a sub-channel

|e〉 + |b, b, ... b〉 → |x〉 + |b, b, ... b〉 (27)

with the amplitude of probability ψbeψxb. In this case the background does
not change and therefore scattering on all components of background is
coherent. Apart from this flavor off-diagonal transition there are also flavor
diagonal transitions. As a result, the νν- scattering leads to additional
term of the Hamiltonian: non-diagonal matrix which is proportional to the
neutrino density and projections of the background state onto involved flavor
states: Hνν = µ||ψ∗

bαψbβ||, where α, β = e, x and µ ≡
√

2GFnν(1 − vb · ve)
is the potential due to the νν- interactions, ve and vb are velocities of the
probe and background neutrinos and nν is the neutrino density. (In a single
angle approximation µ =

√
2GFnν .)

The key point is that the background should be in the mixed flavor state.
For pure state the off-diagonal terms are zero. Therefore flavor evolution can
not be triggered by these self-interactions. It should be triggered by some
other effect.

Inclusion of the neutrino self-interactions into the evolution equation (9)
is straightforward:

∂tP ω = (ωB + λL + µD) × P ω . (28)

The new term µD describes effect of ν–ν scattering and its structure is
rather transparent:

D ≡
∞

∫

−∞

dω Sign(ω)P ω , (29)

is the collective neutrino vector, the Sign(ω) reflects that neutrino and an-
tineutrino contribute with opposite signs, thus D represents the net lepton
number.
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Unless there is an MSW resonance in the dense-neutrino region, one can
eliminate λL from Eq. (30) by going into a rotating frame [32,33]. The EOM
then takes on the simple form

∂tP ω ≈ (ωB + µD) × P ω . (30)

Performing integration of this equation over ω with Sign(ω), one gets
the equation for D:

∂tD = B × M , M ≡
∞
∫

−∞

dω ω Sign(ω)P ω . (31)

Eqs. (30) and (31) compose the complete system of master equations.
One phenomenon — synchronized oscillations [27, 29] — follows from

these equations immediately. When µ is large, µD ≫ ω (large neutrino
density), we obtain equations

∂tP ω ≈ µD × P ω . (32)

which does not depend on ω, so that the evolution is the same for all
modes and P ω remain pinned to each other. Furthermore, according to (31)
M = ωsynD, where ωsyn is some effective average frequency which is called
the synchronization frequency. Then the equation for D becomes ∂tD =
ωsynB × D. In this case the individual vectors precess very quickly around
D with the same high frequency µ|D|, whereas the collective vector D pre-
cesses around B with much smaller synchronization frequency.

Since B is constant, equation for D shows that ∂t(D · B) = 0 and
therefore

B · D = const . (33)

This picture is simplified: one needs to take into account e.g. difference of
evolution along different trajectories of neutrinos.

4.2. Spectral splits

Collective effects lead to rather complicated dynamics: some phenomena
have transient character: show up only in the restricted space region. The
other lead to observable effects. One of such phenomena is spectral split
[35, 36] or swap (according to terminology in [37]).

An example of split is shown in Fig. 4 where the original thermal νe

and ν̄e flux spectra are taken with equal average energies of 15MeV but an
overall ν̄e flux that is only 70% of the νe flux. The smaller fluxes of the other
species νµ, ντ , ν̄µ and ν̄τ are completely ignored. The two-flavor oscillations
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Fig. 4. Neutrino frequency spectra at the neutrino sphere (thin lines) and beyond

the dense-neutrino region (thick lines) for the schematic SN neutrino model de-

scribed in the text. Here ω < 0 is for antineutrinos, ω > 0 for neutrinos.

between νe and another flavor νx are driven by the atmospheric mass squared
difference ∆m2 = (2–3)×10−3 eV2 and the small 1–3 mixing angle. In Fig. 4
from [36] the z–components of the usual two-flavor polarization vectors are
shown, where “up” denotes the e–flavor and “down” the x–flavor. According
to the figure all modes with ω < ωsplit change flavor, whereas the ones with
ω < ωsplit stay in their original flavor.

The spectral split is a consequence of

1. existence of special “co-rotating” adiabatic frame in the flavor space
which rotates around B with certain frequency ωc (it rotates together with
vector D);

2. change (decrease) of the neutrino density: µ→ 0;

3. adiabatic evolution of the neutrino ensemble in the adiabatic frame.
The split frequency is given by the limit ωsplit = ωc(µ→ 0).

Let us provide with some schematic explanation of the split phenomenon
following [36]. According to (30) an “individual Hamiltonian” for a given
mode is

Hω = ωB + µD . (34)

D and therefore Hω precesses around B with the synchronization frequency.
In turn, the polarization vectors precess around the Hamiltonians.

One can simplify description performing transition to new reference frame
in which motion of the Hamiltonians is slow and therefore the adiabatic ap-
proximation can be used. We call this frame the adiabatic frame. Indeed,
according to (34) the single-mode Hamiltonians Hω always lie in a plane
spanned by the vectors B and D. Relative to the laboratory frame, this
common or co-rotating plane moves around B with the instantaneous co-
rotating frequency ωc. To exclude fast rotation of D let us transform to this
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“co-rotating” frame. The Hamiltonians in the co-rotating frame are

Hω = (ω − ωc)B + µD . (35)

If µ changes slowly enough, the motion in the “co-rotating” frame can be
adiabatic.

Suppose in initial moment µ is very large and all neutrinos are produced
in the same flavor. Then all Hω and P ω are aligned with the same direction
of D. Adiabatic solution means that P ω follow their Hamiltonians Hω(µ) in
the course of evolution. Consequently, the adiabatic solution for our initial
condition is given by

P ω(µ) = Ĥω(µ)Pω , (36)

where Pω = |P ω| and Ĥω ≡ Hω/|Hω| is a unit vector in the direction
of the Hamiltonian. According to Eq. (36), all P ω being confined to the
co-rotating plane evolve in this frame according to the change of µ.

Now it is straightforward to write final result of evolution. According to
Eq. (35), in the limit µ→ 0

Hω → (ω − ωc)B, (37)

where ωsplit = ωc(µ → 0). Therefore, in the case of complete adiabaticity
all polarization vectors with ω > ωc will be aligned with B, whereas all
polarization vectors with ω < ωc will be anti-aligned with B. That is, they
will be transformed to the opposite flavors.

In what follows we illustrate the spectral splits using two examples of
box-like spectra.

1. The case of only neutrinos with flat distribution in the interval of
frequencies 0 ≤ ω ≤ 2ω0 is shown in Fig. 5. Deviation from the sharp
split (dotted line) is due to the adiabaticity violation for the modes with
frequencies close to ωc. In Fig. 6 we show the spatial evolution of different

Fig. 5. Initial (thin line) and final (thick line) neutrino spectra. Dotted: fully

adiabatic. Solid: numerical example.
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modes. Spectrum of frequencies split into two parts. Lines which correspond
to one part approach +1, others approach −1. The split occurs when µ
becomes comparable with ω0-typical frequency of the spectrum.

Fig. 6. Evolution of 51 equally spaced modes. Top: numerical solution; Bottom:

adiabatic solution.

In Figs. 7 and 8 we show the split in the spectrum which contains both
neutrinos and antineutrinos.

Fig. 7. Neutrino spectra for an initial box spectrum with 70% antineutrinos and

sin 2θ∞
eff

= 0.05. Negative frequencies correspond to antineutrinos. Thin line:

initial. Thick dotted: final adiabatic. Thick solid: numerical example.
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Fig. 8. PωB(µ) for individual modes for the case of neutrinos plus antineutri-

nos. Left: numerical solution; for sin 2θ∞
eff

= 0.05. Right: adiabatic solution for

sin 2θ∞
eff

= 0. In each case neutrinos with 51 modes (top) and antineutrinos with 6

modes (bottom).

5. Toward the underlying physics

The present situation can be characterized in the following way:
(i) Physics behind neutrino mass and mixing is not identified yet. (ii) Cer-
tainly this is something beyond the standard model. (iii) Data show both
order and some degree of randomness and therefore no simple “one-step”
explanation is expected. (iv) Furthermore, different pieces of data testify
for different underlying physics. Below I will present some illustrations of
these statements.

6. Analyzing results. Quarks and leptons

Three different possibilities for the lepton mixing have been explored
recently: the tri-bimaximal mixing, the quark–lepton complementarity and
quark–lepton universality. They have different implications for fundamental
physics, and in particular, for the quark–lepton connections.

6.1. Tri-bimaximal mixing

The tri-bimaximal mixing (TBM) matrix is defined as [38]:

Utbm ≡ Um
23U12(θ12) =

1√
6





2
√

2 0

−1
√

2
√

3

1 −
√

2
√

3



 , (38)
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where Um
23 is the maximal (π/4) rotation in the 2–3 plane and sin2 θ12 = 1/3;

the 1–3 mixing angle is exactly zero. TBM agrees within 1σ with the present
experimental results. It is not clear whether it should be considered as just
an “organizing” structure, or as something which has deep physical meaning.

If not accidental, it implies possibly some special symmetry in the lepton
sector. The following representation of TBM gives a hint of underlying
physics

Utbm = UmagU13(π/4) , (39)

where Umag is the magic matrix [38]. “Tri-bimaximal equals magic times
1–3 maximal.” Majority of models proposed so far are based on the discrete
symmetry group A4 [39]. Other possibilities explored in this connection
include models based on the groups T ′, D4, S4, ∆(3n2).

Generic features of the proposed models are extended Higgs sector, re-
quirement of particular vacuum alignment which implies further complica-
tions of models, auxiliary symmetries. In these models there is no relation
between masses and mixing. Mass spectrum is not predicted. Extension to
the quark sector is problematic; in the most advanced models it is achieved
by different flavor properties of quarks and leptons and different ways of
breaking of the flavor symmetry in the quark and lepton sector. This makes
further unification of quarks and leptons (or GUT) even more difficult. TBM
may indicate that quarks and leptons are fundamentally different.

TBM can be considered as a kind of zero order structure with certain
corrections. (In any case it is not RG invariant.) Corrections can lead to
correlated non-zero 1–3 mixing and deviation of 2–3 mixing from maximal.
Usually it is difficult to get large deviation form the 2–3 mixing in specific
models constructed to explain TBM. This can be used for future experimen-
tal tests.

6.2. Quark–lepton complementarity

The quark–lepton complementarity (QLC) [40] is another possible guide-
line which has completely different implications. It is based on observation
that θl

12 +θq
12 ≈ π/4 and θl

23 +θq
23 ≈ π/4. For several reasons it is difficult to

expect exact QLC relations, still qualitatively one sees certain correlations

• the 2–3 leptonic mixing is close to the maximal one because the 2–3
quark mixing is small;

• the 1–2 leptonic mixing deviates from the maximal one substantially
because the 1–2 mixing (Cabibbo angle) is relatively large.

A general scheme of QLC is

lepton mixing = bimaximal mixing − CKM , (40)
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where UCKM is the quark mixing matrix and Ubm is the bimaximal mixing
matrix:

Ubm ≡ Um
23U

m
12 =

1

2





√
2

√
2 0

−1 1
√

2

1 −1
√

2



 . (41)

Possible implications of the QLC relations are the following:

1. quark–lepton symmetry or unification: apparently leptons should know
about quark mixing; alternatively, the information about quark mixing
can be communicated to the lepton sector via the horizontal (flavor)
symmetry;

2. existence of structure in the lepton sector which produces the bimax-
imal mixing; it can be the seesaw itself with certain properties of the
RH neutrino mass matrix.

The way it can work is the following. In the lowest order the mixing
matrices of quarks and leptons can be

Vquarks = I , Ulepton = Ubm . (42)

Then corrections, having the same origin, generate the quark mixing and
simultaneously, the deviation of the lepton mixing from maximal value.

There are two realizations of QLC determined by the order of the bi-
maximal and CKM rotations:

UPMNS = UbmU
†
CKM , (43)

denoted QLCl and
UPMNS = UCKMUbm (44)

called QLCν . Since the neutrino states appear from the left and charge
lepton states from the right side of UPMNS one can assume that in the case
of QLCl the bimaximal mixing comes from the charged leptons, whereas in
QLCν — from neutrinos. In the latter case the seesaw mechanism can be
the origin of the bimaximal mixing.

The two versions differ by predictions of the 1–2 mixing angle θ12:

QLCν : 35.4◦ , TBM: 35.2◦ , QLCl : π/4 − θC = 32.2◦ , (45)

as well as by the 1–3 mixing angle θ13:

QLCν : 9◦ , TBM: 0 , QLCl : 1.5◦ . (46)

Notice that θ12(QLCν) ≈ θ12(TBM). Both QLC realizations agree with the
present data within 1σ. Clearly, combination of future precise measurements
of these angles will allow us to disentangle the three possibilities. Recall,
all these predictions can be changed due to appearance of the CP-violation
phases and by the RGE effects.
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6.3. Real or accidental?

There is a number of observations which can testify for certain symmetry
or particular relations: maximal 2–3 mixing, tri-bimaximal mixing, small
(zero) 1–3 mixing, Koide relation between masses of charged leptons which
is probably in the same line as TBM, the QLC relations. Are these features
accidental? We can say that e.g. some value of mixing angle is accidental if
it is a combination (interplay) of two (or more) independent contributions.
If some value or relation is immediate consequence of symmetry, we conclude
that they are not accidental, that is, real.

Another important question: Are smallness of neutrino mass and the
observed pattern of mixing related? As some models show, mixing pattern
can be immediate consequence of symmetry for arbitrary values of masses.
In this sense masses and mixing decouple.

6.4. Quark–lepton universality

One consider an approach which does not rely on any specific symmetry
in the lepton sector. Mass (Yukawa coupling) matrices in the quark and
lepton sectors may have no fundamental distinction. Whole difference is
related to the seesaw mechanism of neutrino mass generation which explains
simultaneously the smallness of neutrino mass and large lepton mixing.

It has been shown that universality of the Dirac mass matrices of quarks
and leptons can be realized and the difference of observables steams from
the Majorana mass matrix of the RH neutrinos.

7. Standard neutrino scenario

7.1. Standard scenario

“Standard neutrino scenario” — new paradigm in neutrino physics can
be formulated in the following way:

• there are only 3 types of light neutrinos (three flavor and three mass
states);

• neutrino interactions are described by the standard electroweak model;

• masses and mixing have pure vacuum origin: they are generated at
the electroweak and probably higher energy scales. These are “hard”
masses: The VEV’s involved are large or, if small, induced by other
large VEV’s, as in the case of seesaw type-II.

The main goal of the present phenomenological programs is to test these
statements and search for “physics beyond”. On the theoretical side, the
most appealing line of understanding neutrino mass and mixing includes
(i) the see-saw mechanism; (ii) quark–lepton unification; (iii) SO(10) GUT.
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Do neutrinos provide an evidence of GUT? Via the seesaw mechanism,
the values RH neutrino masses indicate existence of scale which can coincide
with the GUT scale, MGUT, (the scale of possible unification of three gauge
couplings). There are two different realizations of relation of neutrino mass
and MGUT.

1. In the presence of mixing of three generations, the value of mass of
the heaviest RH neutrino can coincide with the GUT scale

MR ≈MGUT ∼ 1016 GeV . (47)

Notice that due to large lepton mixing the mass of the heaviest neutrino is
related to the mass of the lightest light neutrino. Since the RH neutrinos
are singlets of the SM gauge groups exact equality (47) or connection may
not exist.

2. The scale of RH neutrino masses can be related to MGUT via the
Planck scale MPl:

MR ≈ M2
GUT

MPl
∼ 1014 GeV . (48)

This relation is realized, e.g., in the double seesaw scenario [42].
Other way around: GUT’s provide with all the ingredients which are

necessary for the seesaw mechanism: (i) existence of the RH neutrinos;
(ii) large mass scale; (iii) lepton number violation. They give relations be-
tween masses of leptons and quarks, e.g. mb = mτ , and in general, “sum
rules” which connect masses and mixings, for instance, the b− τ unification
can be connected to the large lepton mixing [43]. However (with few excep-
tions), GUT’s do not explain the flavor structure: (i) number of generations,
(ii) mass hierarchies, (iii) mixing patterns. It is assumed that certain flavor
symmetry is responsible for the observed flavor structures. Analysis shows
that it is not trivial to reconcile (A) the existing data on mass and mix-
ing, (B) GUT, and (C) flavor symmetries. From other perspective: data
and flavor symmetries prevent from GUT. To explain data with flavor sym-
metries the quarks and leptons, the RH components of charged leptons and
neutrinos should have different flavor properties (transform differently under
flavor group). This prevents their unification. The flavor symmetry should
be broken in rather complicated way.

7.2. Bottom–up

Leptons and quarks have similar gauge structure, there is clear correspon-
dence or symmetry between the quark and lepton sectors. At the same time,
quarks and leptons have very different mass and mixing pattern. This testi-
fies for existence of additional structure in the lepton sector which produces
these differences. Plausible answer is that the see-saw with its Majorana
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mass matrix of RH neutrinos (which has no analogy in the quark sector)
plays the role of this additional structure. It is the seesaw that enhances
the lepton mixing. Furthermore, the seesaw may generate some symmetry
at the effective level of the light neutrino mass matrix, after decoupling of
heavy neutrinos. Such a symmetry may not exist at the fundamental level
as symmetry of the Lagrangian, where both the LH and RH neutrino com-
ponents are present. We can call this the seesaw symmetry. Is the seesaw
enough to explain data? Is something missed?

There are two different views on the problem: from the bottom and from
the top. The data do not show simple relations between masses and mixings
(although there were numerous attempts to find some universal formulas,
examples being tan 2θc = 1/2, golden ratio, Koide relation etc.); they can
not be described in terms of few (1–2) parameters. It seems there is no sim-
ple “one-step” explanation. From this point of view data look complicated.
Looking from the top we find very rich string theory “offer” which includes
GUT, existence of large ∼ O(100) number of gauge singlets (SM as well as
GUT symmetry group); several U(1) gauge factors; various discrete symme-
tries, heavy vector-like families of fermions, non-renormalizable operators,
selection rules for interactions which cannot be expressed in terms of sym-
metries at the field theory level; explicit violation of symmetries; incomplete
gauge multiplets, etc. So, one can wonder how this complicated structure at
high energies leads to so simple structure which we observe at low energies?
Why the data look simple?

8. Beyond the “standard neutrino scenario”

New physics can be related to

1. new neutrino states,
2. new neutrino interactions,

3. new dynamics in neutrino propagation.

Some examples of this new physics and comments are given below.

8.1. New neutrino states

New neutrino states with mass m ≤ mZ/2 should be sterile or almost
sterile. If light, they can have direct observable consequences: be produced
in various neutrino processes, participate in oscillations, decays, etc. New
states can also produce indirect effects: modification of the mass matrix of
active neutrinos (“invisible mixing”), breaking of universality, appearance of
FCNC. Light sterile neutrinos both participate in low energy phenomenology
and modify mass matrix of active neutrinos. Depending on values of masses
and mixing direct or indirect effects can dominate. Heavy sterile neutrinos
decouple producing indirect effects only.
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A general picture is that new gauge singlets form a hidden sector with
some symmetries which determine their mass spectrum. These singlets can
couple (mix) with LH components directly, or/and indirectly via couplings
(mixing) with the RH components. Apparently, these singlets can mix with
neutrinos only and, therefore, potentially explain different patterns of quarks
and leptons. These singlets (on top of the seesaw) can be an additional
structure needed to explain observations.

The bounds on mixing of the sterile neutrinos with active neutrinos, θS,
strongly depend on mass of S, mS . The bounds follow (moving from smaller
to higher values of mS) from (i) the atmospheric neutrino and (ii) reactor
neutrino studies, (iii) cosmology (large scale structure of the Universe, LSS),
(iv) X-ray spectrum in the Universe, (v) CMB, (vi) accelerator experiments
(production of S in the decay of K-mesons), (vii) neutrinoless double beta
decay (for the electron neutrino).

The induced due to mixing with sterile neutrino mass of the active neu-
trino mass equals

mind = mS sin2 θS . (49)

When mS sin2 θS ≥ 0.025 eV, the induced mass mind is of the order of domi-
nant mass terms, that is, it can generate the dominant structure of the mass
matrix. For mS sin2 θS ≥ 0.003 eV, the induced mass can be responsible for
the sub-dominant mass structures. Below mS sin2 θS ∼ 0.001 eV effect of
induced mass on the neutrino mass matrix is negligible. Notice that for all
benchmark parameters mentioned above the sterile neutrino is thermalized
in the Early Universe.

Large part of the region where S can produce significant effect on the
active neutrino mass and mixing is already excluded by the astrophysical and
cosmological observations. Still small window near 0.1 eV is allowed. Also in
the region mS > several 100MeV the influence of active-sterile mixing can
be substantial. Unfortunately, it is difficult to test this region. Bound on
mixing of S with νµ and ντ are weaker in some ranges.

8.2. New interactions

One can classify new interactions as
1. Short range interactions due to exchange of heavy particles with

masses at the electroweak scale and larger. Examples being new gauge
bosons, scalar bosons of extended Higgs sector, SUSY particles, etc.

2. Long range interactions due to exchange of new light particles e.g.
new scalars: majorons, accelerons, cosmons, etc. Introduction of these new
particles has certain cosmological motivations.
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Exchange of light scalar bosons can lead to appearance of effective soft
neutrino masses which depend on properties of medium and disappear in
vacuum. One example is a very light scalar with mass mφ = (10−8–
10−6) eV which appears, e.g. in the context of MaVaN scenario [44]. If λf

are the coupling constants of the scalar with neutrinos and charged fermions
f = e, u, d, ν, then exchange of this scalar will generate the neutrino mass

msoft =
λνλfnf

m2
φ

, (50)

where nf is the density of fermions. The total mass which appears in the
evolution equation equals

mtot = mvac +msoft , (51)

where mvac is generated by vacuum — some VEV of the scalar field. The
present experimental results give various bounds on the soft component of
mass.

8.3. Something completely different

Existence of extra spatial dimensions opens qualitatively new possibility
to generate small Dirac masses of neutrinos. The left and the right com-
ponents of neutrinos can have different localizations in extra dimensions.
Value of Yukawa coupling in 4D is then proportional to degree of overlap of
the LH and RH component of wave functions or the overlap factor κ. Then
neutrino mass in 4D can be written as

mD = λvEWξ , (52)

where λ ∼ 1 and vEW is the electroweak VEV.
Due to the fact that the RH neutrinos have no SM interactions, their

localization can be substantially different which leads to strong suppression
of masses. This mechanism can be called the overlap suppression.

Let us evaluate the overlap (suppression) factor in different scenarios
with extra dimensions.

1. Large flat extra dimensions. The 3D spatial brane is embedded in
(3 + δ)D bulk [45] of extra dimensions. Extra dimensions have large radii
Ri ≫ 1/MPl which allows one to reduce the fundamental scale of theory
down to M∗ ∼ 10–100 TeV [45].

The left handed neutrino is localized on the brane, whereas the right
handed component (being a singlet of the gauge group) propagates in the
bulk. For one extra D with coordinate y the normalization condition gives
a typical value of the wave function νR(y) ∼ 1/

√
R. The width of the
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brane is of the order of d ∼ 1/M∗, therefore the overlap factor with the LH
component which is localized on the brane equals

ξ = d1/2νR ∼ 1√
M∗R

. (53)

For δ extra dimensions we get for the overlap factor ξ = 1/
√

M∗δVδ , where
Vδ is the volume of extra dimensions.

2. Warped extra dimensions. Two branes, the visible and “hidden”,
are localized in different points of extra dimension with non-factorizable
metric [46]. The wave function of the RH neutrino νR(φ) is centered on
the hidden brane, whereas the LH one — on the visible brane. Due to
warp geometry νR exponentially decreases from the hidden to the observable
brane. The overlap factor is given by the value of νR on the visible brane:

ξ = ν
(vis)
R ∼ ǫν−1/2 , ǫ = e−krcπ =

vEW

MPl
. (54)

Here MPl is the Planck scale, rc is the radius of extra dimension, k ∼MPl is
the curvature parameter. In (54) ν ≡ m/k and m ∼ MPl is the Dirac mass
in 5D. For ν = 1.1–1.6 we obtain the mass in the required range.

3. The LH and RH neutrino wave functions can be localized differently on
the same “fat” brane [47]. One possibility is to localize νL and νR in different
places of the brane; or the RH neutrino can be localized in the narrow region
of the fat brane, whereas the LH neutrino wave function spans whole the
brane.

9. Conclusion

Developments during last 10 years were the real breakthrough in the
field:

— discovery of neutrino mass,
— determination of the dominant structure of lepton mixing, discovery

of two large mixing angles,
— establishing strong difference of the quark and lepton mixing patterns

on the top of smallness of neutrino mass.

With these discoveries, it seems, we are touching something really new.
However, in spite of plenty of proposed models and approaches, no unique
and convincing scenario of the underlying physics beyond the standard model
has been found. Nevertheless, one may start to think about applications and
developments of neutrino technologies for geophysics, the Earth tomography,
search for oil and minerals, control of atomic reactors, etc.
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What is next? New measurements will allow us hopefully to establish
type of neutrino mass spectrum (quasi-degenerate, hierarchical); type of
mass hierarchy, nature of neutrino and neutrino mass. Sooner or latter we
will measure the 1–3 mixing, deviation of 2–3 mixing from maximal, and
CP-phases. We will test predictions of particular models.

All this may discriminate various possibilities but not lead to final answer
(identification of physics behind neutrino masses and mixing). LHC and
other non-neutrino experiments may check low scale mechanisms of neutrino
mass generation as well as test a context (e.g. SUSY).

From theoretical side one can find two points of view: (i) There is nothing
fundamental behind values of neutrino mass and mixing: the observed values
are accidental interplay of several (many) essentially unrelated factors, result
of some complicated evolution (á la the planetary system). (ii) The observed
structures will have explanations at the field theory level in terms of certain
(broken) symmetries, properties of vacuum, etc. The hope is that neutrinos
will uncover something simple and illuminating which will shed some light
on fermion masses problem and allow us to identify new physics beyond the
standard model.
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