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We show that the existence of the Newtonian limit cannot work as
a selection rule for choosing the correct gravity theory from the set of all
L = f(R) gravity theories. To this end we prove that stability of the ground
state solution in arbitrary purely metric f(R) gravity implies the existence
of the Newtonian limit of the theory. And the stability is assumed to be
the fundamental criterion of viability of any gravity theory. The Newtonian
limit is either strict in the mathematical sense if the stable ground state of
a theory is flat spacetime, or approximate and valid on length scales much
smaller than the cosmological scale if the ground state is de Sitter or anti-de
Sitter space. Hence regarding the Newtonian limit a metric f(R) gravity
does not differ from general relativity (with arbitrary Λ). That stability
implies the existence of the Newtonian limit is exceptional to Lagrangians
depending on R and/or the Ricci tensor but not on the Weyl tensor. An
independent selection rule is necessary.

PACS numbers: 04.50.Kd

1. Introduction and summary

In recent years the metric nonlinear gravity (NLG) theories have at-
tracted vivid attention as a possible explanation for the acceleration of the
universe without invoking the dark energy concept. These theories differ
from general relativity only by their Lagrangian L = f(gµν , Rαβµν) being
any smooth scalar function of the Riemann–Christoffel tensor for the met-
ric gµν . As the cardinality of the set of all analytic functions of one or several
variables is higher than continuum, the fundamental problem is to choose one
or at worst a narrow class of Lagrangians out of this set. These theories are
tested where they are required, i.e. in cosmology, and exclusively applying
the Robertson–Walker (RW) spacetime (usually in the special case where the
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spatial sections are flat, k = 0). However this spacetime is “flexible” in that
it contains an arbitrary function and thus provides a Friedmannian solution
for any NLG theory (except some singular cases) while Minkowski, de Sitter
and anti-de Sitter spacetimes are not universal solutions. This implies that
there is an infinity of Lagrangians generating solutions exhibiting the accel-
erated evolution of the world. In fact, roughly one half of the Lagrangians
investigated up to now in the literature fairly well fit the astronomical data.
Also the solar system tests cannot uniquely put stringent bounds on possible
Lagrangians due to inherent ambiguity of NLG theories. In these theories
there is infinity of mathematically equivalent dynamical frames out of which
only two, Jordan frame and Einstein one are employed in practice, and in
different frames the initial and boundary conditions for the full gravitational
field are more or less determined by the matter distribution. For example,
in Jordan frame the initial and boundary conditions are determined by the
local matter distribution while in Einstein frame they are determined only
in a part by it [1]. In this sense the solar system observations are to some
extent inconclusive.

Instead of attempting to deduce the correct NLG theory from the as-
tronomical data, which are scarce and theoretically ambiguous, one should
first verify if the theory (or a class of) under consideration meets the general
requirements imposed on any classical field theory. A fundamental and indis-
putable criterion is that a theory have a stable maximally symmetric ground
state. This criterion works effectively and it has been shown that many
L = f(R) gravity theories (R being the curvature scalar for the Riemann
tensor) which are attractive on cosmological grounds, are actually unstable
and thus untenable [2]. Unfortunately still infinite number of Lagrangians
is allowed by this criterion and further viability conditions are needed to
reduce the set of tenable gravity theories. Undoubtedly the existence of
a properly defined Newtonian limit should a priori be such a criterion.

The textbook definition of the Newtonian limit of general relativity or
an alternative gravity theory is that it is a static weak-field limit of grav-
itational interactions corresponding to slow-motion approximation for self-
gravitating matter systems whose energy–momentum tensor is dominated by
their energy density. Though intuitively clear, the definition is mathemat-
ically obscure and incomplete and particularly in the case of NLG theories
it gives rise to some confusion. To make it clear why we claim in this work
that a large number of metric gravity theories do have a Newtonian limit we
first provide a very brief review of what is precisely known about this limit
in the case of general relativity.
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In order to express in mathematically rigorous terms the notion of New-
tonian limit of general relativity (GR) it is necessary to first formulate New-
ton’s gravity theory (NGT) in a four-dimensional spacetime formalism. Only
within such a wide framework comprising both relativistic metric gravity
theories (for the time being out of all these theories only GR is relevant for
our considerations) and NGT proper, where the structure of all these theo-
ries has the same mathematical and physical interpretation, can one make a
meaningful transition to Newton’s theory and recognize for which relativistic
theories the ‘Newtonian limit’ does exist and for which ones does not. The
spacetime formulation of NGT is as follows.

The physical four-dimensional spacetime M is foliated by hypersurfaces
St of simultaneity with respect to the absolute time t and the hypersurfaces
are simply connected complete Euclidean spaces. The spacetime is endowed
with a spatial metric1 sαβ of rank 3 which defines the Euclidean metric
equal to δik on each St and a temporal metric tαβ of rank 1 measuring tem-
poral intervals. The curvature tensor of M for the symmetric and metric
(for both sαβ and tαβ) connection satisfies the Einstein field equations (with
the cosmological constant Λ = 0) for the matter source being the energy–
momentum tensor for a perfect fluid [3]. Actually this theory is more general
than NGT and is called Newton–Cartan theory. In order to get Newton’s
theory proper one must impose global and asymptotic conditions since New-
ton’s gravity is a theory of isolated material systems and only for isolated
systems it has been reliably confirmed. The isolatedness is expressed in two
conditions:

(i) on each St the support of the fluid energy–momentum tensor is com-
pact;

(ii) the spacetime is asymptotically spatially flat (two expressions quadrat-
ic in the Riemann tensor vanish at spatial infinity) [3, 4].

The first requirement means that we are always concerned with isolated
systems and the rest of the world outside them is empty. The second condi-
tion implies that in this special case of Newton–Cartan theory there exists a
distant parallelism of spatial vectors; in physical terms this means that the
axes of neighbouring freely falling gyroscopes do not rotate with respect to
each other. The two conditions explicitly exclude the cosmological constant
from the field equations. The connection is uniquely determined by a scalar
function and the field equations reduce to Poisson’s equation for the func-
tion which is then interpreted as the gravitational Newtonian potential. The
standard integral formula for the general solution of the equation valid in
the case of a compact support of the mass density shows that the connection
falls off as r−2 at the infinity.

1 The Greek indices run from 0 to 3 and Latin ones from 1 to 3.
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Having this formulation of NGT in hand one places it in a general frame-
work of relativistic metric gravity theories. The framework is named Ehlers’
frame theory or Cartan–Friedrichs formalism [3]. The starting point is GR
whose laws are recasted in terms of an arbitrary parameter µ and Einstein’s
theory is recovered for µ = c−2, c the light velocity. The Lorentzian space-
time metric gαβ gives rise to a temporal metric tαβ(µ) and spatial one sαβ(µ),
the connection Γ (µ) is symmetric and metric. The field equations are Ein-
stein ones for the connection and the matter source is any perfect fluid. The
frame theory is meaningful for any µ ≥ 0. For µ > 0 the metrics tαβ(µ) and

sαβ(µ) are of rank 4 while for µ = 0 they degenerate and the pair (tαβ , sαβ)
forms the so-called Galilei metric. All the fields of the frame theory form a
set F (µ) ≡ {tαβ(µ), sαβ(µ), Tαβ(µ), . . .}. If the fields belonging to F (µ) and
their first derivatives converge pointwise to those forming the family F (0),
limµ→0 F (µ) = F (0), then F (0) is said to be a Cartan–Friedrichs limit of
µ-rescaled solutions of GR. F (0) represents laws and solutions of Newton–
Cartan theory [3]. Again to recover Newton’s theory proper the following
global conditions are imposed in the frame theory:

(i) the support of Tαβ(µ) is spatially compact;

(ii) the spacetime (M, tαβ(µ), sαβ(µ), Γ (µ)) is asymptotically spatially
flat [3, 4].

Clearly condition (ii) ensures that there are no contributions to the gravi-
tational field from any sources outside the isolated system. The tidal gravita-
tional forces due to the system vanish at the infinity on each of appropriately
chosen spacelike hypersurfaces which foliate the spacetime.

It is conjectured that if the fields F (µ) for µ > 0 satisfy the conditions
(i) and (ii) and the limit limµ→0 F (µ) = F (0) does exist, then F (0) repre-
sents the four-dimensional formulation of NGT. There is no general proof of
the conjecture, only a number of specific solutions in GR confirm it [3].

The Ehlers’ frame theory shows that the mathematical structure of NGT
is a degenerate special case of that of GR. This degeneracy may also be
expressed in other terms: the spacetime structure of GR is determined by a
Lorentz bundle over M while that of Newton’s theory is given by a Galilei
bundle [5]. These principal fiber bundles are locally determined by their
structure groups. The Galilei group is a contraction of the Lorentz group
showing the degeneracy of the structure.

It should be emphasized once again that the Newton’s theory of grav-
itation is reliable and the Newtonian limit of GR is mathematically well
defined only for isolated matter systems, what requires asymptotic spatial
flatness, otherwise in the limit µ → 0 one arrives at Newton–Cartan the-
ory. For unbounded mass distribution the inertial frames do not exist and
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the structure of NGT is broken. This is the case of cosmology and what is
usually named ‘Newtonian cosmology’ is a theory which only in some as-
pects resembles NGT and has no evolution equations; evolution of a model
follows from some symmetry assumptions and should be formulated within
the frame theory [6], this means that Newtonian cosmology is not a self-
contained theory.

Strictly speaking for Λ 6= 0 general relativity has no Newtonian limit.
However this is a mathematical theorem while in physics one is usually
satisfied with a plausible approximation. The problem is that of a scale.
A physical system determines its own distance scale. In mathematics the
infinity is unique whereas ‘physical infinity’ depends on the scale. For exam-
ple, in quantum mechanics the wave function must be normalized to unity
over the whole space implying that the function must sufficiently quickly fall
off at infinity. The scale for the hydrogen atom is 10−8 cm and in practice
its infinity is at a distance of few meters and the wave function is practically
zero there and farther. If the spacetime has a nontrivial topology, is not
asymptotically flat or there are event horizons and singularities, the rigor-
ous formulation of quantum mechanics and quantum field theory encounters
the well known difficulties, nevertheless for distances small in comparison to
the characteristic scale of these features, the quantum phenomena are indis-
tinguishable from those in Minkowski spacetime and in this sense standard
quantum theory is approximately valid. The same holds for gravitational
interactions. For the gravitational field of the Sun its practical infinity be-
gins not far from the outer edge of the Solar system, i.e. at distance of one
parsec. For the Milky Way it is even relatively closer, at the distance of
order 100 Mpc, just outside the outer edge of the Local Supercluster, where
the gravitational field is dominated by other clusters of galaxies. These
scales are small when compared with the characteristic scale related to the
cosmological constant. The observationally determined upper limit for Λ0 is
|Λ0| ≤ 10−52 m−2 and the characteristic length is at least 104 Mpc and is of
the order of the Hubble radius c/H0, where H0 is the present value of the
Hubble constant; the dark energy density corresponding to the upper value
of |Λ0| is 7 × 10−30 g cm−3. Thus both in the Solar system and the Milky
Way one can safely put Λ = 0. These simple scale comparisons are con-
firmed by a detailed calculation: the cosmological constant is undetectable
in the Solar system since the effect most sensitive to it, the perihelion shift
of Mercury, requires |Λ| ≥ 10−41 m−2 [7]. If the cosmological constant is
sufficiently close to zero, small perturbations of de Sitter or anti-de Sitter
spacetime may be fairly well approximated on macroscopic (i.e. smaller than
cosmological) scales by a Newtonian perturbation of Minkowski spacetime.
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The metric nonlinear gravity theories fit the frame theory but their main
problem with possessing the Newtonian limit is that they are governed by
various fourth order field equations while Ehlers’ theory requires to this
end the Einstein field equations. It might therefore seem that only few of
them, with very specific field equations, would admit the Newtonian limit.
However, although for a given NLG theory its field equations are of fourth
order in the original Jordan frame and in many other frames2, there is infinity
of frames wherein the field equations are of second order. Contrary to a
wide belief these theories are not inherently dynamically higher order ones.
Among the latter frames there is one distinguished by the canonical form of
its dynamics: it is Einstein frame. We employ this frame to show that any
L = f(R) gravity theory may be recasted in the form of GR plus a scalar
field representing a nongeometric spin-zero component of the gravitational
field; the scalar acts as a ‘matter source’ for the metric field in Einstein field
equations. Then after ‘switching off’ this additional gravitational degree
of freedom one may directly apply the frame theory to get in vacuum the
Newtonian limit of the theory under consideration. The procedure makes
sense if the theory is physically viable, i.e. if it is stable, what means
that its ground vacuum state, being either Minkowski, de Sitter or anti-de
Sitter spacetime, is dynamically stable. Our conclusion is: if a given metric
nonlinear gravity theory has a stable vacuum ground state, then it also has a
Newtonian limit, either exactly in the sense of the frame theory (if the ground
state is the flat spacetime) or approximately on a suitable distance scale
(if the background is curved). Stability implies the Newtonian limit. Hence
the existence of the Newtonian limit cannot work as an independent criterion
to establish which NLG theory fits the real world. There are still infinity of
gravity theories which are in this sense viable and a distinct selection rule
is necessary to reduce this collection. Such a rule is at present missing.

In this paper we investigate the Newtonian limit for L = f(R) gravity
theories, Sections 2 to 4. For more general Lagrangians a universal method
is not available yet and only special cases have been studied; we briefly
comment on them in section 5. Since the frame theory, being rigorous,
is far from the physical intuition, for the sake of completeness we discuss
in Appendix B the physical and geometrical obstacles preventing one from
defining a Newtonian limit in general relativity for Λ 6= 0, that is as a small
perturbation of de Sitter or anti-de Sitter spacetime.

We emphasize that our approach and results apply to purely metric
gravity theories. If one studies f(R) gravity in the purely affine or metric-
affine framework (Palatini formalism) one may get a satisfactory Newtonian
limit without invoking a ground state solution [8].

2 By a ‘frame’ we always mean in this context a set of dynamical variables of the theory.
These variables may be subject to arbitrary transformations and redefinitions, then
the new variables form a new frame.
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2. Stability of a ground state

We recall that both general relativity (GR) and all metric gravity theories
differ from Lagrangian classical field theory (CFT) in Minkowski spacetime
in that the relationship of the notion of energy and of the ground state is
reverted. In CFT the notion of the ground state is based on the concept
of energy, being the solution of the Lagrange equations of motion corre-
sponding to the lowest energy state; the latter does exist (except peculiar
cases as Liouville field theory) because the Hamiltonian is positive definite.
This formal definition agrees with an intuitive picture of the ground state
in which the field is absent or is covariantly constant and its symmetric
energy–momentum tensor (derived by taking a formal metric variation of
the Lagrangian) is either zero or Lorentz invariant.

As is well known in GR the Hamiltonian formalism is imperfect and in
particular cannot be used for defining the ground state. GR is a geomet-
rical theory and the ground state is defined in geometrical terms: it is the
solution of the field equations possessing the maximal 10-parameter (in di-
mension four) isometry group, i.e. admitting 10 independent Killing vector
fields. The solution is unique and depending on the value of the cosmolog-
ical constant Λ it is Minkowski (M), de Sitter (dS) or anti-de Sitter (AdS)
space3. The same holds for L = f(R) gravity theories, the only difference
being that for these theories the cosmological constant is not a fundamental
one appearing in L, as we shall see below it is merely the curvature scalar
of the maximally symmetric solution. And once the primary notion, that of
the ground state, has been identified in terms of the isometry group, the only
meaningful notion of energy in GR, that of total energy (being effectively
a charge) with respect to the ground state, may be introduced employing
only Einstein’s field equations and without any resort to the gravitational
Hamiltonian. This is Arnowitt–Deser–Misner (ADM) energy in the case of
Λ = 0 and Abbott–Deser (AD) energy for Λ 6= 0.

The fundamental assumption underlying the very notion of the Newto-
nian limit of any relativistic theory of gravity is that the ground state of the
theory is stable. Otherwise any small time dependent perturbation of the
Newtonian interaction (which is a specific weak-field solution of the relativis-
tic theory) will unboundedly diverge quickly destroying this interaction. In
short: stability of the background is a necessary condition for both viability
of the theory and existence of the Newtonian limit.

The first step in the search for the Newtonian limit of a gravity theory
consists in determining the ground state of the theory. For an NLG theory
with L = f(R) the field equations take on the form (in vacuum)

3 By anti-de Sitter space we always mean the covering AdS space without closed time-
like curves and with topology R

4.
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Eµν(g) ≡ f ′(R)Rµν+
1

6
gµν [f(R)−2Rf ′(R)]−f ′′′(R)R;µR;ν−f ′′(R)R;µν = 0 ,

(1)

here f ′ ≡ df
dR and we have employed that the trace Eµνgµν = 0 gives rise to

the equation for the scalar R,

f ′′(R)2R + f ′′′(R)R;αR;α +
1

3
[Rf ′(R) − 2f(R)] = 0 , (2)

where 2 ≡ gµν∇µ∇ν . The ground state spacetime should be maximally
symmetric, i.e. Minkowski, de Sitter or anti-de Sitter space [2,9]. This state
exists if and only if the field equations admit Einstein spaces, Rµν = 1

4λgµν

with R = λ = const, as a special class of solutions. From (1) or (2) one finds
that the curvature scalar λ satisfies the algebraic equation [2, 9, 10]

λf ′(λ) − 2f(λ) = 0 . (3)

In general Eq. (3) has multiple solutions giving rise to multiple vacua [11].
We exclude from considerations the degenerate Lagrangians for which any
value of λ is a solution of (3) (continuous spectrum, L = R2), the only solu-
tions are infinite (L = 1/R) or the equation has no solutions at all [2]. Thus
Eq. (3) has at least one and at most countable number of finite solutions.
Each ground state defines a separate dynamical sector of the theory, i.e.
a given Lagrangian corresponds to a number of distinct dynamical sectors,
each sector being actually a distinct gravity theory (for examples cf. [2]).
Classically there are no transitions between different sectors for the same
Lagrangian; may be distinct vacua are related via quantum tunnelling pro-
cesses.

Any root of this equation may be interpreted in a restricted sense as a
cosmological constant of the theory, Λ ≡ λ/4. In fact, a small perturbation
of the corresponding ground state has R close to λ as is the case of general
relativity where the ground state curvature is R = 4Λ. It is therefore nec-
essary to make a comment on the notion of the cosmological constant. In
general relativity Λ is both the constant appearing in the Einstein–Hilbert
Lagrangian, Λ = −1

2L(0), hence it explicitly appears in the fields equations
and in all solutions to them, and the curvature of the unique maximally sym-
metric ground state, Λ = λ/4. Yet in metric NLG theories this notion has
a very limited sense. If f(0) is infinite, as is in most Lagrangians employed
in cosmological applications, the definition is meaningless. If f(0) 6= 0 is
finite one may define Λ as −1

2f(0), however this quantity does not appear in
the field equations and influences the solutions only in an implicit way via
dimensional constants which are unavoidable to ensure the correct dimen-
sionality of the Lagrangian; e.g. for f(R) = 1

aeaR with a > 0 the unique
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ground state solution is dS space with λ = 2/a. Clearly for f(0) = 0 this
definition gives Λ = 0 while in general besides Minkowski space ground
state (λ = 0) there are other ground states with λ 6= 0. For example, for
f(R) = R+aR2+α−2R3, α > 0, there are three ground state solutions with
λ1 = 0, λ2 = α and λ3 = −α, defining three separate dynamical sectors of
the theory. Alternatively, Λ may be defined as λ/4 for each ground state,
then it has different values in different sectors of the theory. In what follows
we shall always use the notion of Λ only in the sense of the curvature of the
(stable) maximally symmetric ground state. It is relevant in that solutions
to the field equations may asymptotically tend to the ground state with
R = 4Λ.

A given solution to (3) is a genuine ground state of a gravity theory if it
is stable in this theory against purely gravitational excitations (no matter).
In the presence of some kind of matter the candidate ground state may be
stable or not. If some species of matter causes instability, this is either
an indication that this species is merely unphysical or that producing it
would be unreasonable and dangerous. Quantum massless fields make both
Minkowski and de Sitter space unstable [12] in general relativity and this
outcome is not regarded as an argument against validity of Einstein’s theory;
general relativity may be challenged only on completely different grounds.
What is relevant is the stability of pure gravity theory.

In general relativity the flat spacetime M is globally dynamically stable
[13] and de Sitter space (λ = 4Λ > 0) is globally nonlinearly stable too [14];
the case of anti-de Sitter space is distinct and we comment on it inAppendix B.

In an NLG theory with arbitrary L = f(R) one may investigate the sta-
bility employing the remarkable fact that general relativity plus a minimally
coupled scalar field is a universal Hamiltonian image of any such gravity
theory under a suitable Legendre map [1,2,15,16]. One may therefore apply
the methods developed in general relativity. The classical method is based
on positivity of total ADM energy for both gravitational field and a matter
source. The energy is positive provided the energy–momentum tensor for
the matter source satisfies the dominant energy condition (DEC) and the
latter holds if the interaction potential is nonnegative and attains minimum
at the ground state under consideration. Thus investigation of extrema of
the potential for the scalar field becomes an effective method for studying
the stability in NLG theories.

It should be noted that from the rigorous mathematical approach view-
point the classical method of proving stability based on the positivity of
energy, is of rather little reliability [17]. In proving the dynamical stabil-
ity (of evolution, meaning that there are no unboundedly growing modes)
only the exact field equations are relevant. However in the few cases in the
rigorous approach where matter sources are present, DEC does hold. It is
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therefore reasonable to conjecture that M, dS and AdS are globally nonlin-
early stable only if any self-gravitating matter (in the present case the scalar
component of gravity) does satisfy the condition.

In Jordan frame (JF) the L = f(R) gravity is described by the field
gµν which is a kind of a unifying field mixing the pure spacetime metric
(still equal to gµν) and a spin-0 component of gravity since the unifying field
carries 3 degrees of freedom. The field is decomposed into the components
carrying definite masses and spins in Einstein frame (EF); in the latter
frame it is a doublet EF = {g̃µν , φ}. The transformation from JF to EF
is a Legendre map being in this case a conformal rescaling of the original
metric [2,15,16]. The scalar component of gravity is defined as p ≡ df

dR , then
the definition is inverted to give R as a function of the canonical momentum
p, R(g) = r(p), i.e.,

f ′(R)|R=r(p) ≡ p .

For convenience the scalar is redefined as

p ≡ exp

(

√

2

3
κφ

)

,

where κ2 = 8πG/c4 and the Einstein frame metric is g̃µν ≡ pgµν . The

fourth order field equations (1)–(2) in JF are equivalent in EF to G̃µν(g̃) =
κ2Tµν(φ, g̃) for a minimally coupled scalar field with a self-interaction po-
tential

V (p(φ)) =
1

2κ2

[

r(p)

p
− f(r(p))

p2

]

(4)

and the equation of motion

∼

2φ =
dV

dφ
=

√

2

3
κp

dV

dp
. (5)

The Legendre transformation to EF should exist at least in a neighbourhood
of a ground state solution with R=λ; it occurs iff f ′(λ) 6= 0 and f ′′(λ) 6= 0.
Without loss of generality we assume f ′(λ) > 0 to preserve the metric sig-
nature. The two conditions additionally restrict the class of allowable La-
grangians [2].

The following proposition holds [2]: If

1

f ′′(λ)
− λ

f ′(λ)
> 0

the maximally symmetric solution of the theory for R = λ is stable against
gravitational (i.e. metric and the scalar field) perturbations4.

4 An almost equivalent stability criterion based on linear perturbation theory of RW
spacetimes in a fourth-order theory in Jordan frame has been given in [18]. The only
difference is that the strong inequality in this formula is replaced by a weak one there.
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Here some comments are in order.

1. The proposition is explicitly formulated in EF and states the stability
of the ground state in the framework of general relativity. The inverse
Legendre map is simply gµν = 1

f ′(λ) g̃µν , hence Minkowski, dS and

AdS spaces in EF are mapped onto M, dS and AdS spaces in JF
respectively, preserving the sign of the curvature scalar. Since it is
assumed that the Legendre map is regular in a neighbourhood of the
ground state in EF, the corresponding ground state solution in JF is
stable as well. We stress this mathematically obvious fact since there
were some suggestions in the literature that the stability might be
spoiled under transformation between different frames.

2. The proposition is of mathematical nature and its validity is indepen-
dent of the issue of which frame is physical. While considering f(R)
gravity one is usually interested in physics in Jordan frame, but in
this frame the stability problem is hard. Yet Einstein frame, which
is mathematically (though not physically) equivalent to JF, allows to
solve the problem in a neat and general way.

3. Long ago a paper by Pechlaner and Sexl [19] made impression that
fourth order equations of motion generate instabilities which are re-
vealed whenever a small amount of matter is present [9]. Actually the
higher order terms in an equation only signal the presence of addi-
tional field degrees of freedom; in the present case this is the scalar
component of gravity. It is the precise form of the full Lagrangian (in
JF) rather than the mere presence of higher derivatives in the field
equations that determines whether the ground state is stable or not.

4. Here stability means the dynamical stability (linear or exact) of the
ground state solution of a theory. Yet in the view of the obvious cos-
mological applications, most research in f(R) gravity have up to now
been focused on stability of RW spacetimes or other cosmological mod-
els using either the phase space method or a minisuperspace approach
(in both the cases the perturbations are spatially homogeneous) [20]
or a linear theory of inhomogeneous perturbations [18, 21]. However
a cosmological solution only exceptionally coincides with the ground
state one5 and we stress that it is the stability of the latter that is rel-
evant for the physical viability of the theory and for possible existence

5 Recall that a RW spacetime reduces to the flat one only for the flat or open spatial
sections and and then only provided that the cosmic scale factor is constant or a
linear function of the cosmic time respectively; these trivial cases are not studied
in these works. Anti-de Sitter space cannot at all be expressed in terms of the RW
metric, therefore these three approaches do not apply to it.
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of a Newtonian limit. Investigating solely the cosmological solutions
is in a sense misleading: as a number of specific examples show, a sta-
ble cosmological solution may have interesting features [21] while the
ground state is unstable making the underlying theory unphysical [2].
The approach based on positivity of total energy (in both the frames!)
or more precisely, on DEC for the scalar field, is universal and in this
sense is superior to the other methods.

3. Gravitational vacuum in Einstein frame

and the Newtonian limit

Assume that a given Lagrangian L = f(R) admits n different solutions of
the ground state equation (3) λi, i = 1, . . . , n, and each of the corresponding
maximally symmetric spacetimes with R = λi is stable; this means that
the Lagrangian describes n physically distinct gravitational sectors of the
theory. Consider the field equations in Einstein frame. These are G̃µν(g̃) =
κ2Tµν(φ, g̃) and the nonlinear wave equation (5) for φ. Clearly an arbitrary
solution to these equations cannot have the Newtonian limit. In the absence
of ordinary matter the scalar gravity acts as a specific matter source for
the metric field g̃µν and any solution contains contributions from the scalar
which are also present in the weak-field limit and perturb the Newtonian
interaction. Therefore in the search for a Newtonian limit one needs to study
“scalar gravity vacuum” solutions where the spin-0 component of gravity is
‘switched off’, i.e. φ = const. This may occur only for a stationary point
of the potential V (p(φ)) in Eq. (5). From the form (4) of the potential one
easily finds that dV/dp = 0 implies 2

pf(r(p)) − r(p) = 0. Recalling that

p = f ′(r) one gets that all stationary points are determined by

2f(r(p)) − r(p)f ′(r) = 0

and this equation viewed as an equation for r(p) coincides with Eq. (3).
Hence φ = const only for r(p) ≡ r(pi) = λi and conversely pi = p(ri) =
p(λi) = f ′(λi). The scalar field is in its ground state either in the ground
state of the entire gravitational doublet (the spacetime is M, dS or AdS
in both JF and EF, depending on the sign of λi) or in a spacetime which
in Jordan frame has the same curvature scalar R = λi as the ground state
of the given sector. Since by assumption f ′(λi) > 0, in general the scalar
gravity does not vanish in its ground state,

φi =

√

3

2

1

κ
ln f ′(λi) .

The energy–momentum tensor for φ reduces to its potential part,
Tµν(φi, g̃) = −g̃µνV (pi). Also the potential does not vanish and from (4)
one gets
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V (pi) =
1

2κ2

[

λi

f ′(λi)
− f(λi)

(f ′(λi))2

]

and applying Eq. (3) for λ = λi and following from it relation f(λi)/f
′(λi) =

λi/2 one finally arrives at

V (pi) =
λi

4κ2f ′(λi)
. (6)

The Einstein field equations for g̃µν may be written in the case φ = φi as

G̃µν(g̃) + Λi g̃µν = 0 , (7)

where

Λi ≡
λi

4f ′(λi)
(8)

is interpreted as a cosmological constant in the given sector of the theory
for this class of solutions. One sees here another difference between the two
frames: while in JF the cosmological constant refers only to the curvature of
the ground state, in EF it also appears in the field equations. (This constant
may be singled out in the field equations in general, i.e. when the scalar
field is present.)

Clearly the gravity theory (7) has the correct Newtonian limit (exact
or approximate). Coming back to Jordan frame one simply rescales the
metric by the constant factor, gµν = (f ′(λi))

−1 g̃µν , and the gravitational
interaction takes on the same Newtonian form in this frame too.

4. Minkowski space as the ground state

Finally we make some remarks about those L = f(R) gravity theories
which have the flat spacetime as the stable ground state solution6. For
λ = 0 Eq. (3) implies f(0) = 0 excluding a constant from the Lagrangian.
Assuming analyticity7 and normalizing f ′(0) to 1 one has8

L = f(R) = R + aR2 +

∞
∑

n=3

cnRn (9)

6 More precisely, we now consider the λ = 0 sector of a given theory.
7 Actually it is necessary to assume that f(R) is of C3 class at R = 0.
8 We use all the conventions of the book [22].
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with a 6= 0. The existence of the first two terms in the expansion is essential
for the equivalence of Jordan and Einstein frames. The conformal factor,
i.e. the scalar component of gravity, is

p = 1 + 2aR + O(R2)

and hence is positive in a neighbourhood of the ground state9. The stability
condition reduces now to a > 0 [16]. The “scalar gravity vacuum” simplifies
to φ = 0 or p = 1 and implies Tµν = 0. Then the theory becomes identical to
vacuum general relativity and applying Ehlers’ frame theory to appropriate
solutions to G̃µν = 0 (e.g. Schwarzschild one) one gets the desired correct
Newtonian limit of the theory. By taking the inverse conformal mapping
one finds gµν = g̃µν in JF and thus Gµν(g) = 0 and the same solutions
give rise in the weak-field limit to the Newtonian interaction. In summary,
any theory of the form (9) and a > 0 has the flat spacetime as a stable
ground state solution and exactly the Newtonian limit interaction described
by a potential U satisfying ∆U = 0.

It is difficult to derive this theorem working solely in Jordan frame.
Firstly, there is the problem of proving stability of the ground state. Sec-
ondly, when one finds out the stability criterion f ′′(0) > 0 employing pertur-
bation theory as in [18], there remains to decouple the massive scalar field
contribution from the pure massless gravitation, both contained and mixed
in the unifying field gµν . (Recall that the Newtonian interaction is a far
distance force and the very presence of the scalar gravity will distort it.) It
is impossible to decouple the scalar directly from the field equations (1)–(2),
one can only identify its contribution to specific solutions.

Exact solutions (in any frame) for the analytic Lagrangians are not
known10. Of course, the Schwarzschild metric is always a solution and in the
sense of Ehlers’ frame theory it guarantees the existence of the Newtonian
limit, but the physical interpretation of the metric (absence of the scalar
gravity) cannot be recognized on the level of the fourth order equations, i.e.
in Jordan frame. In the linear approximation a SSS solution for L = R+aR2

was found long ago by Pechlaner and Sexl [19] and Stelle [28]. The general
solution to the field equations (1) and (2) for the metric components g00 and
g11 depends on 3 parameters (before imposition of a boundary condition)
and for a > 0 is of the form (up to signs)

9 We notice in passing that, contrary to what is frequently met in the current literature
on f(R) cosmology, the condition R ≈ 0 does not necessarily imply that the gravita-
tional field is weak; as a matter of fact this occurs mainly in the cosmological setting
of general relativity. In general one may have R = 0 for arbitrarily strong gravity.

10 Few static spherically symmetric (SSS) solutions different from Schwarzschild’s one

are known in non-analytic cases: for L containing
√

R term [23] and for L = Rs,
s real [23–25]. If one assumes R = 0 the unique SSS solution is Schwarzschild’s
metric [26]. It is worth noting that a SSS solution different from Schwarzschild’s one
can be found for L being a non-analytic function of the Weyl tensor [27].
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1 +
c1

r
+

c2

r
e−mr +

c3

r
emr,

the sum of the Newtonian and Yukawa potentials. m = (6a)−1/2 is easily
identified in EF as the mass of the scalar gravity. The analogous result
was recently found in the linear approximation for the general Lagrangian
(9) [29]. Thus if the scalar degree of freedom is switched off (c2 = c3 = 0)
the Newtonian interaction is a weak-field limit of any SSS solution for each
analytic Lagrangian. For a < 0 the approximate solution is complex in the
Yukawa terms (the mass is imaginary) and its physical interpretation given
in [29] is rather obscure or, if only its real part is taken into account, it
quickly oscillates [19]. Actually this behaviour just signals the instability
(the corresponding time-dependent modes are divergent) which is immedi-
ately recognized in Einstein frame.

At first sight the theorem that the stability implies the Newtonian limit
is perhaps a little surprising. One might a priori imagine gravity theories
whose ground state is stable under, say, radiative mode transmission while
they do not admit the Newtonian interaction. This may occur for some
specific theories while for L = f(R) Lagrangians it is impossible. As already
mentioned in Section 2, this class of gravity theories is distinguished in the
entire space of possible relativistic theories of gravitation by the fact that
they can be Legendre transformed into GR plus the scalar field. As long as
the ordinary matter is not included, these theories merely represent general
relativity in disguise.

In summary, those L = f(R) theories where flat spacetime is unstable,
are rejected as unphysical and those for which this spacetime is stable contain
as a subclass of solutions all the solutions of vacuum general relativity (both
in Jordan and Einstein frames). This subclass (and only this one) contains
solutions which subject to the specific mathematical procedure give rise to
rigorous Newton’s gravity theory.

5. More general Lagrangians

The Legendre transformation from Jordan to Einstein frame works for
all Lagrangians L = f(gµν , R,Rαβ) (no dependence on the Weyl tensor) and
whose Hessian with respect to Rαβ does not vanish [15]. In EF the unifying
field gµν is decomposed into a metric g̃µν (which now is not conformally
related to gµν), a massive scalar field χ and a massive spin-two field φµν

actually being a “ghost” (what is not so disastrous as it might seem, cf. [30]).
The indefiniteness of the energy–momentum tensor for φµν causes that the
general-relativistic method of studying stability of the ground state (based
on DEC) does not work. One can only study various Lagrangians case
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by case. There are arguments that the most physically interesting case
corresponds to the simplest regular Lagrangian in this class,

L = R +
1

3m2
(R2 − 3RµνRµν) . (10)

The coefficients are so chosen that the scalar gravity vanishes and the grav-
itational field is a doublet consisting of two spin-2 fields carrying together
seven degrees of freedom [31]; m is the mass of the non-metric component of
gravity (φµν). The ground state in both the frames is Minkowski spacetime
(in EF it is supplemented by φµν = 0) and is linearly stable [31], hence
the ghost-like nature of the massive gravity does not result in instability.
Metrics satisfying Rµν = 0 are always solutions to (10) and this is sufficient
to conclude that the theory has the correct Newtonian limit. (No exact SSS
solutions different from Schwarzschild metric are known.)

Finally we comment on theories explicitly depending on the Weyl tensor.
In this case Einstein frame does not exist [32] and all frames obtained via
various Legendre transformations from the original Jordan frame give rise to
fourth-order equations of motion what makes investigations of these theories
rather hard. In the special case of

L = R +
√

3a|CαβµνCαβµν |1/2, (11)

a < 1/4 or a > 1, the Lagrangian is a homogeneous function of order 1 of
the Riemann tensor, as in general relativity. For this theory all exact SSS
solutions have been found [27] and they do not include Schwarzschild met-
ric. A preliminary calculation shows that the maximally symmetric spaces,
i.e. flat, dS and AdS spaces are not solutions too (though it needs a deeper
investigation) and it is unclear whether a ground state may at all be de-
fined. If it cannot it would be a clear indication that the Lagrangian (11) is
unphysical.

6. Conclusions

As regards the existence of the Newtonian limit the L = f(R) gravity
theories do not differ from general relativity. If their ground state solution,
being Minkowski, de Sitter or anti-de Sitter spacetime, is dynamically stable
(as is the case of general relativity with arbitrary cosmological constant),
then the Newtonian limit does exist. The limit is either rigorously defined
in the case Λ = 0, i.e. for the flat ground state solution, or approximate
otherwise, the approximation is valid for length scales small compared to
the cosmological scale being of the order of |Λ|−1/2. Stability of the ground
state is a necessary and sufficient condition for the Newtonian force to exist,
at least on macroscopic scales. This unexpected theorem is due to the fact
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that in vacuum this class of gravity theories is dynamically equivalent to
general relativity (plus a scalar field).

For more general Lagrangians depending on Ricci and Weyl tensors the
situation is more complex. Stability of a ground state spacetime remains the
necessary condition for the Newtonian limit to exist also in this case but now
there is no universal, effective and simple method for checking the stability
and one must resort to perturbation theory. Next, one must show that the
fourth-order field equations (in the case of Weyl tensor) of the theory admit
exact solutions having the appropriate Newtonian limit.

I am grateful to Michael Anderson, Piotr Bizoń, Piotr Chruściel, Zdzisław
Golda, Andrzej Staruszkiewicz and Andrzej Trautman for extensive discus-
sions, helpful comments and explanations.

Appendix A

Problems with solutions in general relativity possessing the exact
Newtonian limit

In the two appendices we discuss some problems with obtaining the New-
tonian limit in general relativity for both Λ = 0 and Λ 6= 0. Most of the
material is by no means new, but for the sake of conceptual completeness
and the reader’s convenience we present it here. In this appendix we deal
with the case Λ = 0, then there exist exact relativistic solutions giving rise
to the rigorous Newtonian limit.

In Ehlers’ frame theory the Newtonian limit is defined as a limit for
particular classes of solutions (families of spacetimes) of GR depending on
some free parameters. As the specific examples in the third reference in [3]
show, the method of the frame theory works properly under two assump-
tions. Firstly, a foliation of the spacetimes by spacelike hypersurfaces must
be chosen in such a way that after performing their linearization the lin-
earized solutions become perturbations of the ground state (flat Minkowski
spacetime) and the time coordinate labelling the foliation becomes the time
coordinate in the global inertial reference frame being the (almost) proper
frame for the matter source. Geometrically the latter feature means that the
foliating hypersurfaces flatten upon the linearization. This time coordinate
of the proper inertial frame in Minkowski spacetime is then identified with
the absolute time in Galilei spacetime. Secondly, as the case of the FLRW
cosmological spacetime shows [3], a coordinate system compatible with the
foliation should be carefully chosen, otherwise the derived Newtonian limit
of the relativistic spacetimes does not resemble at all the ordinary New-
ton’s gravity. In fact, in the standard (Lagrangian) Friedmann coordinates
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in the Newtonian limit the gravitational field strength is space independent
(and time dependent) and the “Newtonian scalar potential” does not exist.
(Physically this is reasonable showing that the infinite homogeneous distri-
bution of matter, static or evolving, is beyond the scope of Newton’s gravity
theory.)

The first condition is crucial. For example, for Schwarzschild spacetime
expressed in the standard coordinates (t, r, θ, φ) where t is the parameter on
the trajectories of the time-like Killing vector ∂/∂t, one gets in the New-
tonian limit the gravitational acceleration 1/r2, while after a coordinate
transformation

t = T cosh R , r = T sinhR ,

the 3-spaces become hyperboloids with the variable curvature scalar. If
one takes the Newtonian limit in these coordinates following the Ehlers’
prescription, the temporal and spatial metrics describing Galilei spacetime
do not acquire their proper forms and the two conditions (given in [3])
for convergence of a relativistic class of spacetimes to Newtonian gravity
are not satisfied; actually the Newtonian limit for this foliation does not
exist. This result is easily understood: Schwarzschild spacetime in (T,R)
coordinates reduces in the limit of vanishing mass to flat spacetime foliated
with the hyperboloids of constant negative curvature (Lobatchevski spaces)
and this is a fully relativistic description of the spacetime. Yet Schwarzschild
spacetime in Painlevé–Gullstrand coordinates is foliated by flat spaces and
the metric is time independent and in the limit of vanishing mass this metric
reduces to that in an inertial frame in flat spacetime (i.e. the foliating spaces
become hyperplanes); for this metric the Ehlers’ method works well giving
rise to the correct Newtonian limit. It is then essential to properly identify
the appropriate foliation of the spacetime.

Furthermore, there are mathematical subtleties causing that in general
a linearized form of an exact solution written in arbitrary parameterization
need not be a solution to the linearized field equations. In fact, in general
relativity (for Λ = 0) one linearizes the Einstein field equations around the
flat spacetime writing in Cartesian coordinates gµν = ηµν+hµν and assuming
that both |hµν | ≪ 1 and the derivatives |hµν,α| ∼ |hµν,αβ | ∼ |hµν |. Then in

the harmonic gauge for h̄µν = hµν − 1
2ηµνhα

α one gets the equations

2h̄µν = −16πGTµν (A.1)

with appropriately linearized Tµν . This means that one restricts the class
of allowable solutions to those satisfying these conditions. This is the case
of radiation fields (plane waves). Yet a linearized exact solution is merely
of the form gµν = ηµν + hµν with |hµν | ≪ 1 and no restrictions on the

derivatives. For example, if hµν = O(1
r ) then |hµν,α| = O(h2) etc. and a
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weak-field approximation may not be a solution of (A.1). This occurs for
the linearized Schwarzschild solution in the standard coordinates,

ds2 = −
(

1 − 2M

r

)

dt2 +

(

1 +
2M

r

)

dr2 + r2dΩ2 ,

for M/r ≪ 1; the linearized Einstein tensor (with no gauge imposed) does
not vanish, GL

00(h) = 12M/r3. On the other hand, once a differential equa-
tion has been generated it forgets the conditions under which it was derived
and the space of solutions is determined solely by its form. Thus Eq. (A.1)
in vacuum has no static solutions which are globally bounded and the con-
ditions for the derivatives cannot hold. Yet for the linearized Schwarzschild
metric expressed in the isotropic coordinates,

ds2 = −
(

1 − 2M

r̄

)

dt2 +

(

1 +
2M

r̄

)

(

dr̄2 + r̄2dΩ2
)

,

the perturbations satisfy the harmonic gauge condition and are a solution
to Eq. (A.1), clearly they give rise to the Newtonian acceleration 1/r̄2.

Appendix B

The issue of a Newtonian limit in de Sitter and AdS spaces

Here we discuss physical and geometrical arguments showing that no
Newtonian limit does exist in the rigorous sense in de Sitter or anti-de Sitter
space: the Newtonian field may be defined only ‘locally’, i.e. on length
scales much smaller than |Λ|−1/2, it cannot fill the entire spacetime. As
it was discussed in Appendix A the heart of the problem lies in geometry
the ground state spacetime, whether it admits a foliation and a coordinate
system giving rise to a structure which is close to Galilei spacetime.

De Sitter space is globally dynamically stable in general relativity. Yet
its geometrical structure does not allow to define the Newtonian limit in
the framework of Ehlers’ frame theory. In fact, in the literature there are
known eleven families of coordinate systems exhibiting various features of
dS geometry and these can be divided into three groups corresponding to
three distinct foliations of the spacetime [33].

(i) Standard cosmological coordinates. The spacetime is sliced with space-
like 3-spheres S3 which are O(4) invariant. The coordinate system is
global (covers the entire manifold) and the spaces are almost exponen-
tially expanding (or contracting) in the proper time of the observers
at rest. The metric exhibits an everywhere time-like conformal Killing
vector. A foliation by 3-spheres can also be done in terms of static
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coordinates (the metric is time-independent), which cover only a half
of dS (the spaces consist of two hemispheres). The static coordinates
make explicit the hypersurface orthogonal Killing vector which is time-
like only within the cosmological event horizon.

(ii) The flat cosmological coordinates which are global if the conformal
time is employed. The spaces are just flat euclidean spaces which
are E(3) invariant. The spatial metric is conformal-time dependent
and this time coordinate defines a conformal time-like Killing field.
Another slicing by flat hyperplanes may be introduced in a region of
dS manifold using conformally Minkowski coordinates. The metric is
also time-dependent and no (conformal) Killing vector is generated by
this time coordinate.

(iii) The open (hyperbolic) coordinates. The foliating spacelike hypersur-
faces are isometric to the homogeneous Lobatchevski space H3 of con-
stant negative curvature which is O(1, 3) invariant. The coordinates
cover only a half of dS. The hyperboloids H3 expand or contract al-
most exponentially in the time variable which generates a conformal
time-like Killing field.

None of these foliations is in general superior to the others and none of
them is compatible with Galilei spacetime and thus it is clear that the frame
theory cannot provide a satisfactory notion of Newtonian limit for de Sitter
space.

The case of anti-de Sitter space is distinct. This manifold has topology
R

4 and is globally static and though is not globally hyperbolic, at first sight
it should be more likely to have a structure close to Galilei spacetime. Also
this manifold does not admit a foliation by static spacelike hyperplanes,
but the main difficulty lies in properties of motion of test particles and
metric perturbations. Contrary to the case of dS spacetime, AdS does admit
a natural global static decomposition into space and time,

ds2 = a2[− cosh2 r dt2 + dr2 + sinh2 r(dθ2 + sin2 θ dϕ2)] , (B.1)

(the cosmological constant is Λ = −3/a2) where the Lobatchevski hyper-
boloids H3 given by t = const are orthogonal to the globally time-like Killing
vector ∂/∂t and the radial coordinate r is distinguished among many ra-
dial variables in H3 by the feature that it directly measures the distance
along spatial radial geodesic lines, s = ar. However the hyperboloids, being
spaces of constant curvature, do not flatten under the linearization (r → 0
or r → ∞). Further, test particles behave in a rather bizarre way in this
spacetime. A particle with an initial position r = r0 > 0 (there is a co-
ordinate singularity at the centre r = 0 while H3 is a homogeneous space)
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cannot escape to the spatial infinity r = ∞ and it cannot remain at rest even
if its initial three-velocity is zero. The particle follows a radial geodesic and
falls towards the centre and then recedes farther in the opposite direction
until reaches the point r = r0 at the distance

L = 2a ln
(

Ea +
√

(Ea)2 − 1
)

,

where E is the integral of energy for the geodesic line subject to cosh r0 =
Ea > 1. Then the particle falls down back and returns to the starting point.
In other terms the particle oscillates between the opposite points at r = r0

like a pendulum. The period of these oscillations is universal11 (i.e. is
independent of r0) and is 2πa in the proper time s and 2π in the coordinate
time t. The three-velocity of the particle has modulus equal to (in units
c = 1)

[1 − (Ea)−2 cosh2 r]1/2

and not far from the centre the velocity becomes relativistic. The fundamen-
tal reason for these bizarre features of test particle motion in the covering
AdS space is that no analogue of the Hopf–Rinow theorem for Riemannian
manifolds exists for Lorentzian spacetimes and that AdS space is not glob-
ally hyperbolic [34]. Hence for two test particles, each performing this kind
of motion, it is very hard to define the Newtonian interaction.

This is, however, not the end of the story. AdS space is globally lineariza-
tion stable [35] and nonlinearly stable for finite time [36] (at present it is only
believed that it is globally nonlinearly stable). Yet if a spacetime is weakly
asymptotic to the exact AdS space to the infinite past and future, then it is
globally isometric to the exact AdS spacetime [37]. A regular (i.e. no singu-
larities) perturbation of AdS remains close to it for long time (or possibly
globally) but cannot tend to this spacetime at the infinity. Perturbations in
AdS neither disappear at the infinity nor tend to a stationary perturbation
in a far future, they are for ever traveling through the background. This
is in marked contrast to the Λ = 0 case where small global perturbations
of Minkowski space disperse in time and asymptotically tend to this space-
time. In flat spacetime the Newtonian interaction of a system of massive
bodies can be unambiguously defined because if in a distant region of space
a gravitational perturbation arises, it passes through the system in a finite
time interval and then fades away at the infinity. Yet in AdS space the
perturbation will be present for ever and inextricably disturb interactions
between the bodies.

The corollary is that dS space due to its geometrical structure and AdS
space due to both its geometrical structure, test particle motion and the be-
haviour of the gravitational perturbations (in particular the non-existence of

11 This periodicity in the covering AdS is a residual effect of the time periodicity of the
original AdS space containing closed time-like curves.
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stationary excitations vanishing at the infinity), do not admit the Newtonian
limit in the strict sense of the notion in the framework of general relativity
with Λ 6= 0.
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