
Vol. 39 (2008) ACTA PHYSICA POLONICA B No 11

EINSTEIN–SMOLUCHOWSKI EQUATION
AND TIME-DEPENDENT MODULATION

OF GALACTIC COSMIC RAYS∗

M.V. Alaniaa,b†, R. Modzelewskaa‡, A. Wawrzynczakc§

aInstitute of Mathematics and Physics, University of Podlasie
3 Maja 54, 08-110 Siedlce, Poland

bInstitute of Geophysics, Georgian Academy of Sciences, Tbilisi, Georgia
cInstitute of Computer Science of University of Podlasie

Sienkiewicza 51, 08-110 Siedlce, Poland

(Received September 25, 2008)

We develop three dimensional (3D) hybrid model of galactic cosmic
ray (GCR) propagation in the heliosphere based on the Parker’s transport
equation. The hybrid model consists of two parts-stationary for high rigidi-
ties of GCR particles and non-stationary for relatively low rigidities. It is
supposed that scattering of GCR particles in the irregularities (turbulence)
of the interplanetary magnetic field (IMF) can be considered as a Brownian
motion, and the Einstein–Smoluchowski relation 〈x2〉 = bKtsc is valid; 〈x2〉
is the mean-square diffusion distance of the GCR particles, K is diffusion
coefficient and tsc scattering time; b = 2, 4 and 6 for one, two and three
dimensional space, respectively. We show that a construction of the hybrid
model is possible owing to the dependence of diffusion coefficient on the
rigidity of GCR particles. We applied the hybrid model to describe the
Forbush effect of the GCR intensity. For the assumed Forbush effect the
hybrid model consists of the stationary part for rigidities > 21 GV and of
the non-stationary part for rigidities < 21 GV. This model needs ∼ 30%
less time for numerical solution than the non-stationary model.

PACS numbers: 96.40.Cd, 96.50.Ci, 96.50.Fm

1. Introduction

Solar activity is generally characterized by number of sunspots on the
surface of the Sun, changing from year to year. The increase and drop
of sunspot number is called a solar cycle. Reasonably well established
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average cycle is the 11-year periodicity; it lasts from one minimum (period
when few sunspots appear or they are not visible at all) to another mini-
mum epochs. At the maximum epochs (a period with a peak in the sunspot
number), the polarity of the Sun’s global magnetic field reverses, so that the
North magnetic pole becomes the South and vice versa. As far every 22 years
the magnetic polarity of the Sun is returning to its earlier state, there exists
the 22-year solar magnetic cycle. The exceptional phenomenon for the ac-
tivity of the Sun is solar wind — an extension of the outer atmosphere of the
Sun (the corona) into interplanetary space [1-2]. Owing to the rotation of
the Sun there are observed the 27-day periodicities of different parameters
of solar activity and solar wind. Also, there are observed the outstanding
solar flares and the intensive solar coronal mass ejecta (CME) causing the
powerful disturbances in the interplanetary space. They appear in time by
chance, sporadically, without any regularity, increasing its frequency in the
maximum epochs of solar activity. Consequently, the interplanetary space is
filled with the electro-magnetic fields consisting of the regular and turbulent
components developing dynamically with different time and spatial ranges.
This space around the Sun, where the solar wind dominates, is called the
heliosphere.

Galactic cosmic ray (GCR) protons and electrons, as well anomalous
cosmic rays propagating through the heliosphere are exposed to the influ-
ence (modulation) of the diverged solar wind, and the combination of the
turbulent (to be stochastic with the zero mean) and regular (averaged) inter-
planetary magnetic field. The modulation of the GCR intensity is generally
characterized with different long and short scale quasi periodic variations
(22-years, 11-years and 27-days) and short time (a few days) irregular changes.
A short time decrease and recovery of the GCR intensity during 8–10 days
is called the Forbush effect [3-4]. In general, there are observed two types of
Forbush effects: (1) sporadic Forbush effects characterized by the asymmet-
ric time profile — the GCR intensity rapidly decreases during one-two days
and then it recovers gradually in 5–7 days, and (2) recurrent Forbush effects
with the (approximately) symmetric decrease and recovery time-profiles of
the GCR intensity and a duration of 8–12 days. Sporadic Forbush effects
of the GCR intensity are related with the shock waves and magnetic clouds
in the interplanetary space created after the outstanding solar flares and
the intensive solar CME [5-8]. The recurrent Forbush effects of the GCR
intensity are associated with the co-rotating interaction regions (CIRs) in
the interplanetary space [9-12] and with the active heliolongitudes existing
for the several solar rotations.
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In this paper we consider two mathematical models of GCR transport to
describe the Forbush effect: (1) the non-stationary 3D model, and
(2) 3D model, stationary for high rigidities and non-stationary for relatively
low rigidities of GCR particles. Further in this paper, the last model will
be called as a “hybrid” model of Forbush effect. Generally, the model of the
Forbush effect is very complicated for the three dimensional case; it is true,
that besides the complexity of the construction of the compatible numerical
model, there is a problem of large computational time requiring its solution.
We use both — non-stationary and hybrid models to describe the recurrent
Forbush effect of the GCR intensity, and show that the hybrid model gives
a possibility to reduce significantly a computer time for numerical solution.
We demonstrate that it is possible owing to the dependence of the diffusion
coefficient on the rigidity of the GCR particles. Therefore, our aim is to con-
struct the hybrid 3D model of the Forbush effect, and then by comparing the
expected temporal changes of the GCR intensity and rigidity spectrum of
the Forbush effect to show its compatibility with the non-stationary model.

2. Motivation

According to the quasi linear theory (QLT) [13-16], the nonlinear guid-
ing center theory (NLGCT) [17] and weakly nonlinear theory (WNLT) [18]
a diffusion coefficient K depends on the rigidity R of the GCR particles as,
K = ARα for the R > 1GV [19-20]. The parameter α is determined by
the state of the interplanetary magnetic field (IMF) turbulence, particularly
α = 2 − ν, where ν is the exponent of the power spectral density (PSD) of
the IMF turbulence (PSD ∝ f−ν, and f is the frequency). The dependence
of diffusion coefficient of the GCR particles on the parameter α is assumed
for the IMF turbulence with a Gaussian distribution.

A propagation of the GCR particles through the regular and stochastic
(turbulent) IMF is described by the transport equation [21–28]:

∂N

∂t
= ∇i(Kij∇jN) −∇i(UiN) +

1

3

∂

∂R
(NR)(∇iUi) . (1)

where N and R are density and rigidity of cosmic ray particles, respectively;
Ui is the solar wind velocity, t time; Kij is the anisotropic diffusion tensor of
GCR, which can be taken, e.g. for the three dimensional IMF [29–30]. We
set the dimensionless density f = N/N0, time τ∗ = t/t0, distance ρ = r/L,
and rigidity R∗ = R/1GV, where N and N0 are density in the interplanetary
space and in the local interstellar medium (LISM), respectively; N0 = 4πI0,
where the intensity I0 in the LISM [31-32] has the form:

I0 =
21.1T−2.8

1 + 5.85T−1.22 + 1.18T−2.54
,
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T is kinetic energy in GeV (T =
√

R2 + 0.9382 − 0.938), t0 is the character-
istic time of GCR modulation corresponding to the change of the electro-
magnetic conditions in the modulation region for the certain class of GCR
variation; r is the radial distance and L is the size of the modulation region.
For the case of Forbush effect we assumed that t0 is equal to the Sun’s com-
plete rotation period (27-days ∼ 2.3328 × 106 s) and the size of modulation
region L equals 30 astronomical unites (AU). The Eq. (1) for the dimension-
less variables f , τ∗ and ρ in the spherical coordinate system (ρ, θ, ϕ) can be
written:

A12
∂f

∂τ∗
= Mf + A11

∂f

∂R
, (2)

where

M = A1
∂2

∂ρ2
+ A2

∂2

∂θ2
+ A3

∂2

∂ϕ2
+ A4

∂2

∂ρ∂θ
+ A5

∂2

∂θ∂ϕ
+ A6

∂2

∂ρ∂ϕ

+ A7
∂

∂ρ
+ A8

∂

∂θ
+ A9

∂

∂ϕ
+ A10 . (3)

The coefficients A1, A2, ..., A12 are functions of the spherical coordinates
(ρ, θ, ϕ), rigidity R of GCR particles and time τ∗.

Equation (1) describes a normal diffusion of the GCR particles, for which
is accepted that a mean squared displacement 〈x2〉 of the GCR particles is
proportional to the scattering time tsc, as 〈x2〉 ∝ tsc. A statement of the
normal diffusion (〈x2〉 ∝ tsc) is based on the postulation that the motion
of the GCR particles in the irregularities (turbulence) of the IMF can be
considered as a Brownian motion [27, 33].

In 1905 and 1906 Einstein and Smoluchowski independently published
the explanation of the Brownian motion phenomena based on the kinetic the-
ory of matter [34-36]. They found that the irregular motions of the grains
are caused by subsequent collisions with medium particles and the follow-
ing relation (the Einstein–Smoluchowski relation) takes place, 〈x2〉 = bKtsc;
〈x2〉 is the mean squared displacement of a diffusing particle, K diffusion
coefficient and tsc a scattering time; b = 2, 4 and 6 for one, two and three
dimensional space, respectively. Late, in 1908, the same relation was ob-
tained by Langevin [37] based on the solution of the stochastic differen-
tial equation, well-known as the first generalized Langevin-equation for the
stochastic dynamical system [37]. Late Wiener, [38–39] provided a complete
mathematical description of the Brownian motion as a stochastic process
(Wiener process). The conception of normal diffusion of GCR particles
subtended in the Eq. (1) is based on the assumption that the motion of
GCR particles in the irregularities (turbulence) of the IMF can be consid-
ered as a Brownian motion and the Einstein–Smoluchowski relation is valid
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[34–36, 27] particularly, the magnetic irregularities (turbulence) of the IMF
in the solar wind are the centers of the scattering of the GCR particles with
the energies of 109–1012 eV. In case of GCR modulation by the solar wind,
the mean displacement L =

√

〈x2〉 of GCR particles in the stochastic IMF
is accepted (in Eq. (1)) as a size (radius) of the spherical modulation region
of GCR.

Due to dynamical extension of the solar corona in the interplanetary
space the electro-magnetic conditions continuously change with the rate of
the solar wind velocity U in the heliosphere. So, the average convection time
tc of the changes of the electro-magnetic conditions on the distance L equals
tc = L/U , while the average scattering time tsc on the same distance L
equals tsc = L2/(bK), according to the Einstein–Smoluchowski relation. We
assume that the length L is equal to the radius of the modulation region. We
set a modulation parameter τ , as a ratio of the scattering time tsc of GCR
particles and the time tc of the change of the electro-magnetic conditions in
the modulation region, τ = tsc/tc = (UL)/(bK), where tsc = L2/(bK) and
tc = L/U [e.g., 40]. The modulation parameter τ = (UL)/(bK) determines
a character of diffusion of GCR particles in the interplanetary space. Diffu-
sion coefficient K depends on the rigidity R of GCR particles as, K = βRα

for R > 1GV, according to [14, 16–18]; the coefficient β includes any spatial
changes of diffusion coefficient and normalization multiplier. For α = 2− ν,
the modulation parameter τ = (UL)/(βb)Rν−2. It seems that τ depends
single-valued on the rigidity R of the GCR particle for the other equal pa-
rameters U,L, β, b and ν. Thus, the modulation parameter τ determines
a character of diffusion versus the rigidity R of the GCR particles. Partic-
ularly, when τ < 1 a modulation of GCR can be considered as a strongly
stationary process (∂f/∂τ∗ = 0 in Eq. (2)); when τ > 1, a modulation of
GCR is non-stationary (∂f/∂τ∗ 6= 0 in Eq. (2)), while when τ ≈ 1, there is
a special quasi-stationary case. In this case we have to estimate the contri-
bution of the term ∂f/∂τ∗ in Eq. (2) in order to find a transition rigidity R
separating stationary and non-stationary regimes of GCR modulation.

3. Theoretical modeling

Generally the full transport equation (2) is very complicated, even, after
some simplification e.g.:

1. when ∂f/∂R = 0, Eq. (2) is a parabolic time-dependent three dimen-
sional (3D) equation (Cauchy problem)

∂f

∂τ∗
=

Mf

A12
, (4)
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2. when ∂f/∂τ∗ = 0, Eq. (2) is a stationary, but it remains as a 3D
Cauchy problem with respect to the rigidity R

∂f

∂R
= −Mf

A11
. (5)

We rewrite the equation (2) as:

∂f

∂R
=

(

A12
∂f

∂τ∗
− Mf

)

/

A11 . (6)

The proposing scenario for modeling of the recurrent Forbush effect concerns
with the assumption that the temporal changes of the exponent γ of the
rigidity spectrum ((δD(R))/(D(R)) ∝ R−γ) [41-45] of the recurrent Forbush
effect is related with the temporal changes of the exponent ν of the PSD
of the IMF turbulence. It was shown [41-45] that the temporal changes of
the rigidity spectrum of the Forbush effect of the GCR intensity found by
neutron monitors experimental data can be provided from the theoretical
modeling only if the changes of the IMF turbulence are considered. So,
we assume that the Forbush effect of the GCR intensity is caused by the
changes of the diffusion coefficient due to the varying of the IMF turbulence.
However, we do not exclude important roles of the other parameters of solar
wind, which are not included in the present model. We consider two models
of the recurrent Forbush effect of the GCR intensity: (1) the non-stationary
model, and (2) the hybrid model. In the both models of the Forbush effect
a change of diffusion coefficient K takes place in the disturbed vicinity of
the interplanetary space restricted in the heliolongitudes ϕ ∈ (80◦, 280◦),
heliolatitudes θ ∈ (60◦, 120◦) and distance r < 15AU.

3.1. Non-stationary model

For the non-stationary model (Eq. (6)) the parallel K‖, perpendicular
K⊥ and drift diffusion coefficient Kd of cosmic ray particles change as:

K‖ = K0K(r)K(R, ν(ϕ, τ∗)) ,

K0 = 4.5 × 1021cm2/s ,

K(r) = 1 + 0.5
( r

1AU

)

,

K(R, ν(ϕ, τ∗)) = R2−ν(ϕ,τ∗) ,

ν(ϕ, τ∗) = 0.8 − 0.2 (cos(2πτ∗) − 0.35) − 0.1(cos ϕ − 0.2) ,

K⊥ =
K‖

1 + ω2τ ′2
,
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Kd = K‖
ωτ

′

1 + ω2τ ′2
,

ωτ
′

= 300BλR−1 , (7)

where the magnitude B of the IMF equals 5.6 × 10−5 Gauss at the Earth
orbit and changes according Parker’s spiral field model and the mean free
path λ ≈ 1012 cm for 10 GV of GCR particle. The solar wind velocity
U = 400 km/s throughout the modulation region.

The Eq. (6) was transformed to the algebraic system of equation using
the implicit finite difference scheme (a grid is 91×91×72×25×81; 91 steps
in distance, 91 in heliolatitudes, 72 in heliolongitudes, 81 in time and 25 in
rigidities) and then solved by the Gauss–Seidel iteration method.

The boundary conditions for non-stationary model have a form:

f |r=30 au = 1 ,

∂f

∂r
|r=0 = 0 ,

∂f

∂θ
|θ=0◦ =

∂f

∂θ
|θ=180◦ = 0 ,

f |ϕ=ϕ1
= f |ϕ=ϕL+1

,

f |ϕ=ϕ−1
= f |ϕ=ϕL−1

.

The initial condition with respect to the rigidity R (25 steps up to 1GV) is
f |R=150 GV = 1 but with respect to time τ∗ (for each fixed rigidity R) it is
f(ρ, θ, ϕ,R, τ∗)|τ∗=0 = f(ρ, θ, ϕ,R).

3.2. Hybrid model

To construct the hybrid model we have to find the transition rigidity R
from the stationary to non-stationary regime. For this purpose we examine
a behavior of the modulation parameter τ versus the rigidity R of the GCR
particle, τ = (UL)/(βb)Rν−2. In Fig. 1 there are presented the changes of
the modulation parameter τ versus the rigidity R of the GCR particle for
the determined values of the exponent ν of the PSD of the IMF turbulence,
(e.g. ν = 0, 0.8, 1.5).

As was mentioned above, when τ < 1 a modulation of GCR can be con-
sidered as a strongly stationary process (∂f/(∂τ∗) = 0 in Eq. (6)), while
when τ > 1, a modulation of GCR is non-stationary (∂f/(∂τ∗) 6= 0 in
Eq. (6)); τ ≈ 1, is a special quasi-stationary case. Fig. 1 shows that a mod-
ulation of GCR can be considered either stationary (steady state) or non-
stationary (time-dependent) versus the rigidity R of GCR particles. As it
can be seen from Fig.1 the stationary approximation is valid for the higher
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Fig. 1. The changes of the modulation parameter τ versus the rigidity R of the

GCR particle for the various values of the exponent ν of the PSD of the IMF

turbulence (ν = 0, 0.8, 1.5).

rigidities (e.g. R > 21GV, τ < 1) of the GCR particles, while for the
lower rigidities the non-stationary approximation should be applied (e.g.
R < 21GV, τ > 1). We show below that this approaching gives a possibility
to optimize the time of the numerical solution of the transport equation.

In the hybrid model all parameters are changing as in non-stationary
model (Eq. (7)) except the exponent ν of the PSD of the IMF turbulence.
The exponent ν changes as:

• ν(ϕ) = 0.8 − 0.31 (cos ϕ − 0.2)
for the rigidities>21GV (stationary stage) versus the heliolongitudes ϕ

• ν(ϕ, τ∗) = 0.8 − 0.2(cos(2πτ∗) − 0.35) − 0.1(cos ϕ − 0.2)
for the rigidities < 21GV (non-stationary regime) versus the heliolon-
gitudes ϕ and time τ∗.

For the hybrid model the boundary conditions and initial condition with
respect rigidity R are the same as for the non-stationary model. Below the
rigidity 21GV there is non-stationary regime, so the initial condition with
respect time τ∗ is added.

3.3. Comparison of non-stationary and hybrid models

The amplitudes of the Forbush effect calculated using the solutions of
the Eq. (6) for the non-stationary model (time of numerical solution equals
∼ 45 hours) and for the hybrid model (time of numerical solution equals
∼ 30 hours) are presented in Figs. 2(a) and 2(b) for the rigidities of
R = 3, 5, 10, 21GV of GCR particles.
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Fig. 2. Changes of the expected amplitudes of the Forbush effect of the GCR

intensity for different rigidities versus the time for (a) the non-stationary model,

(b) the hybrid model.

Figs. 2(a) and 2(b) show that the amplitudes of the Forbush effect are
basically the same for the non-stationary and hybrid models, however the
time of calculations is 1.5 times greater for the non-stationary model. The
difference of the calculation times is more recognizable solving the compli-
cated models when the linear system is 5–10 times larger, than presented in
this paper. We can judge about the compatibilities of the proposed mod-
els not only by the comparing of the amplitudes of Forbush effects, but by
match up the expected rigidity spectra of the Forbush effect for the both
models, as well.

In Fig. 3 there are presented the temporal changes of the exponent γ of
the power law rigidity spectrum δD(R)/D(R) of GCR intensity found as,
δD(R)/D(R) = (1/f) df/dR ∝ R−γ for the non-stationary model (circles)
and for the hybrid model (crosses). One day at the Earth orbit (86400 s)
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corresponds to the 13.3◦ of the heliolongitudes. We see from Fig. 3 that the
temporal changes of the rigidity spectrum exponent γ for non-stationary
(γNST) and hybrid model (γH) are basically the same; correlation coefficient
between them equals 0.99 ± 0.05.

4. Conclusions

1. Einstein–Smoluchowski formula gives a possibility to compose a hybrid
model of the Forbush effect of the GCR intensity consisting of the
stationary regime for the rigidities > 21GV, and the non-stationary
regime for rigidities < 21GV. The transition rigidity limit (21GV)
of the GCR particles for the presented hybrid model is changeable
depending on the character of the dependence of diffusion coefficient
on the rigidity of GCR particles.

2. The same temporal changes of the expected amplitudes and rigidity
spectra for both models of the Forbush effect demonstrate an explicit
compatibility of the hybrid model with the non-stationary model of
recurrent Forbush effect of GCR.

3. Numerical solution of the hybrid model needs ∼ 30% less time than
the numerical solution of the non-stationary model. Thus, to study
the Forbush effect of the GCR intensity the non-stationary model can
be replaced by the economy hybrid model. The proposed hybrid model
can be successfully applied to other non-stationary processes in cosmic
ray physics.

We thank the Organizing Committee of the Centennial Marian Smolu-
chowski Symposium on Statistical Physics for the opportunity to present
this paper on the 100-year anniversary of the Marian Smoluchowski 1906
publication.
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