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1. Introduction

There are two approaches to understanding and solving N = 4 Yang–
Mills (SYM): on the one hand, being a conformal field theory, it is uniquely
specified by the spectrum of (anomalous) dimensions of gauge-invariant op-
erators and their three-point correlation functions, while, on the other hand,
like any other quantum field theory, it is completely specified by its scat-
tering matrix1. The remarkable properties of N = 4 SYM theory in the
planar limit, in particular its high degree of symmetry, allowed important
progress on both fronts: on the one hand, the integrability of the generator
of scale transformations allows the evaluation of the anomalous dimensions
of infinitely long operators through a Bethe ansatz [1–3] while on the other

∗ Presented at the XLVIII Cracow School of Theoretical Physics, “Aspects of Duality”,
Zakopane, Poland, June 13–22, 2008.

1 In the presence of a regulator, the definition of the scattering matrix in a conformal
field theory is no different than in any massive quantum field theory.

(2979)
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hand the theory is sufficiently symmetric and with sufficiently good high en-
ergy behavior to allow high order perturbative calculations of its scattering
matrix (see e.g. [4]).

The strong coupling regime of the theory is directly accessible through
the AdS/CFT duality [5–7] (see [8] for a review), which provides a descrip-
tion of N = 4 SYM theory solely in terms of colorless, gauge invariant
quantities. It casts the analysis of the strongly coupled planar theory in
terms of the weakly-coupled worldsheet theory for superstrings in AdS5×S5.
Being in one to one correspondence with closed string states, local gauge
invariant operators have a natural place in the AdS/CFT duality. This fact
played a major role in our understanding of the spectrum of operators of
the N = 4 SYM theory (as well as in many other contexts).

Scattering amplitudes describe the scattering of on-shell states of the
theory. As such, they carry color charge and thus it is not immediately
clear whether they can be described directly by the closed string theory
dual. It is however possible to extend the closed string theory in AdS5×S5

by an open string sector. Depending on the precise physical problem, they
are described either by semiclassical worldsheet configurations (e.g. when
they describe the expectation value of Wilson loops) or by vertex operators
(e.g. when they capture the scattering amplitudes of open string states).
Appropriately integrated, the correlation functions of open string vertex op-
erators are what one might define as the gauge theory scattering amplitudes.
Vertex operators carry Chan–Paton factors and the correlation functions of
vertex operators decompose, in a natural way, into a sum of terms, each
of which exhibits a clean separation of the color degrees of freedom and
the dependence on particle momenta. The factors carrying the kinematic
dependence are known as partial amplitudes. This decomposition mirrors
closely the color decomposition of gauge theory scattering amplitudes which
we will discuss in Section 2. While non-local quantities, partial amplitudes
carry no color charge and thus could in principle be described by the closed
string theory dual to N = 4 SYM theory.

Strong coupling information extracted along these lines, combined with
weak coupling higher-loop calculations lead us to hope that, at least in some
sectors, the scattering matrix of planar N = 4 SYM theory can be found
exactly. The four- and five-gluon amplitudes, which are currently known to
all orders in perturbation theory (up to a set of undetermined constants),
provide a proof of principle in this direction.

In these lectures we have presented a largely self-contained account of
some of the recent developments and techniques for the evaluation of the
scattering amplitudes of planar N = 4 SYM theory at both weak and strong
coupling. Related reviews of these topics may be found in references [9,10].
These lectures are organized as follows. Section 2 summarizes the properties
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of scattering amplitudes and is devoted to their calculation in weakly coupled
perturbation theory. After setting up the notation and describing some of
their general properties, we proceed to outline techniques for tree- and loop-
level high-multiplicity calculations. While the discussion is kept general
at times, the main focus is planar N = 4 SYM theory. The generalized
unitarity-based method is the technique of choice for loop-level calculations,
as it combines in a natural way, order by order in perturbation theory, the
consequences of global symmetries and of gauge invariance.

A common feature of all on-shell scattering amplitudes in massless gauge
theories in four dimensions is the presence of infrared divergences, originating
from low energy virtual particles as well as from virtual momenta almost
parallel to external ones. We will discuss their structure captured by the
soft/collinear factorization theorem. A surprising feature of certain planar
amplitudes of N = 4 SYM theory, noticed in explicit calculations, is that
the exponential structure of the infrared divergences extends also to the
finite part of certain amplitudes. We will describe the conjectured iteration
relations of Anastasiou, Bern, Dixon and Kosower (ABDK) and of Bern,
Dixon and Smirnov (BDS) based on these observations, which suggest that
any maximally helicity violating loop amplitude may be written in terms of
the corresponding one loop amplitude. We end Section 2 with an outline of
potential departures from these relations and the current state of the art in
testing them.

For a variety of reasons, the identification and evaluation of the strong
coupling counterpart of the partial amplitudes described in Section 2 is not
entirely straightforward. In Section 3 we describe how the AdS/CFT duality
can be used for this purpose. The main result is that, at strong coupling,
partial amplitudes are closely related to a special class of polygonal, light-like
Wilson loops. Thus, they may be evaluated as the area of certain minimal
surfaces with boundary conditions fixed by the momenta of the massless
particles participating in the scattering process2. The strong coupling cal-
culations exhibit features analogous to their weak coupling counterparts,
such as the presence of long distance/low energy divergences. Thus, in
analogy with the weak coupling situation, the very definition of scattering
amplitudes requires the presence of a regulator. Finding gauge-invariant
regulators is not completely obvious in weakly-coupled gauge theories; by
contrast, any regulator which may be realized on the string theory side of
the AdS/CFT correspondence without direct reference to the color degrees
of freedom of the open string sector is manifestly gauge-invariant. To set-up

2 Certain features of partial amplitudes, such as the polarization of the scattered par-
ticles, are however not captured directly by their Wilson loop interpretation. This
information is probably best captured in the vertex operator picture for the scattering
process.
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the computation we begin by introducing a D-brane as an infrared regula-
tor. Actual computations are, however, carried out using a string theory
analogue of dimensional regularization, obtained by taking the near horizon
limit of D(3−2ε) branes. While not yet clear how to extend the calculations
beyond leading order, this regularization scheme has the advantage of being
analogous to dimensional regularization as used in gauge theory calculations
and thus of allowing a direct comparison of results.

We describe the calculation of the four-gluon scattering amplitude both
in the strong coupling version of dimensional regularization as well as using
an infrared cut-off which removes, in a gauge-invariant way, all dangerous
low energy modes. This cut-off scheme is particularly appropriate for un-
derstanding the conformal properties of the amplitudes at strong coupling.

Partial amplitudes and (null polygonal) Wilson loops are a priori unre-
lated quantities. It is remarkable that a relation such as the one reviewed
here can exist at all. This strong coupling observation led to the conjecture
that MHV amplitudes and null polygonal Wilson loops are equal, order by
order in weakly coupled perturbation theory as well. Developments in this
direction will be reviewed elsewhere in this volume. The origins and full
implications of such relations remain to be uncovered; it is however clear
that they point to the existence of deep and powerful structures governing
the dynamics of N = 4 super-Yang–Mills theory and perhaps other four-
dimensional gauge theories.

2. Scattering amplitudes at weak coupling

On-shell scattering amplitudes are perhaps the most basic quantities
computed in any quantum field theory. The standard textbook approaches
proceed to relate them through the LSZ reduction to Green’s functions which
are in turn computed in terms of Feynman diagrams. Each diagram evalu-
ated separately is typically more complicated that the complete amplitude;
the reason may be traced to Feynman diagrams not exhibiting and taking
advantage of the symmetries of the theory — neither local nor global. The
first instance where this shows up is for tree level amplitudes, where one
notices major simplifications as all diagrams are added together.

Indeed, besides the scattering of physical polarizations, off-shell scat-
tering amplitudes also describe the scattering of (unphysical) longitudinal
polarizations of vector fields. On-shell, the equations of motion (or, more
generally, Ward identities) guarantee the decoupling of such states. One may
expose this decoupling at the Lagrangian level by choosing a physical gauge.
The resulting gauge-fixed action does not, however, have a transparent use
at the quantum level. As usual, in an off-shell covariant and renormaliz-
able approach to loop corrections to scattering amplitudes, Faddeev–Popov
ghosts are needed to cancel the contribution of unphysical fields propagating
in loops.
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The (generalized) unitarity-based method provides means of eliminating
the appearance of unphysical degrees of freedom, while preserving all on-
shell symmetries of the theory and avoiding the proliferation of Feynman
diagrams. It allows the analytic construction of loop amplitudes in terms
of tree-level amplitudes. Thus, it manifestly incorporates most (if not all)
simplifying consequences of gauge invariance and symmetries. Simplicity
of loop level amplitudes is to a large extent a consequence of simplicity of
tree-level amplitudes.

In addition to the use of Feynman diagrams, there are several meth-
ods for computing tree-level scattering amplitudes: the Berends–Giele (off-
shell) recursion relations [12], MHV vertex rules for gluons [13] and other
fields [14, 15]3 and the BCFW recursion relations [17, 18]. We will review
these methods in Section 2.2, referring the reader to the original literature
and existing reviews [19–21] for further developments. After setting up the
convenient notation and describing some of the general properties of scat-
tering amplitudes, we will review the factorization of infrared divergences,
discuss the unitarity method and illustrate it with several examples. We will
then describe the BDS conjecture for the all-loop resummation of n-point
MHV amplitudes, the potential corrections and the fact that such correc-
tions indeed appear starting with the six-point two-loop amplitude. We will
also describe the emergence of dual conformal invariance from the explicit
expressions of amplitudes.

2.1. Organization, presentation and general properties

A good notation as well as an efficient organization of the calculation
and result are indispensable ingredients for the calculation of scattering am-
plitudes, whether with Feynman diagrams or by other means. They are pro-
vided, respectively, by the spinor helicity method (for massless theories) and
by color ordering, which we now review. These methods allow the decom-
position of amplitudes in smaller, gauge-invariant pieces with transparent
properties. An enlightening discussion of these topics may be found in [20].

2.1.1. Spinor helicity and color ordering

In a massless theory, solutions of the chiral Dirac equation provide
[22–27] an excellent parametrization of momenta and polarization vectors
which allows, among other things, the construction of physical polarization
vectors without fixing noncovariant gauges. The main observation is that
the sum over polarizations of a direct product of a Dirac spinor and its
conjugate is

∑

s=±

us(k)ūs(k) = −k/ . (2.1)

3 The MHV vertex rules have been successfully extended to one loop level in [16].
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Upon projecting onto the chiral components one immediately finds that

u−(k)ū−(k) = −kµσ̄
µ , (2.2)

where as usual σ̄ = (1,−σ) are the Pauli matrices. The decomposition of
a massless four-dimensional vector as a direct product of two 2-component
commuting “spinors” follows also more formally from the fact that p2 =
det(pµσ̄

µ), implying that the mass-shell condition requires that pµσ̄
µ has

unit rank, i.e.

(kµσ̄
µ)αα̇ = λαλ̃α̇ , λ ≡ u−(k) , λ̃ = ū−(k) , (2.3)

the multiplication of spinors follows from Lorentz invariance:

〈ij〉 = εαβλiαλjβ , [ij] = −εα̇β̇ λ̃iα̇λ̃jβ̇ . (2.4)

In Minkowski signature λ and λ̃ are complex conjugate of each other. It
is useful to promote momenta to (holomorphic) complex variables and the

Lorentz group to SL(2,C)× SL(2,C). Then, λ and λ̃ are independent com-
plex variables and the decomposition (2.3) exhibits a scaling invariance

λ 7→ Sλ , λ̃ 7→ 1

S
λ̃ , (2.5)

where S is an arbitrary constant. We will shortly see that scattering ampli-
tudes have definite scaling properties under this transformation4.

This parametrization of four-dimensional momenta allows the construc-
tion of simple expressions for the physical polarizations of massless vector
fields. In general, gauge invariance requires that they be transverse, and
that shifts by the momentum of the corresponding field should not change
their form and properties. Moreover, in the frame in which the vector field
propagates along a specified axis, they should take the standard form of
circular polarization vectors.

A solution to these constraints can be constructed in terms of an arbi-
trary null (reference) vector ξ (ξµσ

µ
αα̇ = ξαξ̃α̇)

ε+µ (k, ξ) =
〈ξ|γµ|k]√

2〈ξk〉
,

ε−µ (k, ξ) = − [ξ|γµ|k〉√
2[ξk]

,

ε+αα̇(k, ξ) =
√

2
ξαλ̃α̇

〈ξk〉 ,

ε−αα̇(k, ξ) = −
√

2
λαξ̃α̇
[ξk]

.

(2.6)

4 For a Minkowski signature metric S is a pure phase.
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The reference vector may be changed by a gauge transformation. Indeed,
the transformation ε(p) 7→ ε(p)+Ak for some A can be realized as a change
of the reference vector:

ξα 7→ ξα +A 〈ξk〉λαξ̃α̇ 7→ ξ̃α̇ −A [ξk]λ̃α̇ . (2.7)

This freedom of choosing independently the reference vector for each of the
gluons participating in the scattering process is a very convenient tool for
simplifying (somewhat effortlessly) the expressions for (tree-level) scattering
amplitudes.

A clean organization of scattering amplitudes is a second useful ingre-
dient in the calculation of scattering amplitudes at any fixed loop order L.
Besides the organization following the helicity of external states implied by
spinor helicity, at each loop order l an organization following the color struc-
ture is also possible and desirable, if only because amplitudes are separated
in at least (n− 1)! gauge invariant pieces (here n is the number of external
legs). For an SU(N) gauge theory with gauge group generators denoted by
T a, it is possible to show that any L-loop amplitude may be decomposed as
follows:

A(L) = NL
∑

ρ∈Sn/Zn

Tr [T aρ(1) . . . T aρ(n) ]A(L)(kρ(1) . . . kρ(n), N)

+ multi−traces , (2.8)

where the sum extends over all non-cyclic permutations ρ of (1 . . . n). This
is equivalent to fixing one leg, say the first, and summing over all permuta-
tions of the other legs. The coefficients A(kρ(1) . . . kρ(n), N) are called color-
ordered amplitudes. The multi-trace terms left unspecified in the equation
above do not appear in the planar (large N) limit, which will be our main
focus. We shall therefore ignore them in the following. In the same limit
the N dependence of the partial amplitudes drops out

A(kρ(1) . . . kρ(n), N)
N→∞−→ A(kρ(1) . . . kρ(n)) . (2.9)

The result of this limit are the planar partial amplitudes.
It is possible to argue for this presentation of amplitudes by inspecting

the Feynman rules and noting that their color dependence separates from
their momentum dependence. Perhaps the cleanest argument however is in
terms of string theory diagrams [28]. Indeed, in string theory, gluon scatter-
ing amplitudes are computed in terms of Riemann surfaces with boundaries.
Open string vertex operators, carrying Chan–Paton factors, are inserted on
their boundaries, with color indices contracted along boundaries (see Fig. 1).
As one integrates over the insertion points one sweeps over all possible orders
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of inserting the operators. The cyclic permutations, however, are naturally
excluded because the boundaries in question are closed curves. The bound-
aries carrying no vertex operators contribute the explicit factors of N in
equation (2.8).

V1 V2

V
3

V5
V
4

Fig. 1. The planar three-loop open string diagram contributing to the five-gluon

scattering. The single-trace structure is manifest.

2.1.2. General properties of color ordered amplitudes

The general properties of color-ordered amplitudes follow from their con-
struction in terms of Feynman diagrams (or string diagrams). The results of
other constructions must obey the same properties. Some of them — such
as the analytic structure — impose powerful constraints and in some cases
uniquely determine the (tree-level) amplitudes. We collect here some of the
more important properties [29]:

• cyclicity (this is a consequence of the cyclic symmetry of traces)

A(1, . . . n) = A(2, . . . , n, 1) , (2.10)

• reflection (this is a consequence of the fact that 3-point vertices pick up
a sign under such a reflection and that an amplitude with n external
legs has (n+ 2L− 2) three-point vertices)

A(1, . . . n) = (−)nA(n . . . 1) , (2.11)

• photon decoupling: In a theory with only adjoint fields, the diagonal
U(1) does not interact with anyone. Thus, all amplitudes involving this
field identically vanish. At tree-level this property may be captured by
a Ward identity: fixing one of the external legs (n below) and summing
over cyclic permutations C(1, . . . , n− 1) of the remaining (n− 1) legs
leads to a vanishing result:

∑

C(1,...,n−1)

A(1, 2, 3, . . . , n) = 0 . (2.12)

In string theory language this is a consequence of the structure of
the operator product expansion of vertex operators. At loop level
this identity is modified and relates planar and non planar partial
amplitudes [28].
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• parity invariance (a color-ordered amplitude containing all choices
of helicities of external legs is invariant if all helicities are reversed
and simultaneously all spinors λ are replaced by the spinors λ̃ and
vice-versa). This operation may be expressed as a fermionic Fourier-
transform [30]

A(λi, λ̃i, ηiA) =

∫
d4nψ exp

[
i

n∑

i=1

ηiAψ
A
i

]
A(λ̃i, λi, ψ

A
i ) , (2.13)

• soft (momentum) limit: in the limit in which one momentum becomes
soft the amplitude universally factorizes as follows

Atree(1+, 2, . . . , n) −→ 〈n 2〉
〈n 1〉〈1 2〉 A

tree(2, . . . , n) , (2.14)

• collinear limit: in the limit in which two adjacent momenta become
collinear kn−1 · kn → 0 an L-loop amplitude factorizes as

A(L)
n (1 . . . (n − 1)hn−1 , nhn) 7→

L∑

l=0

∑

h

A
(L−l)
n−1 (1 . . . kh)

× Split
(l)
−h

(
(n− 1)hn−1 , nhn

)
, (2.15)

where hi denotes the helicity of the i-th gluon. For a given gauge

theory, the l-loop splitting amplitudes Split
(l)
−h((n − 1)hn−1 , nhn) are

universal functions [31] of the helicities of the collinear particles, the
helicity of the external leg of the resulting amplitude and of the mo-
mentum fraction z defined as

z =
ξ · kn−1

ξ · (kn−1 + kn)
. (2.16)

In the strict collinear limit one may also use kn−1 → zk and kn →
(1 − z)k with k2 = (kn−1 + kn)2 = 0. For example, the tree-level
splitting amplitudes are:

Split
(0)
− (1+, 2+) =

1√
z(1 − z)

1

〈1 2〉 ,

Split
(0)
− (1+, 2−) =

z2

√
z(1 − z)

1

[1 2]
,

Split
(0)
+ (1+, 2−) =

(1 − z)2√
z(1 − z)

1

〈1 2〉 . (2.17)
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In N = 4 SYM theory Ward identities imply that all splitting ampli-
tudes rescaled by their tree-level expressions are the same. Scattering
amplitudes have similar factorization properties when more than two
adjacent momenta become simultaneously collinear [31].

• multi-particle factorization: color ordered amplitudes exhibit poles if
the square of the sum of some adjacent momenta vanishes. At tree-level
this pole corresponds to some propagator going on-shell. At higher
loops, the amplitude decomposes into a completely factorized part
given by the sum of products of lower loop amplitudes and a non-
factorized part, given in terms of additional universal functions. At
one-loop level and in the limit k2

1,m ≡ (k1+· · ·+km)2 → 0 one finds [32]

A1 loop
n (1, . . . , n) −→
∑

hp=±

[
Atree

m+1(1, . . . ,m, k
hk)

i

k2
1,m

A1 loop
n−m+1((−k)−hk ,m+ 1, . . . , n)

+A1 loop
m+1 (1, . . . ,m, khk)

i

k2
1,m

Atree
n−m+1((−k)−hk ,m+ 1, . . . , n)

+Atree
m+1(1, . . . ,m, k

hk)
iF(1 . . . n)

k2
1,m

Atree
n−m+1((−k)−hk ,m+ 1, . . . , n)

]
.

(2.18)

While color ordering (2.8) in the planar theory implies that complete ampli-
tudes may be reconstructed from (n−1)! gauge invariant partial amplitudes,
the first four properties listed above imply that only a much smaller number
is in fact necessary.

2.1.3. Some simple examples

Besides color ordering, scattering amplitudes can be organized following
the number of negative helicity gluons. One can easily see that the ampli-
tude with only positive helicity gluons as well as the amplitude with a single
negative helicity gluons vanish identically at tree level in any gauge the-
ory. This is realized by choosing the same reference vectors for all gluons
with the same helicity and equal to the momentum of the negative helicity
gluon. In absence of supersymmetry, quantum corrections spoil this conclu-
sion. In the presence of supersymmetry, its Ward identities imply that this
vanishing result is protected to all orders in perturbation theory. Indeed,
the supersymmetry transformation rules are

[Qa(η), g±(k)] = ∓Γ±(k, η)λa±(k) ,

[Qb(η), λb±(k)] = ∓Γ±(k, η)g±(k)δab ∓ iΓ±(k, η)φab
± ε

ab ,

Γ (k, η)+ = θ[η, k] , Γ (k, η)− = θ〈η, k〉 , (2.19)
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where η is a reference spinor. Acting with them on the vanishing matrix
element 〈0|λa+g±g+ . . . g+|0〉 and using the fact that fermions have only
helicity-conserving interactions, it immediately follows that the all-plus am-
plitude vanishes. Similarly, using the vanishing of 〈0|λa+g−g+ . . . g+|0〉 and
making judicious choices for the reference spinor leads to the vanishing of
the amplitude with a single negative helicity gluon [33]

Atree(g+ . . . g+) = 0 , Atree(g−g+ . . . g+) = 0 . (2.20)

In the following we will focus mainly on N = 4 SYM.
The first nonvanishing amplitude, having two negative helicity gluons,

takes the form [34,35]

Atree
MHV(1+ . . . i− . . . j− . . . n) =

〈ij〉4∏n
k=1〈k, k + 1〉 , (2.21)

where k is a cyclic index (i.e. n + 1 ≡ 1) and i and j are the labels of
the negative helicity gluons. The fact that in N = 4 SYM the two gluon
helicity states are related by supersymmetry makes it possible to show [89]
that, to all loop orders, n-point MHV amplitudes are cyclicly symmetric,
up to an overall factor of 〈ij〉4 where i and j label, as above, the negative
helicity gluons. Indeed, using supersymmetric Ward identities it is possible
to relate the n-gluon amplitude to the two scalar, (n− 2)-gluon amplitude.
After interchanging the position of the two scalars, which does not affect the
amplitude, one may use the same identities to obtain an amplitude with one
of the two negative helicity gluons displaced to any position. It thus follows
that, to any loop order L,

A
(L)
MHV = Atree

MHV M(L)(si,i+1, si...i+2, . . .) , (2.22)

where M(L)(si,i+1, si...i+2, . . .) is a cyclicly symmetric function of momenta
and si ... j = (ki + ki+1 + . . . + kj)

2. This factorization of the tree-level
amplitude also holds for the infrared-singular terms of all amplitudes in all
massless gauge theories. A similar expression holds in N = 4 SYM also for
collinear splitting amplitudes introduced in (2.15):

Split
(L)
λ (aha , bhb) = Splittreeλ (aha , bhb) r

(L)
S (z, sab) , (2.23)

where the momentum fraction z is defined in equation (2.16). A direct
argument follows closely the one for MHV amplitudes. Alternatively, one
may extract it by simply comparing the collinear limit of (2.22) and the
expected behavior (2.15).
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2.2. On-shell methods for tree-level amplitudes

The existence of MHV vertex rules (or CSW rules) was initially recog-
nized in [13] as a consequence of the existence of a string theory [90] which
captures the tree-level scattering amplitudes of Yang–Mills theories.

Perhaps the main observation [90], based on an earlier construction of
Nair [91], is that MHV amplitudes are localized on complex lines in a half-
position–half-momentum space called twistor space. Indeed, consider such
amplitudes (2.21) together with their momentum conservation constraint

written in terms of the spinors λi and λ̃i:

Atree
MHV(1+ . . . i− . . . j− . . . n) =

〈ij〉4∏n
k=1〈k, k + 1〉δ

4

(
n∑

i=1

λiαλ̃iα̇

)
. (2.24)

Let us, moreover, choose a signature such that λi and λ̃i may be treated
independently and Fourier-transform these amplitudes with respect to all
spinors λ̃. The calculation is simplified upon choosing an integral represen-
tation for the momentum conservation constraint:

δ4

(
n∑

i=1

λiαλ̃iα̇

)
=

1

(2π)4

∫
d4xαα̇ exp

[
ixαα̇

n∑

i=1

λiαλ̃iα̇

]
. (2.25)

Since λ̃ enters the expression of the amplitude only though the momentum
conservation constraint the Fourier-transform may be easily evaluated with
the result

∫ ∏

i

d2λ̃iα̇

(2π)2
ei[µi,λ̃i]Atree

MHV(1+ . . . i− . . . j− . . . n)

=

∫
d4xαα̇

(2π)4

n∏

i=1

δ2(µα̇ + λαxαα̇)
〈ij〉4∏n

k=1〈k, k + 1〉 . (2.26)

The constraints imposed by the Dirac delta-functions imply that, in the
space parametrized by the coordinates (λ, µ), all points characterizing the
external momenta lie on the same complex line of slope xαα̇ — i.e. they are
all collinear.

Such complete collinearity properties are characteristics of MHV ampli-
tudes. Analysis of the available examples of non-MHV amplitudes as well as
considerations of the twistor string led to the observation that amplitudes
with n negative helicity gluons lie on a collection of (n − 1) intersecting
lines. Such a conclusion may be reached by identifying triplets of exter-
nal momenta which, when viewed from twistor space, are collinear. A useful
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tool for this purpose are differential operators which annihilates such triplets.
An operator with this property is:

F̃ijk;α̇ = µiα̇〈jk〉 + µjα̇〈ki〉 + µkα̇〈ij〉 . (2.27)

The fact that F̃ijk;α̇ vanishes when the three vectors (λ, µ)i,j,k are collinear

follows from the fact that, on the one hand, F̃ijk;α̇ is totally antisymmetric
while on the other collinearity implies that one of the three vectors may be
written as a linear combination of the other two.

When transformed to momentum space the collinear (multiplicative)

operator F̃ becomes a first order differential operators F :

Fijk;α̇ = 〈ij〉 ∂

∂λ̃α̇
k

+ 〈jk〉 ∂

∂λ̃α̇
i

+ 〈ki〉 ∂

∂λ̃α̇
j

. (2.28)

Testing for collinear properties of the external momenta of an Nn−1MHV
amplitude implies that the (n− 1) intersecting complex lines building it are
such that each one of them has exactly two negative helicity gluons attached
to it, including the point of intersection with another line which counts as
a pair (+−) with each member of the pair sitting on one of the two line. For
example, it is possible to check that

[ζ̃ , F612][ζ̃ , F234][ζ̃ , F345][ζ̃ , F561]A(1−2−3−4+5+6+) = 0 . (2.29)

Here, for convenience, we contracted the free index of the collinear op-
erators with some arbitrary antiholomorphic spinor ζ̃. This implies that
A(1−2−3−4+5+6+) may be represented as a sum of products of two MHV
amplitudes, at least one of the two factors in each such product being anni-
hilated by one of the four collinear operators appearing in equation (2.29).
It was suggested in [90] that such a decomposition holds for all amplitudes;
it was moreover suggested in [13] that this observation may be used to deter-
mine systematically all tree-level gluon scattering amplitudes through a set
of Feynman-like rules which treat MHV amplitudes as effective vertices.

The tree-level rules necessary to carry out such a construction of tree-
level have been layed out in [13] and extended to one-loop level in [16]:

• for an amplitude with n negative helicity gluons one uses (n−1) MHV
vertices. Similarly to the construction of amplitudes in terms of Feyn-
man diagrams, one sums over all tree diagrams containing this number
of MHV vertices which are consistent with the cyclic ordering of the
external legs and the requirement that each vertex has an MHV he-
licity configuration. The same graph may appear several times with
a different assignment of external legs and of helicities for internal
lines.
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• vertices are glued together using standard Feynman propagators5

∆(p) =
i

p2 + iε
. (2.30)

The iε prescription, while not crucial at tree-level, becomes extremely
important at loop level [16].

• the momentum of an internal leg is not massless and thus, the corre-
sponding holomorphic spinor does not exist. The corresponding spinor
entering the vertices defined to be

Pα ≡ Pαα̇η
α̇ , (2.31)

where η̃ is an arbitrary antiholomorphic commuting spinor. Then, the
relevant factors entering the MHV amplitudes are

〈kiP 〉 = 〈ki|P |η̃] = λα
ki
Pαα̇η̃

α̇ . (2.32)

As an example of the use of the MHV vertex rules let us consider the the
NMHV amplitude in split-helicity configuration A(1−2−3−4+...n+), initially
found in [100] using off-shell recursion relations. The relevant two-vertex
diagrams which satisfy the requirement that each vertex has a maximally
helicity violating configuration are shown in Fig. 2. While a three-point
(− − +) should be included both in Fig. 2(a) (corresponding to i = 3) and
in Fig. 2(b) (corresponding to i = n), no (+ + −) exists6:

A(1−2−3−4+ . . . n+)

=

n−1∑

i=3

[ 〈1Pi〉3
〈Pi, i+ 1〉〈i + 1, i+ 2〉 . . . 〈n1〉

]
1

P 2
i

[ 〈23〉3
〈Pi2〉 . . . 〈iPi〉

]

+

n∑

i=4

[ 〈12〉3
〈2Pi〉〈Pi, i+ 1〉 . . . 〈n1〉

]
1

P 2
i

[ 〈34〉3
〈Pi2〉 . . . 〈iPi〉

]
. (2.33)

Here all products involving the momentum Pi carried by the internal line
are defined as in (2.32) using the arbitrary spinor η.

5 While this may appear unjustified given only physical polarizations propagate be-
tween vertices, the use of the Feynman propagator may be justified both based on
the structure of poles of tree-level amplitudes as well as by the fact that the ampli-
tudes used as vertices may be thought of as carrying a projector onto physical states
for each of their external lines.

6 This is indeed so either by invoking the fact that (+ + −) is not an MHV helicity
configuration or by choosing (complex) momenta such that all MHV three-point
amplitudes vanish identically.
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Fig. 2. The MHV diagrams contributing to the NMHV amplitude in the split-

helicity configuration. In figure (a) the label i takes all values between 3 and

(n− 1) while in figure (b) the label i takes all values between 4 and n.

Hints and arguments for the correctness of this approach to the calcu-
lation of tree-level scattering amplitudes may be constructed on a variety
of basis. For example, one may check that all properties of scattering am-
plitudes discussed previously are satisfied by the MHV vertex construction.
Some of these properties are manifest — such as the correct multi-particle
factorization, where all propagators which may become singular in such lim-
its appear explicitly in the expression of the amplitude. The collinear limits
in which the number of negative helicity gluons does not change follows
equally easily from the properties of MHV amplitudes; it is moreover pos-
sible to show that, if the number of negative helicity gluons changes under
the collinear limit, the entire contribution comes from diagrams in which the
collinear legs belong to the same three-point vertex7. Last but not least, the
explicit appearance of the arbitrary spinor η̃ suggests that the expression of
the amplitude breaks Lorentz invariance; this is however not the case; it was
argued in [13] that the dependence on η̃ drops out of the amplitude, as it
should.

Apparent violation of Lorentz invariance occurs also in standard Feyn-
man diagram calculations in axial gauges n · A = 0; there as well, the de-
pendence on the fixed vector n cancels out in all gauge-invariant quantities.
In fact, these two instances of breaking of Lorentz invariance at intermedi-
ate stages of calculations are not unrelated. Their relation emerged in the
construction of the Lagrangian proof of the MHV vertex rules [92, 93]. The
starting point is the Yang–Mills Lagrangian in light-cone gauge defined by
n · A = 0 with n2 = 0, i.e. nαα̇ = ηαη̃α̇. It is well-known that, after fixing
this gauge and integrating out the component of the gauge field which is
auxiliary one finds that

SLC SYM=
1

2g2

∫
d4xTr[F 2]=

1

2g2

∫
dx0(L−++L−+++L−−++L−−++),(2.34)

7 This is indeed so because collinear limits in which a negative helicity gluon is replaced
by a positive helicity gluon are trivial for MHV amplitudes.
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where L−n+m

contains n negative and m positive helicity gluons. The only
term which departs from the MHV helicity structure is the cubic term L−++.
It was shown in [92, 93] that it is possible to construct a canonical trans-
formation which maps L−+ +L−++ to a quadratic Lagrangian L−+ for the
transformed field. This transformation also generates additional infinitely
many terms with MHV helicity configuration. As this transformation is car-
ried out at the level of the Lagrangian, the momenta carried by the various
fields are not null; nevertheless, the explicit momentum dependence of the
generated terms comes in the form of MHV amplitudes with the spinors cor-
responding to off-shell momenta defined using the antiholomorphic spinor η̃
of the constant null vector used to fix the light-cone gauge. This construc-
tion puts on very firm ground the MHV vertex rules; it was also extended to
include fermions in the fundamental representation of the gauge group [93].
Other representations may be accounted for without difficulty, by making
use of the fact that the MHV vertices which are generated by the canonical
transformation have the color dependence stripped off.

While the MHV vertex rules reduce substantially the number of con-
tributions to any one amplitude, there exists nevertheless reason to look
beyond them. One possibility, discussed in detail in [94], is to use non-
MHV amplitudes are vertices and thus build a more recursive construction
of higher-point amplitudes from lower-point ones. Such an approach leads
to a further reduction of the number of diagrams contributing to amplitudes
with given number of legs, assuming that all amplitudes with fewer legs have
been computed. While a direct Lagrangian derivation seems difficult, this
approach may nevertheless be justified by a variety of means. As with the
MHV rules, it is possible to show that the result obeys all properties re-
quires of tree-level scattering amplitudes in Yang–Mills theories. A further
justification may be provided, through the use of MHV vertices, by show-
ing that the use of non-MHV amplitudes as effective vertices amounts to
a reorganization of the MHV diagrams.

Advances in the techniques for one-loop calculations in N = 4 super-
Yang–Mills theory [84], which will be discussed in the next section, trig-
gered [95] the construction of the so-called on-shell or BCFW recursion
relations [17]. Indeed, as we will discuss in the next section, the infrared
singularities of loop amplitudes are, on the one hand, proportional to tree-
level amplitudes and on the other they are determined as products of on-shell
lower-point tree-level amplitudes. This observation may be turned into a re-
cursion relation which relates higher-point and lower-point tree-level ampli-
tudes. While initially justified using the expressions of one-loop amplitudes
in N = 4 SYM, this resulting recursion relation was proven in [18] by making
use of only the factorization properties of scattering amplitudes and of com-
plex analysis. This proof emphasizes the generality and power of on-shell
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recursion relations; they may be derived, with only minimal conceptual dif-
ferences, for both massless and massive theories. In the following we will
focus on massless theories, commenting only briefly on other cases.

The key observation that is at the basis of the on-shell recursion relations
is the that, from the standpoint of scattering amplitudes momenta are just
parameters. The fact that they are real is only a consequence of the fact
that eventually they are interpreted as momenta of physical particles. Thus,
from the perspective of constructing a function which has all the properties
of amplitudes it is of course legal to treat momenta as complex. This may
be interpreted as analytic continuation. The result can then be analytically
continued back to real momenta. To make use of this observation, following
[18], we single out two momenta pi and pj (the choice of momenta is, to
a large extent, arbitrary; we will discuss shortly the origin of constraints on
the choice of i and j) and shift them as

pi → pi(z) = pi + zη̂ij , pj → pj(z) = pj − zη̂ij , (2.35)

such that overall momentum conservation is satisfied. Moreover, the vector
η̂ij is chosen such that the shifted momenta continue to be massless, i.e.

z2η̂2
ij + 2zη̂ij · pi = 0 , z2η̂2

ij − 2zη̂ij · pj = 0 . (2.36)

A solution, which explicitly assumes that the momenta pi and pj are mass-
less, is given by

(ηij)αα̇ = λiαλ̃jα̇ . (2.37)

The original amplitude, evaluated on the unshifted momenta pi and pj, may
be recovered from the shifted amplitude by a simple contour integral around
the origin

A(1 . . . n) =

∮

C0

dz

z
A(1 . . . n; z) . (2.38)

An important assumption in writing this equation is the further observation
that all poles of the shifted amplitude lie at non-zero distance from the ori-
gin. This may be easily justified by considering the amplitudes expressed in
terms of Feynman rules. Indeed, each vertex that appears in some Feynman
diagram contributes a factor with polynomial dependence on momenta and
thus cannot produce any poles in the vicinity of the origin. The only poles of
the amplitude arise from the z dependence of the propagators whose struc-
ture implies that, apart from singular configurations of external momenta,
all of the poles which may arise in tree-level amplitudes are located away
from the origin of the complex z plane8.

8 Poles on the z-plane may drift close to the origin only in multi-particle factorization
limits of the unshifted amplitude.
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This argument also leads to another expression for the integral (2.38).
Indeed, instead of taking the integral around the origin, one may interpret
it as an integral on a contour around the point at infinity. As such, it
will receive contributions from all poles at finite distance from the origin as
well as from the pole at infinity (if any is present). As described above, all
poles of the amplitude that exist at finite distance from the origin arise from
propagators becoming singular for special values of z

P 2
i,...,i+k 7→ P 2

i,...,i+k(z) = P 2
i,...,i+k + 2z η̂ij · Pi,...,i+k . (2.39)

It is clear that this is also a simple pole. The multi-particle factorization
properties of (the shifted) amplitudes determine for us the residue of this
pole: it is given by the product of two tree-level amplitudes each having,
besides the internal line going on-shell, the set of external lines that appear
on each side of the singular propagator.

For definiteness and ease of notation, consider shifting the external mo-
menta p1 and pn, denoted below by 1̂ and n̂. Then, the amplitude is given by

A(1 . . . n) =
1

2πi

∮

C0

dz

z
A(1̂, 2 . . . n̂; z) = − 1

2πi

∮

C∞

dz

z
A(1̂, 2 . . . n̂; z)

= −
∑

l,h

(
−2 η̂1n · P1,...,l

P 2
1,...,l

)

× AL(1̂, 2 . . . l, q̂h; z0l)AR(−q̂−h, (l + 1), . . . n̂; z0l)

2 η̂1n · P1,...,l
+ C∞

=
∑

l,h

AL(1̂, 2 . . . l, q̂h; z0l)
1

P 2
1,...,l

AR(−q̂−h, (l+1), . . . n̂; z0l) + C∞ .

(2.40)

The momentum q̂ of the internal line is determined by momentum conserva-
tion and it depends on z. Here one sums over all possible helicity assignments
for the propagator carrying momentum q, as required in the multi-particle
factorization limit, and one also evaluates each term for the value of z = z0l

which renders the propagator singular:

z0l =
P 2

1,...,l

2 η̂1n · P1,...,l
. (2.41)

The term denoted by C∞ represents the contribution of the pole at z=∞.
It is possible to argue [18] using either Feynman diagrammatics or the MHV
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vertex rules that this contribution is absent if the shifted momenta are car-
ried by gluons of like helicities or if pj is carried by a gluon of positive helicity
and pi is carried by a gluon of negative helicity.

A natural contribution to the sum in equation (2.40) involves three-
particle amplitudes. The use of complex momenta is crucial for interpreting
these contributions which identically vanish in Minkowski signature since
λ = (λ̃)∗. Complex momenta allows one to choose, for any three momenta
pi,j,k, either the MHV or the MHV three-particle amplitude to be nonvan-
ishing. It is the non-vanishing three-point amplitude which appears in the
BCFW recursion relation.

Let us consider a simple example, the six-point amplitude in split he-
licity configuration A(1−2−3−4+5+6+), and consider shifting p3 and p4.
The diagrams representing the terms in equation (2.40) are shown in Fig. 3.

1− 4+

5+6+

2− 3−

−

+

3−
2−

1−

5+
4+6+

?

?

3−

1− 2−

6+

5+ 4+

+

−

(b) (c)(a)

Fig. 3. The diagrammatic presentation of the terms in equation (2.40) for

A(1−2−3−4+5+6+).

T1 =
〈23̂ 〉3

〈3̂p̂23〉〈p̂232〉
1

p2
23

〈1p̂23〉3
〈p̂234̂〉〈4̂5〉〈56〉〈61〉

, z01 =
p2
23

〈4|P23|3]
,

T2 = 0 ,

T3 =
[p̂456]

3

[p̂236][61][12][23̂][3̂p̂23]

1

p2
45

[ 4̂5]3

[5p̂45][p̂454̂]
, z03 =

p2
45

〈4|p45|3]
, (2.42)

A1−2−3−4+5+6+ =
1

〈5|p34|2]

×
[

〈1|p23|4]3
[23][34]〈56〉〈61〉p2

234

+
〈3|p45|6]3

[61][12]〈34〉〈45〉p2
345

]
. (2.43)

This is indeed the correct answer for the six-point split-helicity tree-level
gluon amplitude, as may be verified by direct comparison with the results
of [29].



2998 L.F. Alday, R. Roiban

The on-shell recursion relations have been extended to amplitudes involv-
ing fermions [98]. The manipulations are not different from those discussed
above and we will not repeat them. The BCFW recursion relations have been
extended to scattering amplitudes of massive particles as well [96, 97, 99].
The main complication comes from the fact that, for massive momenta, the
constraints on the shift vector η̂ij can no longer be solved in a simple way.
For processes involving both massive and massless particles it is possible to
choose the shifted momenta to be massless, case in which the only additional
ingredient is the presence of some massive propagators:

1

P 2
l...j...l+m +M2

l...m

7→ 1

P 2
l...j...l+m(z) +M2

l...m

. (2.44)

The same manipulations in the complex z plane lead to the conclusion that
an amplitude for any type of particles maybe be written as a sum of bilinears
in lower-point amplitudes evaluated on momenta which are shifted from the
desired values. We will not review the details here, but rather refer the
reader to the original literature.

2.3. Loop amplitudes; generalized unitarity-based method

Having discussed general properties of scattering amplitudes, we now
proceed to describe methods for their construction at loop level. The goal
will be to use only on-shell information for this purpose. we will be assum-
ing (quite accurately) that tree-level amplitudes are known. As we will see,
the fact that Feynman diagramatics underlies the calculation of scattering
amplitudes is a very important and useful guide. The properties of color
ordered amplitudes discussed previously will serve as a useful guide for the
completeness of the result. While most arguments apply to any (supersym-
metric) gauge theory, we will be having in mind applications to N = 4
SYM.

The idea that one can use only on-shell information to construct loop-
level scattering amplitudes is of course very appealing. For starters, one
would use complete lower-loop amplitudes as building blocks of higher am-
plitudes and, as such, one would build in the calculations simplifications due
to symmetries and gauge invariance.

There is a long history associated with on-shell methods going back to
the time of the analytic S-matrix theory. The idea is that, given the discon-
tinuity of the amplitude in some channel, or a cut, one could use a dispersion
integral to reconstruct the complete amplitude. In turn, the discontinuity of
amplitudes is determined by the unitarity condition of the scattering matrix.
Indeed, separating the interaction part of the scattering matrix

S = 1 + iT (2.45)
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and requiring that S is unitary S†S = 1 implies that

i(T † − T ) = 2ℑT = T †T . (2.46)

The right hand side is the product of lower loop on-shell amplitudes; this may
be interpreted as a higher loop amplitude with some number of Feynman
propagators replaced by on-shell (or “cut”) propagators

1

l2 + iε
7→ −2πiθ(l0)δ(l2) . (2.47)

The difference on the left-hand side of equation (2.46) is interpreted as the
discontinuity in the multi-particle invariant obtained by squaring the sum of
the momenta of the cut propagators. This interpretation is a consequence
of the iε prescription. Thus, this discontinuity at L-loops is determined in
terms of products of lower-loop amplitudes. There are two types of cuts:
singlet and non-singlet. In the former only one type of field crosses the
cut. In the latter several types of particles (such as a complete multiplet
in a supersymmetric theory) cross the cut. For the one-loop four-gluon
amplitude this is illustrated in Fig. 4; in Fig. 4(a) the tree-level amplitudes
require that only gluons can propagate along the cut propagators while in
Fig. 4(b) fields with any helicity h can cross the cut, i.e. h = ±1,±1/2, 0.

−1

2− 3+

+41

(b)(a)

2− 3+

+4− h

h −h

−h+

+ −

−

Fig. 4. Singlet and nonsinglet cuts of a one-loop four-gluon amplitude.

A reinterpretation of the equation (2.46) allows one to make use of the
recent sophisticated techniques for evaluating Feynman integrals: identities,
modern reduction techniques, differential equations, reduction to master in-
tegrals, etc. Indeed, besides representing the discontinuity of the amplitude,
the right-hand-side of that equation also represents the part of the ampli-
tude which contains the cut propagators. In fact, the right hand side of that
equation contains a combination of parts of the amplitude containing two,
three up to (L+ 1) propagators.

It is not hard to see that separately each of these pieces are given by
products of on-shell lower-loop amplitudes. This observation, originally due
to Bern, Dixon, Dunbar and Kosower [76] and improved at one-loop level by
Britto, Cachazo and Feng [84], allows to “cut” more than (L+1) propagators
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for an L-loop amplitude, generalizing the unitarity relation (2.46). Simi-
larly to regular cuts, generalized cuts can be either of singlet and nonsinglet
types. These properties open the possibility of going beyond reconstructing
the amplitudes from dispersion integrals: instead, one identifies the pieces
of an amplitude with some prescribed set of propagators. Analyzing suffi-
ciently many combinations of propagators one is guaranteed to be able to
reconstruct the complete amplitude. Indeed, the fact that Feynman rules
express scattering amplitudes as a sum of terms containing propagators and
vertices implies that, after integral reduction, each term in the result con-
tains part of the propagators present in the initial Feynman diagrams. By
analyzing all possible generalized cuts one probes all possible combinations
of propagators and thus all possible terms originating from the Feynman
diagrams underlying the scattering process.

The argument above assumes that the (generalized) cuts are constructed
in the regularized theory, i.e. in d-dimensions (perhaps with d = 4− 2ε). In
practice, however, it is much simpler to start by analyzing four-dimensional
cuts, as one can saturate them with four-dimensional helicity states and
also make use of the simplifying consequences of the supersymmetric Ward
identities, such as (2.20). Four-dimensional cuts however potentially miss
terms arising from the (−2ε)-dimensional components of the momenta in the
momentum-dependent vertices. Such terms must be separately accounted
for (either by considering d-dimensional cuts or by other means). In su-
persymmetric theories one can argue [77], based on the improved power-
counting of the theory, that at one-loop level such terms do not exist through
O(ε0) (in the sense that through O(ε0) one-loop amplitudes follow from four-
dimensional cut calculations).

Let us illustrate this discussion with a simple example — that of the four
gluon scattering amplitude in N = 4 SYM. We will organize the calculation
in terms of regular, two-particle cuts reinterpreted in the spirit of generalized
unitarity-based method. There are two cuts — in the s and in the t-channels.
Depending upon the external helicity configuration either one or both cuts
are of non-singlet type, with the complete N = 4 supermultiplet crossing it.
As discussed previously, the helicity information in any MHV amplitude
(such as this one) is carried by an overall factor of the tree-level amplitude
(2.22). The remaining function may be thus computed by choosing the most
convenient helicity configuration. Choosing (1−2−3+4+) and evaluating the
four-dimensional s-channel cut (Fig. 4(a)) one finds without difficulty that

A(l2, 1
−, 2−, l1)A(−l1, 3+, 4+,−l2) = is12s23A(1−2−3+4+)

× 1

(l2 + k1)2(l2 − k4)2
. (2.48)
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Here si...j = (ki + ki+1 + · · · + kj)
2 and we have used the fact that the cut

condition allows one to write 2k1 · l2 = (k1 + l2)
2. In the propagator-like

structures one recognizes the cut of a scalar box integral in φ3 theory (that
is, the integrand of a box integral in φ3 theory in which two propagators have
been removed and the on-shell condition for the corresponding momenta is
imposed). At this stage one can argue based on the ultraviolet behavior of
N = 4 SYM that the full answer is given by the box integral whose s-channel
cut we have just computed. Indeed, any other scalar integral diverges in
a smaller number of dimensions than N = 4 SYM and thus cannot appear
in the final result. The conclusion of this argument can be confirmed by
the evaluation of the (nonsinglet) t-channel cut (Fig. 4(b)). The simplest
way to see this is to make use again of the equation (2.22) and note that up
to the tree-level factor, the t-channel cut in the configurations (1−2−3+4+)
and (1+2−3−4+) are the same. The latter is again a singlet cut, being given
by a relabeling of equation (2.48). To summarize, we find [76] that

M(1)
4 =

i

πd/2
s12s23

∫
ddl

1

l2(l−k1)2(l−k12)2(k+k4)2
≡−1

2
st I4(s, t) ,

(2.49)

thus reproducing the well-known result of [78].
The fact that a scalar box integral appears in the result of this cal-

culation is not surprising. On general grounds one can show that in any
four-dimensional massless theory, any one-loop scattering amplitude may be
expressed as a linear combination of scalar box, triangle and bubble inte-
grals (i.e. integrals with four, three and two propagators, respectively, and
no loop-momentum factors appearing in the numerator — see Fig. 5(a), (b)
and (c), respectively) with rational coefficients and a rational function which
has no cuts in any channel. It was shown in [76] that in a supersymmetric
theory this rational contributions are absent and that in such theories one-
loop amplitudes are constructible using four-dimensional cuts.

j

k

l

i i

j

k i

j

i

l

k

j

(c)(b)(a) (d)

Fig. 5. Box (a), triangle (b) and bubble (c) scalar integrals. The clusters at each

corner are constructed from color-adjacent external legs. If more than one external

leg is present at a corner, then that corner is “massive” as the total momentum is

no longer light-like. A quadruple cut (d) of an amplitude.
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For one-loop amplitudes in N = 4 SYM one can do much better than
the above by noticing [76] that the one-loop amplitudes with external states
belonging to the same N = 1 vector multiplet may be written as a sum of
box integrals. Besides a massless box integral which occurs only for four-
gluon scattering, these integrals fall in five different classes: one-mass, easy
two-mass, hard two-mass, three- and four-mass box integrals, depending on
whether massive or massless momenta are injected at the corner of the box.
The first two classes are shown in Fig. 6. The box integrals are defined and
given in Ref. [79, 80] (with the four-mass boxes from Ref. [81–83]).

Since each box integral has a unique set of four propagators (cf.Fig. 5(a)),
a quadruple cut (i.e. the result of eliminating four propagators and using
the on-shell condition for their momenta) isolates a unique box integral and
its coefficient [84]. The quadruple cut of the amplitude is, following the
previous discussion, simply given by the product of four tree amplitudes
evaluated on the solution of the on-shell conditions for the four propagators
(cf. Fig. 5(d)). Thus:

cijkl =
1

2

∑

hqi

A(q1, i . . . j − 1,−q2)A(q2, j . . . k − 1,−q3)

×A(q3, k . . . l − 1,−q4)A(q4, l . . . i− 1,−q1)
∣∣∣
q2
1=q2

2=q2
3=q2

4=0
, (2.50)

where the labels i, j, k, l are cyclic indices and label the first external leg at
each corner of the box, counting clockwise. The sum runs over all possible
helicity assignments on the internal lines. The factor of 1/2 above is due
to the four on-shell conditions having two solutions with equal values of the
quadruple-cut box integrals. The sum over these solutions is implicit in the
sum in equation (2.50). A further, implicit assumption is made in writing
this expression. Any amplitude contains at least one box integral with one
three-point corner. In Minkowski signature, i.e. with real momenta, the
corresponding tree-level three-point amplitude vanishes identically. A non-
vanishing result requires interpreting the loop momentum as complex, which
is what we do.

We will later need the expression for the one-loop MHV amplitude.
As we discussed, the four-point amplitude is given by (2.49). For an ar-
bitrary number of external legs (larger than four), the result initially ob-
tained in [76] (which can be reproduced using quadruple cuts and complex
momenta) reads:

M(1)
n=2m+1 = −1

2

m−1∑

r=2

n∑

i=1

(t
[r+1]
i−1 t

[r+1]
i −t[r]i t

[n−r−2]
i+r+1 ) I2m e

4;r;i −
1

2

n∑

i=1

t
[2]
i−3t

[2]
i−2 I

1m
4;i
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M(1)
n=2m = −1

2

m−2∑

r=2

n∑

i=1

(t
[r+1]
i−1 t

[r+1]
i −t[r]i t

[n−r−2]
i+r+1 ) I2m e

4;r;i −
1

2

n∑

i=1

t
[2]
i−3t

[2]
i−2 I

1m
4;i

−1

2

m−2∑

r=2

n∑

i=1

(t
[m]
i−1t

[m]
i − t

[m−1]
i t

[n−m−1]
i+m ) I2m e

4;m−1;i (2.51)

where I1m
4;i and I2m e

4;r;i are the one-mass (Fig. 6(a)) and easy two-mass

(Fig. 6(b)) integrals and t
[r]
i are multi-particle invariants9 t

[r]
i = (ki + · · · +

ki+r−1)
2.

i

i−1 i−2

i−3

(a)

i i+r

i−1

(b)

Fig. 6. The one-mass (a) and easy two-mass (b) integrals.

2.4. Calculations at higher loops

Higher loop calculations in N = 4 SYM enjoy similar simplifications,
though to a lesser extent. An analog of the 1-loop integral basis is not avail-
able, in the sense that the members of all proposed bases are in fact function-
ally dependent integrals10; moreover, not all integrals have sufficiently many
propagators such that the cut condition on all of them does not completely
freeze the integrals. It was pointed out [87] that under certain circumstances,
after all propagators have been set on-shell, an additional propagator-like
structure appears which can be used to set an additional on-shell condi-
tion. The lack of independence of the integral basis does not allow however
a straightforward identification of the resulting product of tree amplitudes
with the coefficient of the integral which is isolated by these cuts.

Generalized cuts can nevertheless be used to great effect to isolate parts
of the full amplitude containing some prescribed set of propagators. One
needs to ensure that integrals are not double-counted and that all cuts are
consistent with each other. The previous arguments continue to hold and im-
ply that the complete amplitude can be reconstructed from its d-dimensional
generalized cuts. A detailed, general algorithm for assembling the amplitude
was described in [88]. In a nutshell, starting from one (generalized) cut, one
corrects it iteratively such that all the other cuts are correctly reproduced.

9 This is a more compact notation for si...(i+r−1).
10 Notable examples are the two-loop four-point integral basis with massless external

legs [85] and the two-loop four-point integral basis with one massive external leg [86].
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While fundamentally all cuts have equal importance, some of them ex-
hibit more structure, which makes them useful starting points for the recon-
struction of the amplitude. Such are the iterated two-particle cuts, defined
as a sequence of two-particle cuts which at each stage reduces the number
of loops by one unit11. Their importance stems from the fact that two-
particle cuts with MHV amplitudes on both sides are naturally proportional
to another MHV tree amplitude:

Atree(l+2 1+, . . . ,m−
1 , . . . ,m

−
j , . . . , c

+
2 , l

+
1 )Atree(−l−1 , (c2 + 1)+, . . . , n+,−l−2 )

∝ Atree(1+, . . . ,m−
1 , . . . ,m

−
j , . . . , n

+) . (2.52)

The proportionality coefficient can be partial-fractioned into a sum of terms
recognizable as cuts of box integrals with polynomial coefficients in external
invariants. Repeatedly sewing an MHV tree amplitude onto such a construct
yields another MHV tree amplitude as natural common factor.

For a four-particle amplitude the iteration of two-particle cuts can be
explicitly solved and yields the so-called rung rule [103]. It states that the
L-loop integrals which follow from iterated two-particle cuts can be obtained
from the (L− 1)-loop amplitudes by adding a rung in all possible (planar)
ways and in the process multiplying the numerator by i times the invariant
constructed from the momenta of the lines connected by the rung. This rule
is illustrated in Fig. 7.

1l

l2

1l

l2 1l +( l
2

)2i

Fig. 7. The rung rule.

For higher multiplicity amplitudes the rung rule is less effective and it
is necessary to explicitly evaluate the relevant iterated cuts. The strategy
discussed in this section can be used to compute quite high loop amplitudes
in N = 4 SYM. In the next section some explicit results obtained in this
way will be discussed. It is important to keep in mind that, in contrast to
one-loop calculations, four-dimensional cut calculations are not necessarily
sufficient. Indeed, O(ε) terms at one-loop order may combine with singular
terms from other loops to yield pole terms and/or finite terms at higher
loops. Besides the obvious one-loop O(ε) arising from integrals whose inte-
grand manifestly exhibit d-dimensional Lorentz-invariance, such terms may

11 It is fairly clear that a priori there exist integrals which do not exhibit any two-
particle cuts. Such contributions to the amplitude are not captured in this way. An
example is provided by the four-loop four-gluon planar amplitude [60].
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also arise from integrals containing explicitly the (−2ε) components of the
loop momenta. Usually called “µ-integrals”, at higher loops they contain ex-
plicitly the (−2ε) components of any number of the loop momenta12. One
may decide whether such terms, not constructible from four-dimensional
cuts, are present in the amplitude by comparing the infrared divergences
emerging from a four-dimensional cut calculation with the expected struc-
ture implied by the soft and collinear factorization theorem.

An apparently alternative method for determining the four-dimensional
cut-constructible part of scattering amplitudes was suggested in [101].
It is based on the observation that an amplitude possess singularities for spe-
cific momentum configurations, determined by their construction in terms
of Feynman diagrams. These singularities must be correctly reproduced by
any presentation of the amplitude in terms of simpler integrals. Moreover,
singularities exhibited by these simpler integrals but not present in the sum
of Feynman diagrams are spurious and should cancel out. The identification
of the leading singularities of amplitudes proceeds by cutting the largest
possible number of propagators and matching the result against a judicious
choice of a(n overcomplete) basis of integral functions. At L-loops, inte-
grals with 4L propagators are completely localized. Integrals with fewer
propagators are however not. Additional propagator-like structures appear
sometimes due to Jacobians coming from solving the cut conditions which
are manifest. “Cutting” these additional “propagators” leads to a complete
localization of the integrals and expresses the result in terms of product of
tree-level amplitudes. This proposal has been tested for all the amplitudes
constructed by independent means and appears to correctly reproduce their
four-dimensional cut-constructible parts. The odd part of the two-loop six-
point amplitude was constructed only through this method [115].

2.5. Some explicit higher loop results at low multiplicity

Using generalized unitarity, a number of higher loop amplitudes have
been explicitly constructed and their properties analyzed. Due to the in-
crease in the number of kinematic invariants with the number of external

12 Such appear already at one-loop level if one is interested in expressions valid to all
orders in ε. An example is provided by a parity-odd O(ε) term in the one-loop
five-point amplitude [89]:

M(1)µ
5 ∝

Z

d4pd−2εµ

(2π)d

× ε(k1, k2, k3, k4)µ2

(p2−µ2)((p − k1)2−µ2)((p−k12)2−µ2)((p+k45)2−µ2)((p + k5)2−µ2)
.

Similar integrals occur in all higher-multiplicity one-loop amplitudes. Two-loop
analogs of such integrals will appear in Section 2.7.
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particles, the complexity of the analysis increases as the number of external
legs is increased. Here we discuss some of the available results, in increasing
order of their complexity. First we will discuss the four-point amplitudes
at two- and three-loops. As we have seen previously, splitting amplitudes
provide a link between the lower and higher-point amplitudes; we will review
them next and then proceed to the five-point amplitude.

The integrand of the four-point scattering amplitude at two-loops was
found in [103] and evaluated in [104] using the results of [105]. It can be
evaluated by a considering a double two-particle cut as in Fig. 8(a). As
previously mentioned, they are correctly captured by the rung rule. It is
instructive to follow the details of the calculation in this relatively simple
case and in the process also have an explicit example of the application of the
rung rule; they may in fact be constructed by iteratively using the equation
(2.48). For the purpose of the calculation it is necessary to pick some helicity
assignment; we will choose (1−2−3+4+). Thus, we need to evaluate

Atree
4 (l2, k

−
1 , k

−
2 , l1)A

tree
4 (−l1,−l4,−l3,−l2)Atree

4 (l4, k
+
3 , k

+
4 , l3) , (2.53)

where the helicities of the cut lines are fixed by the requirement that the tree-
level amplitudes are nonvanishing. The product of the first two tree-level
amplitudes may be easily reorganized following equation (2.48) to be

Atree
4 (l2, k

−
1 , k

−
2 , l1)A

tree
4 (−l1,−l4,−l3,−l2)

= is12(k2 − l4)
2A(−l3, 1−, 2−,−l4)

1

(l2 − k1)2(l2 + l3)2
. (2.54)

Further application of equation (2.48) leads to a final expression for the
product in equation (2.53):

4

3
l1

l2 l
3

l
4

1

2

(b)(a)
4

32

1

Fig. 8. The double two-particle and the three-particle cuts determining the four-

gluon scattering amplitude in N = 4 SYM at two-loop level.
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Atree
4 (l2, k

−
1 , k

−
2 , l1)A

tree
4 (−l1,−l4,−l3,−l2)Atree

4 (l4, k
+
3 , k

+
4 , l3)

= is12(k2−l4)2
1

(l2−k1)2(l2+l3)2
Atree

4 (−l3, 1−, 2−,−l4)Atree
4 (l4, k

+
3 , k

+
4 , l3)

= Atree
4 (k−1 , k

−
2 , k

+
3 , k

+
4 )

×
[
is12(k2 − l4)

2 1

(l2 − k1)2(l2 + l3)2

] [
is12s23

1

(l3 − k1)2(l3 + k4)2

]

= −s212s23Atree
4 (k−1 , k

−
2 , k

+
3 , k

+
4 )

l1

l2 l
3

l
4

4

32

1

, (2.55)

where we have used again the cut conditions to organize the result in terms
of propagators. One notes without difficulty that momentum conservation
implies the cancellation of the numerator factor (k2−l4)2 against the denom-
inator factor (l3 − k1)

2 in the last equality. This cancellation is crucial for
having a Feynman integral interpretation for the generalized cut in equation
(2.53). The conclusion of this calculation is that the two-loop four-gluon
amplitude contains the double-box integral whose cut appears in the equa-
tion above. This calculation also illustrates the application of the rung rule
(cf. Fig. 7).

The other double two-particle cuts are obtained by simple relabeling of
the previous calculation. Thus, one finds that they imply that the two-loop
four-gluon amplitude in N = 4 SYM is (for any choice of helicity assignment)
given by [103]

M(2)
4 (k1, k2, k3, k4)=−1

4
s12s23





s12

1

2

4

3

+s23

2

1 4

3




. (2.56)

The ultraviolet behavior of N = 4 SYM suggests13 that this is indeed the
complete amplitude, a fact confirmed by the evaluation of the three-particle
cut.

Similar (though somewhat lengthier) manipulations or repeated applica-
tion of the rung rule leads to the three-loop four-gluon amplitude [49, 103].

13 Superspace arguments [102] imply that at two-loops, N = 4 SYM is logarithmically-
divergent in seven dimensions. This is however only suggestive of (2.56) being the
full answer, as there may exist more divergent contributions whose leading ultraviolet
behavior cancels out.
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The notable fact is that, unlike the two-loop amplitude, the three-loop inte-
grand retains some dependence of the loop momentum in its numerator.

A link between lower and higher point amplitudes at any number of
loops is provided by the splitting amplitudes introduced in equation (2.15).
A unitarity-based all-order proof of those equations as well as a means of
directly evaluating the splitting amplitudes was discussed in [31] for arbitrary
gauge theories. Similar to scattering amplitudes, they are determined by
tree-level information up to the appropriate treatment of the intermediate
momentum p in equation (2.15) which must be kept massive throughout
the calculation. The one-loop splitting amplitudes can be obtained without
difficulty either by considering collinear limits of higher loop amplitudes [32]
or by direct evaluation [106]. The two-loop splitting amplitude in N = 4
SYM theory have been computed and their properties have been analyzed
in [88, 104].

2.5.1. A possible integral basis at higher loops; Conformal integrals

N = 4 SYM is a conformal field theory at the quantum level; conformal
invariance may be observed in correlation functions of operators of definite
(anomalous) dimension. In the context of the AdS/CFT correspondence this
symmetry is related to the existence of an exact SO(2,4) isometry of the
anti-de-Sitter space. At the level of on-shell scattering amplitudes however
(super)conformal invariance is obscured beyond tree level; after removing
the effects of the (infrared) regulator which explicitly breaks it, the momen-
tum space realization of the generators of the conformal group still exhibits
anomalies analogous to the holomorphic anomaly of collinear operators [109].

It was observed in [110] by explicitly inspecting the known results for the
one-, two- and three-loop four-gluon amplitudes that the integrals appearing
in the rescaled amplitude M4 exhibit, if regularized by keeping the external
legs off-shell, (in a sense we will describe below) an SO(2,4) symmetry ap-
parently unrelated to the four-dimensional conformal group. To expose this
symmetry one solves the momentum conservation constraint at each vertex
by writing each momentum as a difference of two variables

pi = xi − xi+1 . (2.57)

We use the notation pi here to denote generically both external momenta
as well as loop momenta. These variables define the position xi of the
vertices of the dual graph. This way the momentum conservation constraint
is replaced by an invariance under uniform shifts of the dual coordinates xi.
Moreover, their Lorentz transformation properties are identical to those of
the momenta. Since the dual variables are unconstrained one may also define
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an inversion operator

I =
∑

i

Ii , I : xµ
i 7→ xµ

i

x2
i

. (2.58)

An off-shell regularization of infrared divergences allows the construction
of planar loop integrals which are invariant under such a transformation. In-
deed, properties of dual graphs imply that in any planar integral, any inverse
propagators can be written as the square of a difference of two xi-s. Thus,
propagators transform homogeneously (with weight (+1) in each of the two
xi-s) under the transformation (2.58). The weight of each xi in the transfor-
mation of all propagators defining the integral equals twice the number of
propagators containing this variable. The four-dimensional loop integration
measure transforms homogeneously (with weight (−4)). It therefore follows
that a numerator factor transforming homogeneously with the appropriate
weight would render the integral invariant under simultaneous inversion of
all dual variables xi. Simple graphical rules capturing the transformation
under inversion of an integral are illustrated in Fig. 9. Let us illustrate the
details by discussing a simple example — the one-loop box integral shown
in Fig. 9(a). Up to numerator factors, the relevant integral is

Ia =

∫
d4x5

1

x2
51x

2
52x

2
53x

2
54

, (2.59)

each of the propagators present is denoted by a solid line in Fig. 9(a). As
mentioned, under inversion this integral transforms as

I : Ia 7→
∫

d4x5

(x2
5)

4

(x2
5x

2
1)(x

2
5x

2
2)(x

2
5x

2
3)(x

2
5x

2
4)

x2
51x

2
52x

2
53x

2
54

= x2
1x

2
2x

2
3x

2
4 Ia , (2.60)
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x6 x7
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x3 k3 k4
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x4
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Fig. 9. Examples of pseudo-conformal integrals. Points xi label the dual graph,

a solid line connecting two points xi and xj corresponds to a factor of 1/x2
ij while

a dashed line corresponds to a factor of x2
ij . The integral is pseudo-conformal if the

difference between the number of solid lines and dashed lines at a vertex equals 4 if

the vertex is inside the loops of the original graph and zero for all other points xi.

The graphs (b), (c) and (d) show that the integrals appearing in the even part of

the five-point two-loop amplitude [107,108] are pseudo-conformal.



3010 L.F. Alday, R. Roiban

i.e. it transforms homogeneously with weight (+2) for each of the coor-
dinates xi unrelated to the loop momentum. If the external momenta are
massless, k2

i = 0, then the only way to compensate for this transformation
is by adding a factor of s12s23 = x2

13x
2
24 since

I : x2
13x

2
24 7→ x2

13x
2
24

x2
1x

2
2x

2
3x

2
4

(2.61)

and thus s12s23Ia is invariant. If two opposite external legs are massive
— say k2

1 6= 0 and k2
3 6= 0 — a further numerator factor is possible since

k2
1k

2
3 = x2

12x
2
34 no longer vanishes and transforms as

I : x2
12x

2
34 7→ x2

12x
2
34

x2
1x

2
2x

2
3x

2
4

. (2.62)

Further possibilities occur if more of the external legs are massive. A similar
discussion may be carried out at higher loops [110].

One can also define a dilatation generator, under which all integrals
transform homogeneously and carry the same weight as under rescaling of
momentum variables. Together with translations of the dual variables and
their inversion this generate an SO(2,4) algebra called dual conformal sym-

metry.
It turns out that all integrals which appear in the four-gluon amplitude

through three-loops are invariant under dual conformal transformations if
they are regularized with an off-shell regulator. The amplitudes are however
constructed assuming dimensional regularization; due to the change in the
dimension of the integration measure this regularization breaks the inversion
invariance. Dimensionally-regularized integrals which, if regularized with an
off-shell regulator are invariant under dual conformal transformations are
called pseudo-conformal integrals [169]. It is interesting to note that by this
definition µ-integrals are also pseudo-conformal. Indeed, with an off-shell
regulator the integrand is treated as four-dimensional and thus vanishes
identically for these integrals.

The appearance of pseudo-conformal integrals is not limited to four-
point amplitudes in N = 4 SYM; they also generate the scalar factor of
n-point one-loop MHV amplitudes, the even part of the two-loop five-point
amplitude (cf. Fig. 9) and the even part of the two-loop six-point amplitude
[111] which we shall review shortly.

It is not clear what is the underlying reason for the appearance of dual
conformal invariance at weak coupling. It is, moreover, not clear whether
its appearance persists to all loop orders (perhaps up to integrals whose
integrands vanish identically in four dimensions [111]). It is nevertheless
a useful guide in organizing higher loop calculations. If it indeed survives to
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all orders in perturbation theory it provides a general (though nevertheless
overcomplete at higher loops) basis of integrals organizing parts of higher
loop amplitudes in N = 4 SYM.

2.5.2. Soft/Collinear factorization

As it is clear from the discussion in the previous section, a general fea-
ture of massless gauge theories in four dimensions is the existence of infrared
singularities14. Unlike ultraviolet divergences they cannot be renormalized
away, but rather should cancel once gluon scattering amplitudes are com-
bined to compute infrared-safe quantities. Their structure has been thor-
oughly studied and understood (see e.g. [36–48]). Here we briefly review
some of the results specializing them, following [49], to the case of N = 4
SYM in the planar limit.

In a gauge theory, infrared singularities of scattering amplitudes come
from two sources: the small energy region of some virtual particle

∫
dω

ω1+ε
∝ 1

ε
(2.63)

and the region in which some virtual particle is collinear with some external
one

∫
dkT

k1+ε
T

∝ 1

ε
. (2.64)

Since they can occur simultaneously, at L-loops the infrared singularities
lead to an 1/ε2L pole.

The structure of soft and collinear singularities in a massless gauge theory
in four dimensions has been extensively studied. The realization that soft
and virtual collinear effects can be factorized in a universal way, together
with the fact [50] that the soft radiation can be further factorized from
the (harder) collinear one led to a three-factor structure for gauge theory
scattering amplitudes [51–53]:

Mn =

[
n∏

i=1

Ji

(
Q

µ
,αs(µ), ε

)]

×S
(
k,
Q

µ
, αs(µ), ε

)
× hn

(
k,
Q

µ
, αs(µ), ε

)
. (2.65)

Here the product runs over all the external lines, Q is the factorization
scale, separating soft and collinear momenta, µ is the renormalization scale
and αs(µ) = (g(µ)2)/(4π) is the running coupling at scale µ.

14 Ultraviolet divergences may of course be present as well; as previously mentioned,
our focus is N = 4 SYM theory, which is free of such divergences.
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Both hn(k,Q/µ, αs(µ), ε) and the rescaled amplitude Mn are vectors in the
space of color configurations available for the scattering process. The soft
function S(k,Q/µ, αs(µ), ε) is a matrix acting on this space and it is defined
up to a multiple of the identity matrix. It captures the soft gluon radiation
and it is responsible for the purely infrared poles. For this reason it can be
computed in the eikonal approximation in which the hard partonic lines are
replaced by Wilson lines. The “jet” functions Ji(Q/µ,αs(µ), ε) do not alter
the color flow and contain the complete information on collinear dynamics of
virtual particles. Finally, hn(k,Q/µ, αs(µ), ε) contains the effects of highly
virtual fields and is finite as ε → 0. The jet and soft functions can be
independently defined in terms of specific matrix elements.

The factorization scale Q is arbitrary (within some physical limits);
it is simply used to construct the equation (2.65). While it enters in each
of the three factors on the right hand side, the (rescaled) amplitude Mn

is independent of it. This independence, akin to the independence on the
renormalization scale µ, leads to an evolution equation for the soft function.

S

S

SS

S

S

SS

M

Fig. 10. Soft/Collinear factorization and its planar limit.

In the planar limit the soft/collinear factorization formulae simplify sig-
nificantly. Since in this limit there is a single color structure, all color-space
vectors reduce to a single component. The fact that the soft function is
defined only up to an overall function implies that, in the planar limit, it
can be completely absorbed in the jet functions Ji. The planar limit implies
that all interactions included in the thus redefined jet functions are confined
to adjacent gluons, cf. Fig. 10. In this limit it is then instructive to consider
a two-gluon process — simply the decay of a color-singlet state into two
gluons. Direct application of the factorization equation identifies then the
square of the jet function with the amplitude of this process which is, by
definition, the Sudakov form factor M[gg→1](λ(si,i+1/µ), si,i+1, ε) if the two
gluons have momenta ki and ki+1. It therefore follows that, in the planar
limit, a generic n-point scattering amplitude factorizes as

Mn =

[
n∏

i=1

M[gg→1]

(
si,i+1

µ
, λ(µ), ε

)]1/2

hn , (2.66)
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where λ(µ) = g(µ)2N is the ’t Hooft coupling. As before, here Mn de-
notes a generic resumed amplitude, rescaled by the corresponding tree-level
amplitude.

Similarly to the soft and jet functions, the factorization (2.66) implies
an evolution equation and a renormalization group equation for the factors
M[gg→1]

(
Q2/µ2, λ(µ), ε

)
. The same equations follow independently from

the gauge invariance and the properties of the form factor. They read

d

d lnQ2
M[gg→1]

(
Q2

µ2
, λ, ε

)
=

1

2

[
K(ε, λ) +G

(
Q2

µ2
, λ, ε

)]

×M[gg→1]

(
Q2

µ2
, λ, ε

)
, (2.67)

where the function K contains only poles and no scale dependence. The
functions K and G themselves obey renormalization group equations [37–39],
[54, 55]

(
d

d lnµ
+ β(λ)

d

dg

)
(K +G) = 0 ,

(
d

d lnµ
+ β(λ)

d

dg

)
K(ε, λ) = −γK(λ) . (2.68)

In N = 4 SYM they may be solved exactly and explicitly in terms of the
expansion coefficients of the cusp anomalous dimension

f(λ) ≡ γK(λ) =
∑

l

alγ
(l)
K (2.69)

and another set of coefficients defining the expansion of G:

G

(
Q2

µ2
, λ, ε

)
=
∑

l

G(l)
0 al

(
Q2

µ2

)lε

, (2.70)

where a = λ/(8π2) (4πe−γ)ε the coupling constant customarily used in
higher loop calculations. An important ingredient in solving these equa-
tions is that in the dimensionally-regularized N = 4 SYM theory the beta
function is

β(λ) = −2ελ , (2.71)

i.e. in the presence of the dimensional regulator the theory is infrared-free.
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The solution for K and G may then be used to reconstruct the Sudakov
form factor (2.67) which, in turn, leads to the following expression for the
factorized amplitude [49]:

Mn = exp

[
−1

8

∞∑

l=1

al

(
γ

(l)
K

(lε)2
+

2G(l)
0

lε

)
n∑

i=1

(
µ2

−si,i+1

)lε
]

× hn

= exp

[
∞∑

l=1

al

(
1

4
γ

(l)
K +

l

2
G(l)

0

)
Î(1)
n (lε)

]
× hn . (2.72)

The definition of Î
(1)
n (ε) may be easily seen to be

Î(1)
n = − 1

ε2

n∑

i=1

(
µ2

−si,i+1

)ε

. (2.73)

This function captures the divergences of the planar one-loop n-point am-
plitudes in N = 4 SYM.

The first few coefficients in the weak coupling expansion of the cusp
anomalous dimension and G function (2.70) have been evaluated directly
[49, 56–62] with the result

f(λ) =
λ

2π2

(
1− λ

48
+

11λ2

11520
−
(

73

1290240
+

ζ2
3

512π6

)
λ3+· · ·

)
, (2.74)

G(λ) = −ζ3
(

λ

8π2

)2

+
(
6ζ5 + 5ζ2ζ3

)( λ

8π2

)3

− 2(77.56 ± 0.02)

(
λ

8π2

)4

+ · · · . (2.75)

The three-loop cusp anomaly was initially extracted [57], from the impres-
sive calculations [63, 64] of the QCD splitting functions, using the maximal
transcendentality conjecture; its value was confirmed by a direct amplitude
calculation in [49]. Similarly, the value of the three-loop correction to the
G-function can be independently confirmed by using maximal transcenden-
tality conjecture and the QCD results for the quark and gluon form fac-
tors [65, 66].

Using the integrability of the gauge theory dilatation operator, Beis-
ert, Eden and Staudacher (BES) [3] constructed an integral equation whose
solution is the universal scaling function (conjecturally equal to the cusp
anomalous dimension) to all orders in perturbation theory. This equa-
tion was solved in a weak coupling expansion [3] and also in a strong
coupling expansion [67–69]. Using the AdS/CFT correspondence the first
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few coefficients in the strong coupling expansion were evaluated in [70–72].
The leading term in the strong coupling expansion of G was computed in [73]:

f(λ) =

√
λ

π

(
1 − 3 ln 2√

λ
− K

λ
+ · · ·

)
, λ→ ∞ , (2.76)

G(λ) = (1 − ln 2)

√
λ

8π
+ · · · , λ→ ∞ ; (2.77)

here K =
∑

n≥0 (−1)n/(2n + 1)2 ≃ 0.9159656 . . . is the Catalan constant.
The properties of the collinear anomalous dimension G were discussed

in detail in [75] where this function was identified with the sum of the first
subleading term in the large spin expansion of the anomalous dimension of
twist-2 operators and the coefficient of the subleading pole in the expectation
value of the cusp Wilson line with edges of finite length.

2.6. The BDS conjecture and potential departures from it

In Section 2.5 we discussed, following [49, 103], higher loop corrections
to the four-gluon amplitude. The direct evaluation of the integrals in the
two-loop four-gluon amplitude [104] reveals a surprising structure: up to
terms of order ε,

M(2)
4 (ε) = 1

2

(
M(1)

4 (ε)
)2

+ f (2)(ε)M(1)
4 (2ε) + C(2) + O(ε) . (2.78)

Equally surprisingly, the same expression holds for the two-loop splitting
amplitude [104]. Such an iterative behavior is to be expected for the infrared-
singular part of the amplitudes; indeed, it is only a consequence of the
soft/collinear factorization theorem discussed previously (cf. Eq. (2.72)).
The surprising fact is that this structure extends to the finite part of the
amplitude, in particular that C(2) is a constant.

The fact that splitting amplitudes provide a link between higher and
lower-point amplitudes at fixed loop order suggests a generalization of the
iteration relation above to arbitrary number of external legs. Indeed, an
ansatz, due to Anastasiou, Bern, Dixon and Kosower [104], which correctly
captures the behavior of MHV amplitudes in all collinear limits as well as
their infrared singularities is

M(2)
n (ε) = 1

2

(
M(1)

n (ε)
)2

+ f (2)(ε)M(1)
n (2ε) + C(2) + O(ε) . (2.79)

Similarly to the explicit calculation of the four-point amplitude, the main
feature of this ansatz is that C(2) and f (2)(ε) are independent of the external
momenta and also of the number of external legs. The five-gluon amplitude
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at two-loops obeys this ansatz; the same cannot be said however about the
six-gluon amplitude, as we shall discuss in Section 2.7.

A similarly surprising result followed [49] from the evaluation of the
three-gluon amplitude; throughout the finite part, it obeys an iterative struc-
ture similar to that of the two-loop amplitude.

M(3)
4 (ε)=−1

3

(
M(1)

4 (ε)
)3

+M(2)
4 (ε)M(1)

4 (ε)+f (1)(ε)M(1)
4 (3ε)+C(3)+O(ε) .

This equation as well as (2.78) are consistent with the resumed amplitude
taking an exponential form with the exponent given in terms of the one-
loop four-gluon amplitude. Assuming that the same is true for the splitting
amplitude, Bern, Dixon and Smirnov [49] suggested that, to all loop orders,
the rescaled n-point MHV amplitude is given by

Mn = exp

[
∞∑

l=1

alf (l)(ε)M(1)
n (lε) + C(l) + O(ε)

]
, (2.80)

where the coefficients

f (l)(ε) = f
(l)
0 + εf

(l)
1 + ε2f

(l)
2 (2.81)

are independent of the number of external legs. The ε-independent part,

f
(l)
0 , are the Taylor coefficients of the cusp anomalous dimension or universal

scaling function (2.69)

f(λ) = 4

∞∑

l=0

alf
(l)
0 . (2.82)

The appearance of the cusp anomalous dimension is, of course, dictated by

the infrared structure of the amplitude. Similarly, f
(l)
1 and f

(l)
2 define the

functions

g(λ) = 2

∞∑

l=2

al

l
f

(l)
1 ≡ 2

∫
dλ

λ
G(λ) , k(λ) = −1

2

∞∑

l=2

al

l2
f

(l)
2 , (2.83)

the former being twice the first logarithmic integral of G entering in the
Sudakov form factor (2.70).

In the construction of (2.80) it was assumed that the splitting amplitude
obeys an all-order exponentiation similar to the infrared-singular part of the
amplitude:

rS = exp

[
∞∑

l=1

alf (l)(ε)r
(1)
S (lε)

]
. (2.84)
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This relation may be justified using the dual conformal invariance intro-
duced in Section 2.5.1. Indeed, as shown in [112] and reviewed elsewhere in
this volume, the four- and five-point amplitudes are uniquely fixed by re-
quiring that this symmetry. Then, taking the collinear limit of the five-point
amplitude immediately yields (2.84).

The infrared poles are apparent in the equation (2.80) and, using equa-
tion (2.72), may be readily isolated together with the associated dependence
on the two-particle invariants:

Divn = −
n∑

i=1

[
1

8ε2
f (−2)

(
λµ2ε

IR

(−si,i+1)ε

)
+

1

4ε
g(−1)

(
λµ2ε

IR

(−si,i+1)ε

)]
, (2.85)

where the invariants si,i+1 are assumed to be negative. The functions f (−2)

and g(−1) are, respectively, the second and first logarithmic integrals of the
functions f(λ) and G(λ). Extracting this divergent part defines the finite

remainder F
(1)
n (0).

lnMn = Divn +
f(λ)

4
F (1)

n (0) + nk(λ) + C(λ) , (2.86)

with C(λ) =
∑∞

l=1 C
(l)al. In the simplest case of the four-gluon amplitude

the finite remainder F
(1)
n (0) takes the form

F
(1)
4 (0) =

1

2

(
ln
s12
s23

)2

+ 4ζ2 . (2.87)

For more than four external legs the finite remainders F
(1)
n (0) have a more

complicated form:

F (1)
n (0) =

1

2

n∑

i=1

gn,i , (2.88)

where

gn,i = −
⌊n/2⌋−1∑

r=2

ln

(
−t[r]i

−t[r+1]
i

)
ln

(
−t[r]i+1

−t[r+1]
i

)
+Dn,i + Ln,i +

3

2
ζ2 , (2.89)

in which ⌊x⌋ is the greatest integer less than or equal to x and, as in (2.51),

t
[r]
i = (ki + · · ·+ ki+r−1)

2 are momentum invariants. (All indices are under-
stood to be mod n.) The form of Dn,i and Ln,i depends upon whether n
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is odd or even. For the even case (n = 2m) these quantities are given by

D2m,i = −
m−2∑

r=2

Li2

(
1 − t

[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1

)
− 1

2
Li2

(
1 − t

[m−1]
i t

[m+1]
i−1

t
[m]
i t

[m]
i−1

)
,

L2m,i =
1

4
ln2

(
−t[m]

i

−t[m]
i+1

)
. (2.90)

In the odd case (n = 2m+ 1), we have

D2m+1,i = −
m−1∑

r=2

Li2

(
1 − t

[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1

)
,

L2m+1,i = −1

2
ln

(
−t[m−1]

i

−t[m+1]
i

)
ln

(
−t[m]

i+1

−t[m+1]
i−1

)
. (2.91)

These expressions for Dn,i and Ln,i are found [76] by inserting the explicit
values of the box integrals into equation (2.51).

By construction, the BDS conjecture captures the correct infrared singu-
larities as well as the correct behavior under collinear limits. Thus, depar-
tures from it should contain no infrared singularities and moreover should
have vanishing collinear limits in all channels.

Additional constraints may be found if one assumes that dual conformal
invariance is a property of MHV amplitudes to all orders in perturbation the-
ory [112]. While it is a plausible assumption especially in light of the strong
coupling prescription for the calculation of scattering amplitudes [73] which
we will discuss shortly, this assumption needs to be verified on a case by case
basis. Nevertheless, if this assumption holds, it leads to the conclusion that
departures from the BDS ansatz must exhibit dual conformal invariance as
a consequence of their finiteness. Thus, similarly to two-dimensional con-
formal field theories, such corrections must be functions of invariants under
the inversion transformations (2.58). Dual conformal invariants can be con-
structed for any kinematics with at least six momenta. In this simplest case
they are15

u1 =
s12s45
s123s345

, u2 =
s23s56
s234s123

, u3 =
s34s61
s345s234

. (2.92)

The number of such cross-ratios — i.e. xijxkl/xikxjl with the difference
between any two labels of at least two units — grows with the number of

15 Parity-odd dual conformal invariants can also be constructed. Explicit calculations
[115] show that, at least at two-loop order, all parity-odd terms in the six-point
amplitude exponentiate following the BDS ansatz.
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external points. Clearly, dual conformal invariance would imply a reduc-
tion in the number of independent arguments of (the finite part of) MHV
amplitudes.

To probe the structure of amplitudes it is useful to define the remainder

function RA:

RAn(a) = ln

(
1 +

∑

l

alM(l)
n

)
−
(
∑

l

alfl(ε)M(1)
n (lε) + C(a)

)
. (2.93)

This is a finite, dual conformally invariant function of the coupling constant
which encodes the departure of the n-point MHV rescaled amplitude from
the BDS ansatz. The O(a2) part may be readily extracted and reads

R
(2)
An ≡ lim

ε→0

[
M (2)

n (ε) −
(

1

2

(
M (1)

n (ε)
)2

+ f (2)(ε)M (1)
n (2ε) + C(2)

)]
.

(2.94)
Note that the terms in parenthesis are just the ABDK ansatz (2.79) for the
2-loop MHV amplitude with arbitrary multiplicity.

2.7. The six-point MHV amplitude at two-loops and the BDS ansatz

As previously mentioned, the ABDK/BDS ansatz was constructed based
on explicit calculations of four gluon amplitudes at two- and three-loop or-
ders as well as of the collinear splitting amplitudes at two-loop order and
was subsequently tested through the calculation of the five-point amplitude
at two-loops. Assuming that dual conformal invariance holds to all loop
orders, the fact that no conformal cross-ratios can be constructed for four-
and five-point kinematics suggests that these amplitudes are determined to
all orders by their infrared singularities. In later sections we will discuss to
what extent this interpretation is accurate; the ABDK/BDS ansatz will obey
an anomalous Ward identity for dual conformal transformations which has
a unique solution for four- and five-point kinematics. Thus, in these cases,
the ABDK/BDS ansatz necessarily reproduces the scattering amplitudes.

For higher-point kinematics scattering amplitudes may contain in prin-
ciple additional information, beyond that related to its infrared divergences,
which is captured by finite functions of conformal ratios and vanishes in all
collinear limits.

Similarly to the five-point MHV amplitude at two-loops, the two-loop
six-point MHV amplitude contains an even and an odd part. The even
part was evaluated in [111] and information on the odd part was found
in [115]. Projecting the ABDK ansatz (2.79) onto parity-even and parity-odd
components, it follows quickly that similar iteration relations should hold
separately for the even and odd parts of rescaled amplitudes. It turns out
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that, while the odd part of the amplitude obeys the iteration relation [115],
the even part does not, signaling departures from the ABDK/BDS ansatz.

Following the discussion in previous sections, to reconstruct the ampli-
tude one should analyze all of its generalized cuts. The known ultraviolet
behavior of the theory however implies certain simplifications. As mentioned
before, this is quite analogous to the observation that one-loop amplitudes
can be written solely in terms of box integrals. The analogous statement for
two-loop amplitudes of arbitrary multiplicity is that they are completely de-
termined by (d-dimensional) iterated two-particle cuts. The relevant topolo-
gies are listed in Fig. 11.

(a) (b) (c)

(d) (e)

Fig. 11. Cuts capturing the complete structure of the six gluon amplitude at two

loops.

Here, as well as for more general amplitudes, it is useful to organize
the result as the sum of the part constructible from four-dimensional cuts

M
(2),D=4
6 (ε) and the part accessible only through some (partial) d-dimensional

cuts M
(2),µ
6 (ε)

M
(2),D=4−2ε
6 (ε) = M

(2),D=4
6 (ε) +M

(2),µ
6 (ε) . (2.95)

The latter terms are built from µ-integrals and their four-dimensional gen-
eralized cuts vanish identically (in the sense that all cut propagators are
considered four-dimensional).

The four-dimensional cut-constructible parity-even part of the amplitude
is given entirely in terms of pseudo-conformal integrals [111];

M
(2),D=4
6 (ε) =

1

16

∑

12 perms.

[
1

4
c1I

(1)(ε) + c2I
(2)(ε) +

1

2
c3I

(3)(ε) +
1

2
c4I

(4)(ε)

+ c5I
(5)(ε) + c6I

(6)(ε) +
1

4
c7I

(7)(ε) +
1

2
c8I

(8)(ε) + c9I
(9)(ε)

+ c10I
(10)(ε)+c11I

(11)(ε)+
1

2
c12I

(12)(ε)+
1

2
c13I

(13)(ε)

]
. (2.96)
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The integrals Ii are listed in Fig. 12 and the corresponding coefficients for
the (1, 2, 3, 4, 5, 6) permutation are:

c1 = s61s34s123s345 + s12s45s234s345 + s2345(s23s56 − s123s234) ,
c2 = 2s12s

2
23 ,

c3 = s234(s123s234 − s23s56) ,
c4 = s12s

2
234 ,

c5 = s34(s123s234 − 2s23s56) ,
c6 = −s12s23s234 ,
c7 = 2s123s234s345 − 4s61s34s123 − s12s45s234 − s23s56s345 ,
c8 = 2s61(s234s345 − s61s34) ,
c9 = s23s34s234 ,
c10 = s23(2s61s34 − s234s345) ,
c11 = s12s23s234 ,
c12 = s345(s234s345 − s61s34) ,
c13 = −s2345s56 . (2.97)

It is not hard to check that all terms appearing in (2.96) are indeed pseudo-
conformal integrals. Their relative coefficients are 0,±1,±2 and ±4, which
represents a chance of patterns from the four- and five-point amplitudes
where they were only 0 and ±1. It is currently unclear what is the origin of
this change.

(1) (2) (3) (4) (5)

(6) (7)

p

×(p + k1)
2

(8)

p

×(p + k1)
2

(9)

p

×(p + k1)
2

(10)

p

×(p + k5)
2

(11)

p
q

×(p + k3)
2(q + k6)

2

(12)

p q

×(p + k3)
2(q + k2)

2

(13)

p q

×µp · µq

(14)

p

×µ2
p

(15)

Fig. 12. Integral topologies appearing in the even part of the six gluon amplitude

at two loops. All momenta are considered to be outgoing and the arrow on an

external line denotes the line carrying momentum k1. As before, µp and µq denote

the (−2ε)-dimensional part of the loop momenta.



3022 L.F. Alday, R. Roiban

The remaining parity-even part of the amplitude, which may be deter-
mined by performing generalized cuts with at least one two-particle
d-dimensional cut is [111]

M
(2),µ
6 (ε) =

1

16

∑

12 perms.

[
1

4
c14I

(14)(ε) +
1

2
c15I

(15)(ε)

]
, (2.98)

the coefficients for the identity permutation (1, 2, 3, 4, 5, 6) are

c14 = −2s345(s123s234s345−s61s34s123−s12s45s234−s23s56s345) ,
c15 = 2s61(s123s234s345−s61s34s123−s12s45s234−s23s56s345) . (2.99)

Their dual conformal properties are somewhat nontransparent; following
the definition given in Section 2.5.1 they may be interpreted as pseudo-
conformal as their integrand vanishes identically in four dimensions. Explicit
calculation [111] shows that they do not contribute to the remainder function
(2.94); thus, their presence may be ascribed to the infrared structure of the
amplitude, interpretation strengthened by the fact that they either integrate
to O(ε) (I14) or they exhibit infrared poles (I15).

The analytic evaluation of the integrals appearing in the six-point am-
plitude remains a difficult open problem, with potential applications beyond
N = 4 SYM. To test for the structure and the conformal properties of the
remainder function, [111] evaluated the amplitude at a variety of kinematic
points K(0) through K(5). For the state of the art in the evaluation of
Feynman integrals we refer the reader to [116–119]. Two of the kinematic
points, K(0) and K(1), were chosen to have the same cross-ratios while the
momentum invariants are different. The results [111] of the evaluation of
the remainder function RA6 are shown in Table I.

TABLE I

The numerical remainder compared with the ABDK ansatz (2.79) for various
kinematic points. The second column gives the conformal cross-ratios introduced
in (2.92).

Kinematic point (u1, u2, u3) RA6

K(0) (1/4, 1/4, 1/4) 1.0937± 0.0057

K(1) (1/4, 1/4, 1/4) 1.076± 0.022

K(2) (0.547253, 0.203822, 0.881270) −1.659 ± 0.014

K(3) (28/17, 16/5, 112/85) −3.6508± 0.0032

K(4) (1/9, 1/9, 1/9) 5.21 ± 0.10

K(5) (4/81, 4/81, 4/81) 11.09 ± 0.50
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The main conclusion is that the remainder function is nonzero to a high
level of confidence thus suggesting that the ABDK/BDS ansatz captures
only part of the amplitude. It is also important to note that the remainder
functions at kinematic points K(0) and K(1) are equal within errors. This
strongly suggests that RA6 is indeed a function of only conformal cross-ratios,
i.e. is invariant under dual conformal transformations.

This calculation implies therefore that the BDS ansatz should be mod-
ified at six points and beyond. For this purpose it is instructive to identify
the origin of the remainder function within the arguments that led to this
ansatz. In short, the full structure of collinear limits for n-point amplitudes
with n ≥ 6 is somewhat more involved. One may consider limits in which
more than two particles are simultaneously collinear:

ki = zik for i = 1 . . . m

m∑

i=1

zi = 1 , zi ≤ 1 k2 → 0 . (2.100)

For the six-point amplitude only a triple-collinear limit (i.e. m = 3 above)
exists. While vanishing in all double-collinear limits, the remainder function
for the six-point amplitude has a nontrivial triple-collinear limit, which in
fact allows its complete reconstruction. We refer the reader to [111] for more
detailed discussions in this direction.

3. Scattering amplitudes at strong coupling

The AdS/CFT correspondence [5–7] provides the only direct access to
the strong coupling regime of the N = 4 SYM; it relates four-dimensional
N = 4 SYM theory and type IIB string theory on AdS5×S5 space through
the identification of string states and gauge-invariant operators. The two
gauge theory parameters — the ’t Hooft coupling λ and the rank of the
gauge group N — are expressed in terms of the radius of curvature of the
space and the string coupling by the well-known relations

√
λ ≡

√
g2
YMN =

R2

α′
,

1

N
∼ gs . (3.1)

Thus, in the limit of a large number of colors the splitting and joining of
strings is suppressed and in the limit of large ’t Hooft coupling, the string
theory lives on a weakly curved space. In this regime the string theory is
completely described by a weakly-coupled worldsheet sigma-model.

By appending an open string sector to closed string theory in AdS5×S5

gluon scattering amplitudes could in principle be directly computed, on the
string side of the AdS/CFT correspondence, in terms of integrated correla-
tion functions of vertex operators. Due to the presence of color factors it
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is, however, unclear how much of the resulting structure can be captured
entirely in terms of closed string data. We will argue, following [73,74], that
the color-stripped partial amplitudes do have such a description, to leading
order in the strong coupling expansion.

As discussed in the previous section, one needs to introduce an infrared
regulator in order to define perturbative scattering amplitudes properly. Di-
mensional regularization and variants thereof remain the preferred gauge
theory regularization scheme.

A choice of regularization is also needed to define scattering amplitudes
on the string theory side of the AdS/CFT correspondence. We will discuss
two such choices: first, to set up the calculation, we will use as a regulator
a D-brane cutting off the infrared part of AdS5. After formulating and un-
derstanding the prescription for computing scattering amplitudes at strong
coupling we will modify the regulator to one akin to the gauge theory dimen-
sional regulator; this will allow a direct comparison with the strong coupling
limit of (2.80).

3.1. The general construction

As a first IR regulator we consider a D-brane localized in the radial
direction. We start with the AdS5 metric written in Poincaré coordinates

ds2 = R2dy
2
3+1 + dz2

z2
. (3.2)

The boundary is located at z = 0 while the horizon is located at z = ∞.
Then we place a D-brane at some fixed large value of z = zIR and extending
along the x3+1 coordinates. The asymptotic states are open strings that end
on the D-brane. We then consider the scattering of these open strings.

The proper momentum of the strings is kpr = kzIR/R, where k is the
momentum conjugate to x3+1, plays the role of gauge theory momentum
and will be kept fixed as we take away the IR cut-off, zIR → ∞. Therefore,
due to the warping of the metric, the proper momentum is very large, so
we are considering the scattering of strings at fixed angle with very large
momentum. Amplitudes in such regime were studied in flat space by Gross,
Mende and Manes, [120, 121]. The key feature of their computation is that
the amplitudes are dominated by a saddle point of the classical action. In
our case we need to consider classical strings on AdS.

We need then to consider a world-sheet with the topology of a disk with
vertex operator insertions on its boundary, which correspond to the external
states (see Fig. 13). Each color ordered amplitude corresponds to a disk
amplitude with a fixed ordering of the open string vertex operators. The
boundary conditions for the world-sheet are the following: the worldsheet
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boundary is located at z = zIR since the open strings are attached to the
regulator D-brane and, in the vicinity of each vertex operator, the momen-
tum of the external state fixes the form of the worldsheet field configuration.

1
2

3
4

4

1

3

2

Fig. 13. World-sheet corresponding to the scattering of four open strings.

To state more simply the boundary conditions for the world-sheet, it
is convenient to describe the solution in terms of T-dual coordinates xµ,
defined as

ds2 = w2(z)dyµdy
µ → ∂αx

µ = iw2(z)εαβ∂βy
µ . (3.3)

Note that we do not T-dualize along the radial direction z. The bound-
ary conditions for the original coordinates xµ, which are that they carry
momentum kµ, translates into the condition that xµ has “winding”

∆xµ = 2πkµ . (3.4)

After defining r = R2/z we end up again with the AdS5 metric

ds2 = R2dxµdx
µ + dr2

r2
. (3.5)

Now the boundary of the world-sheet is located at r = R2/zIR and is a par-
ticular line constructed as follows (see Fig. 14)

• For each particle of momentum kµ, draw a segment joining two points
separated by ∆xµ = 2πkµ.

• Concatenate the segments according to the insertions on the disk (cor-
responding to a particular color ordering).

• As gluons are massless, the segments will be light-like. Due to mo-
mentum conservation, the diagram is closed.



3026 L.F. Alday, R. Roiban

Y1

Y2

Y0

Y1

Fig. 14. Polygon of light-like segments corresponding to the momenta of the exter-

nal particles.

The world-sheet, when expressed in T-dual coordinates, will then end on
such a sequence of light-like segments (see for example Fig. 14 for the se-
quence corresponding to the scattering of six gluons) located at r = R2/zIR

1
2

3
4

Z=ZIR

4 3

2
1

r=R
2
/ZIR

Fig. 15. Comparison of the world sheet in original and T-dual coordinates.

As we take away the IR cut-off, zIR → ∞, the boundary of the world-
sheet moves towards the boundary of the T-dual metric, at r = 0. At
leading order in the strong coupling expansion, the computation that we are
doing is formally the same as the one we would do if we were computing the
expectation value of a Wilson loop given by a sequence of light-like segments.

Our prescription is then that the leading exponential behavior of the
n-point scattering amplitude is given by the area A of the minimal surface
that ends on a sequence of light-like segments on the boundary

An ∼ e−
√

λ
2π

A(k1,...,kn) . (3.6)
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The area A contains the kinematical information through its boundary con-
ditions. We stress that our computation is blind to the polarization of the
gluons, which contribute to prefactors in 3.6 and are subleading in 1/

√
λ16.

In the following, we will show in detail how our prescription works for
the scattering of four gluons and compare our results with field theory ex-
pectations.

3.2. Four gluon scattering

The simplest scattering process involves four particles and is character-
ized by the usual Mandelstam invariants

s = −(k1 + k2)
2 , t = −(k2 + k3)

2 . (3.7)

The discussion in the previous section suggests that, in the strongly cou-
pled N = 4 SYM theory, the amplitude for this process is governed by the
minimal surface ending on the light-like polygon shown in Fig. 16.

Y1

Y2

Y0

Y1

Y2

Fig. 16. Polygon corresponding to the scattering of four gluons.

As implied by the equation (3.4), the difference between the coordinates
of each of the corners of the polygon (cusps) are, up to a factor of (2π), the
momenta of the corresponding gluon. In drawing Fig. 16, it was assumed
that the third component of the momentum (described by the boundary
coordinate y3) vanishes. This choice imposes no kinematic restrictions, as it
does not imply any relations between the two Mandelstam invariants.

The area of a surface embedded in a higher dimensional space is simply
given by the integral of the induced metric

A =

∫
dσdτ

√
− det ∂αxµ∂βxνgµν(x) . (3.8)

16 For instance, if we consider amplitudes of the form A(++++. . .), then such prefactors
should vanish.
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Finding minimal surfaces amounts simply to treating this area as an action
(the Nambu–Goto action) and solving the classical equations of motion,
subject to the desired boundary conditions. Then, the area is obtained by
evaluating (3.8) on the resulting configuration.

3.2.1. The single cusp solution

As a warm up exercise let us discuss the solution near the cusp where two
of the light-like lines meet. This problem was originally considered in [125]
and it will prove useful for generating the solution relevant for the four-gluon
scattering. The surface can be embedded into an AdS3 subspace of AdS5

ds2 =
−dx2

0 + dx2
1 + dr2

r2
. (3.9)

We are interested in finding the surface ending on a light-like Wilson line
which is along x1 = ±x0, x0 > 017 (see Fig. 17). This configuration has
both boost and scale symmetry, which are made manifest by the following
ansatz:

Y0

r

Y1

Fig. 17. Single cusp solution.

x0 = eτ coshσ , x1 = eτ sinhσ, r = eτw(τ) . (3.10)

boosts in the (0, 1) plane and scale transformations are then simply given
by shifts of σ and τ , respectively.

Equations for the remaining function w(τ) may be found by evaluating
the equations of motion on the ansatz (3.10). Alternatively, one may simply
evaluate the Nambu–Goto action on the ansatz (3.10) and derive an equation

17 One can also consider Wilson loops along x0 = ±x1, x1 > 0. The basic difference
with the ones considered here is that their worldsheet is Lorentzian and z is imaginary.
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for w(τ) by varying the result with respect to it. Choosing the second path,
the Nambu–Goto action becomes

SNG =
R2

2πα′

∫
dσdτ

√
1 − (w(τ) +w′(τ))2

w(τ)2
. (3.11)

One can then explicitly check that w(τ) =
√

2 solves the equations of motion
and has the correct boundary conditions. Hence the surface is given by

r =
√

2
√
x2

0 − x2
1 . (3.12)

Notice that the surface lies entirely outside the light-cone of the origin, hence
it is Euclidean.

3.2.2. Four cusps solution

The four cusps solution is closely related to the single cusp solution
discussed above. The relevant solution of the Nambu Goto action can be
embedded in a AdS4 subspace of AdS5, parametrized by (r, x0, x1, x2, x3 =0).
Furthermore, we fix reparametrization invariance by choosing (σ1, σ0) =
(x1, x2). With these choices, the Nambu–Goto action describes the dynamics
of two fields, r and x0, living in the space parametrized by x1 and x2

S=
R2

2πα′

∫
dx1dx2

√
1+(∂ir)2−(∂ix0)2−(∂1r∂2x0−∂2r∂1x0)2

r2
. (3.13)

The classical equations of motion should then be supplemented by the
appropriate boundary conditions. We consider first the case with s = t,
where the projection of the Wilson lines is a square. By scale invariance,
we can choose the edges of the square to be at x1, x2 = ±1. The boundary
conditions can be easily seen to be

r(±1, x2)=r(x1,±1) = 0 , x0(±1, x2)=±x2 , y0(x1,±1)=±x1 . (3.14)

The form of the solution near each of the cusps can be obtained by rotations
and boosts from the single cusp solution (3.12). The following field configu-
ration satisfies the boundary conditions and has the correct properties near
each of the cusps

x0(x1, x2) = x1x2 , r(x1, x2) =
√

(1 − x2
1)(1 − x2

2) . (3.15)

Remarkably it turns out to be a solution of the equations of motion! In prin-
ciple, we could plug this solution into the action and compute the amplitude
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as strong coupling for this particular configuration. However, in order to
capture the kinematic dependence of the area18 we need to consider more
general solutions with s 6= t. In this case the projection of the surface to the
(x1, x2) plane will not be an square but a rhombus, with s and t given by
the square of the distance between opposite vertices, as shown in figure 18.

(a) (b)

1

2 2

1
t

s
s

t

Fig. 18. Projection to the plane (x1, x2) of the surface for the cases s = t and s 6= t.

The symmetry generators of anti-de-Sitter space act nonlinearly on the
Poincaré patch coordinates (3.5). They are however useful for generating
new and interesting worldsheet configurations from known ones, since they
can change the Mandelstam variables s and t; it would therefore be useful to
linearize their action. This is realized by passing to the so-called embedding
coordinates, in which AdS5 is viewed as a hypersurface embedded in R

2,4

−X2
−1 −X2

0 +X2
1 +X2

2 +X2
3 +X2

4 = −1 . (3.16)

Clearly, this constraint equation is manifestly invariant under the SO(2,4)
symmetry group of AdS5, which is also the Lorentz group of the embedding
space. The Poincaré coordinates (x, r) are but a particular solution of the
constraint equation (3.16):

Xµ =
xµ

r
, µ = 0, ..., 3

X−1 +X4 =
1

r
, X−1 −X4 =

r2 + xµx
µ

r
. (3.17)

In terms of embedding coordinates, the minimal surface describing the scat-
tering of four gluons with the s = t kinematics is

X0X−1 = X1X2 , X3 = X4 = 0 . (3.18)

In this form it is then easy to use the SO(2,4) to generate from (3.15) new
minimal surfaces, corresponding to s 6= t gauge theory kinematics.

18 On dimensional grounds the area, if finite, should be a function of the form f(s/t).
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Through the AdS/CFT correspondence, the SO(2,4) of the dual AdS
space should have a gauge theory counterpart. Due to the T-duality trans-
formation relating the boundary coordinates of this space with gauge theory
momenta this symmetry is necessarily different from the usual position space
conformal invariance of N = 4 SYM theory. As discussed in Section 2.5.1,
the action of a “dual conformal group” can be identified at the level of per-
turbative scattering amplitudes. While a priori these two symmetries are
unrelated (as e.g. the former exists at strong coupling while the latter at
weak coupling), it is nevertheless tempting to interpret the latter as the weak
coupling version of the former.

Solutions with s 6= t can be obtained by starting from (3.15) and per-
forming a boost in the (0, 4) plane. In this way we change the distance
between opposite vertices of the square.

X0X−1 = X1X2 ,

X4 = 0 → X4 − vX0 = 0 ,√
1 − v2X0X−1 = X1X2 . (3.19)

After the boost, we end up with a two-parameter solution, one related to
the size of the initial square and another related to the boost parameter.
The solution can be conveniently written as

r =
a

coshu1 coshu2 + b sinhu1 sinhu2
,

x0 =
a
√

1 + b2 sinhu1 sinhu2

coshu1 coshu2 + b sinhu1 sinhu2

x1 =
a sinhu1 coshu2

coshu1 coshu2 + b sinhu1 sinhu2
,

x2 =
a cosh u1 sinhu2

coshu1 coshu2 + b sinhu1 sinhu2
, (3.20)

where we have written the surface as a solution to the equations of motion
in conformal gauge

iS = − R2

2πα′

∫
L = −R

2

2π

∫
du1du2

1

2

(∂r∂r + ∂xµ∂x
µ)

r2
(3.21)

a and b encode the kinematic information of the scattering as follows

−s(2π)2 =
8a2

(1 − b)2
, −t(2π)2 =

8a2

(1 + b)2
,

s

t
=

(1 + b)2

(1 − b)2
. (3.22)

To obtain the four point scattering amplitude at strong coupling it should
suffice, following the discussion in Section 3.1, to evaluate the classical action
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on the solution (3.20). However, in doing so, one finds a divergent answer.
That is of course the case, since we have ignored the infrared regulator. In
order to obtain a finite answer we need to reintroduce a regulator.

3.2.3. Dimensional regularization at strong coupling

Gauge theory amplitudes are regularized by considering the theory in
D = 4 − 2ε dimensions. More precisely (see discussion in Section 2), one
starts with N = 1 in ten dimensions and then dimensionally reduces to
4 − 2ε dimensions. For integer 2ε this is precisely the low energy theory
living on a Dp-brane, where p = 3 − 2ε. We regularize the amplitudes at
strong coupling by considering the gravity dual of these theories.

ds2 = f−1/2dx2
4−2ε + f1/2

[
dr2 + r2dΩ2

5+2ε

]
,

f = (4π2eγ)εΓ (2 + ε)µ2ε λ

r4+2ε
. (3.23)

Following the steps described above, one is led to the following action

S =

√
cελµ

ε

2π

∫ Lε=0

rε
, (3.24)

where Lε=0 is the Lagrangian density in the absence of the regulator. The
presence of the factor rε will have two important effects. On one hand,
previously divergent integrals will now converge. On the other hand, the
equations of motion will now depend on ε and it turns out to be very difficult
to find the solution for general ε. However, we are interested in computing
the amplitude only up to finite terms as we take ε → 0. In that case, it
turns out to be sufficient to plug the original solution into the ε-deformed
action19. The evaluation of the integrals leads to [73]

S ≈
√
λ
µε

aε 2F1

(
1

2
,−ε

2
,
1 − ε

2
; b2
)
. (3.25)

Finally, expanding in powers of ε yields the final answer

A = eiS = exp

[
iSdiv +

√
λ

8π

(
ln
s

t

)2
+ C̃

]
, (3.26)

Sdiv = 2Sdiv,s + 2Sdiv,t , (3.27)

iSdiv,s = − 1

ε2
1

2π

√
λµ2ε

(−s)ε − 1

ε

1

4π
(1 − ln 2)

√
λµ2ε

(−s)ε . (3.28)

19 To be more precise, the ε-corrected solution can be constructed close to the cusps. The
contribution of the correction terms to the minimal area turns out to be independent
of the kinematics.
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This should be compared with the field theory expectations, equations (2.85)
and (2.86), specialized to the case n = 4:

A ∼ (Adiv,s)
2 (Adiv,t)

2 exp

{
f(λ)

8

(
ln
s

t

)2
+ const.

}
(3.29)

Adiv,s = exp

{
− 1

8ε2
f (−2)

(
λµ2ε

sε

)
− 1

4ε
g(−1)

(
λµ2ε

sε

)}
. (3.30)

It is important to notice that the general structure is in perfect agreement
with the general structure of infrared divergences in N = 4 SYM theory.
It is not hard to see that the leading divergence has the correct coefficient,
given by the strong coupling limit of the cusp anomalous dimension [125]20

f(λ) =

√
λ

π
. (3.31)

Moreover, from (3.26) one could extract the strong coupling behavior of the
function g(λ) introduced in equation (2.83):

g(λ) =

√
λ

2π
(1 − ln 2) . (3.32)

Notice that due to the scheme dependence of g(λ), it should be computed us-
ing the same regularization as in perturbative computations, that of course,
is not the case for f(λ). Finally, the kinematic dependence of the finite term
(3.29) reproduces the strong coupling limit of the BDS prediction (2.86)–
(2.87) for the four gluon scattering amplitude.

3.2.4. Radial cut-off

A more common regularization scheme for computing minimal areas in
AdS is to introduce a cut-off in the radial direction. The correct procedure
would be to impose the boundary conditions at some small r = rc. It turns
out, however, that in order to compute the finite piece as rc → 0 it suffices
to use the original solution and cut the integral giving the area at r = rc

21.

20 The appearance of the cusp anomalous dimension in the equations (3.29) may appear
surprising at first sight. Indeed, by analogy with weak coupling arguments based on
finiteness of physical quantities constructed from gluon scattering amplitudes, the
natural quantity entering (3.29) should be the large spin limit of the anomalous
dimension of twist-2 operators. It was however shown in [151] that worldsheet calcu-
lations of the cusp anomaly and of the large spin limit of the anomalous dimension
of twist-2 operators are related by an analytic continuation and and target space
symmetry transformations. Thus, similarly to the weak coupling result of [158–160],
the cusp anomaly equals the large spin limit of the anomalous dimension of twist-2
operators to all orders in the 1/

√
λ expansion.

21 This finite part arises in a similar way when using the conjectured string theory
version of gauge theory dimensional regularization.
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In order to compute the regularized area for the scattering of four gluons
it is convenient to work in conformal gauge. In this case, the problem reduces
to the calculation of the area enclosed by the curve

a

coshu1 coshu2 + b sinhu1 sinhu2
= rc . (3.33)

One way to compute the area is by expanding the integrand in power series
of rc/a and integrating term by term. Equivalently, one can use Green’s the-
orem and express the area as a one dimensional integral over the boundary
of the worldsheet. The result is

iS = −
√
λ

2π
A ,

A =
1

4

(
ln

(
r2c

−8π2s

))2

+
1

4

(
ln

(
r2c

−8π2t

))2

− 1

4
ln2
(s
t

)
+const. (3.34)

Several comments are in order. First, notice that the structure of infrared
divergences is of the form ln2(r2c/s)

22, and the coefficient in front of double
logs and the finite piece is proportional to the cusp anomalous dimension at
leading strong coupling, as in the case of dimensional regularization. Second,
single logs have been absorbed into the double logs. Finally, the finite term
reproduces, up to an additive constant, the results of dimensional regular-
ization. Hence, the computation of amplitudes at strong coupling does not
need to be done by using dimensional regularization, unless we are interested
in computing the function g(λ) and the constant C(λ) entering in equations
(2.85) and (2.86), respectively, and computed by using dimensional regular-
ization.

3.2.5. Structure of infrared poles at strong coupling

Even if the relevant solutions for minimal surfaces for the cases n > 4
are presently unknown, the IR structure of amplitudes at strong coupling
for the general case of n−point amplitudes can easily be understood.

Given the cusp formed by a pair of neighboring gluons with momenta
ki and ki+1 we associate the kinematic invariant si,i+1 = (ki + ki+1)

2. We
expect the following structure for the infrared-divergent part of the action

iSdiv = −
√
λ

2π

∑

i

I

(
r2c

si,i+1

)
, (3.35)

22 Notice that a very similar structure appears when using the off-shell regularization
suggested in Ref. [128].
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where I(r2c/si,i+1) can be computed following [129], either by using dimen-
sional regularization or a radial cut-off. For later applications the later
scheme will be more useful to us, in this case

4I =

1∫

ξ

1∫

ξ

X−

1

X−X+
=

1

2
ln2 ξ , ξ =

r2c
−8π2si,i+1

. (3.36)

Hence, when using a radial cut-off as regulator, we expect the following
structure for scattering amplitudes at strong coupling

iSn = −
√
λ

16π

n∑

i=1

ln2

(
r2c

−8π2si,i+1

)
+ Fin(ki) . (3.37)

It is easy to check that the general form of the amplitude for the case n = 4
is consistent with this general expression.

For the discussion of the next subsection, it will be important to consider
a radial cut-off that depends on the point at the boundary we are approach-
ing, i.e. rc(x). In that case, the structure of the amplitude turns out to be
as follows

iSn = −
√
λ

16π

n∑

i=1

ln2

(
r2c (xi)

−8π2si,i+1

)
+ Fin(ki) +

n∑

i=1

Ei
edge(rc) . (3.38)

The last sum in this expression corresponds to finite extra contributions
coming from the edges

Ei
edge =

√
λ

2π

1∫

0

ds

s
ln

(
rc(s)rc(1 − s)

rc(0)rc(1)

)
, (3.39)

where s running from zero to one parametrizes the i-th edge, namely xµ(s) =
xµ

i + s(xµ
i+1 − xµ

i ) and rc(s) is a shorthand notation for rc(x(s)).

3.3. A conformal Ward Identity

An important ingredient in the construction of the minimal surface
governing the four-gluon scattering amplitude was the existence of a dual
SO(2,4) symmetry23. This symmetry allowed the construction of new so-
lutions and fixed the finite piece of the scattering amplitude. Naively, this

23 In principle this symmetry is unrelated to the original conformal symmetry. It has
been suggested [113] that, at the level of the worldsheet sigma-model, the symmetries
of the dual AdS space are in fact part of the hidden (non-local) symmetries of the
original AdS space sigma-model [114].
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conformal symmetry would imply that the amplitude is independent of s and
t, since they can be sent to arbitrary values by a dual conformal symmetry.
The whole dependence on s and t arises due to the necessity of introducing
an infrared regulator. However, we will see that, after keeping track of the
dependence on the infrared regulator, the amplitude is still determined by
the dual conformal symmetry.

Symmetries manifest themselves through the existence of (potentially
anomalous) Ward identities, the simplest is the quantum version of the con-
servation of the Noether current. More complicated Ward identities describe
the action of symmetry generators on gauge-invariant quantities and poten-
tially constrain their quantum expressions. In this direction it is possible
to construct Ward identities for the dual SO(2,4) symmetry and study the
constraints they impose on scattering amplitudes. For this purpose it is
convenient to regularize the amplitude calculation with a radial cut-off.

Given the momenta ki of the external gluons, the boundary of the world-
sheet contains cusps located at xi, with 2πki = xi−xi+1. Now imagine that
we regularize the area by choosing a cut-off rc. Moreover, we would like
this cut-off to depend on the point at the boundary we are approaching, i.e.

rc → rc(x). From the discussion above we expect the regulated area to have
the general form

Areg
n = f(λ)

n∑

i=1

ln2

(
r2c (xi)

−2x2
i−1,i+1

)
+ Fin(xi) , (3.40)

where we have ignored extra terms coming from the edges of the contour as
they can be seen not to affect the following argument. SO(2,4) transforma-
tions will then act on the points xi and rc(xi). By requiring the area to be
invariant under the action of special conformal transformations generated
by K

µ

K
µAreg

n =

(
n∑

i=1

2xµ
i (xi · ∂xi

+ r(xi)∂r(xi)) − x2
i ∂xµ

i

)
Areg

n = 0 (3.41)

one may derive an equation for the finite part of the amplitude24. At weak
coupling this equation was constructed in [112] from the analysis of the
dual conformal properties of Wilson loops in dimensional regularization.
Its strong coupling counterpart was constructed in [130] using the strong
coupling version of dimensional regularization discussed in Section 3.2.3.

24 As the introduction of a infrared cut-off breaks (dual) conformal invariance, one
obtains terms that depend explicitly on rc on the right hand side of (3.41). As we
take rc → 0, conformal invariant is recovered and such terms vanish.
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It turns out, that for the case of n = 4 and n = 5, this equation fixes
uniquely the form of the finite piece, to be the one in the BDS conjecture. It
is however not completely clear whether the dual conformal symmetry is an
exact property of the all-order planar amplitudes. Explicit calculations show
that it indeed exists to the first few orders in the weak coupling expansion
and to leading order in the strong coupling expansion. Assuming that it
dual conformal transformations are indeed a symmetry of on-shell scattering
amplitudes leads to the conclusion that the BDS conjecture for four and five
gluons is correct.

3.4. The BDS ansatz, scattering amplitudes and Wilson loops

As already mentioned in great detail, the relation between scattering
amplitudes and Wilson loops described above emerged from strong coupling
considerations. The conclusion however may be formulated without refer-
ence to the value of the coupling constant; this suggests that a weak coupling
relation between Wilson loops and scattering amplitudes is possible. This
was the standpoint taken in [112, 153] where it was shown that one-loop
MHV amplitudes rescaled by their tree-level counterparts are indeed equal
to the expectation value of the corresponding null cusped Wilson loops. This
observation allows for a direct test of the BDS ansatz at strong coupling.

3.4.1. Rectangular configuration with a large number of gluons

As mentioned previously, the construction of the relevant minimal sur-
faces for some number of sides larger than four is difficult. The problem
simplifies substantially in the limit of a large number of sides arranged in
a specific configuration. In particular, following [74], we consider a zig-zag
configuration with a large number of edges that approximates the rectangu-
lar Wilson loop, as shown in Fig. 19.

t

x

y

Fig. 19. Zig-zag configuration approaching the space-like rectangular Wilson loop.

We, moreover, consider the limit of very large T and L and for T ≫ L;
in this limit one may ignore the contribution of the shorter sides and thus
the Wilson loop becomes identical to the one yielding the potential between



3038 L.F. Alday, R. Roiban

a quark and an anti-quark [123,124]. The the results of the weak and strong
coupling calculations are

ln〈Wweak
rect 〉 =

λ

8π

T

L
, ln〈W strong

rect 〉 =

√
λ4π2

Γ (1/4)4
T

L
. (3.42)

The observation of [112, 153] on the relation between one-loop amplitudes
and the expectation value of null Wilson loops allows us, following [73], to
reconstruct the prediction of the BDS ansatz for the particular configuration
of gluons corresponding to the Wilson loop in Fig. 19. Indeed, the BDS
ansatz, explicit calculations and the dual conformal Ward identity imply that
the expression of logarithm of the resumed and rescaled MHV amplitudes
takes the form

lnMn = Divn +
f(λ)

4
a1(k1, ..., kn) +RA(u) + h(λ) + nk(λ) (3.43)

with a1 the one loop amplitude, RA(u) is the amplitude “remainder function”
depending only on the conformally invariant cross-ratios ui and h(λ) and
k(λ) are functions that are independent on the kinematics and the number
of gluons. The BDS ansatz predicts that RA(u) = 0. Explicit computations
[112, 153] show that a1 = w1 where w1 is the one-loop expectation value of
the corresponding Wilson loop. It therefore follows that

lnMBDS
fig 19 =

√
λ

4

T

L
+ . . . , (3.44)

where we used the known string coupling limit of the universal scaling func-
tion f(λ) and the ellipsis stand for terms whose dependence on L and T is
not of the form T/L.

This expression clearly differs from ln〈W strong
rect 〉 suggesting that the BDS

ansatz needs to be revised for a large number of gluons. A two-loop calcu-
lation of the expectation value of the rectangular Wilson loop shows that,
to this order and for a large number of gluons, either the BDS ansatz or the
relation between scattering amplitudes and Wilson loops should be modi-
fied. The two-loop calculation of the six gluon amplitude discussed in de-
tail in Section 2.7 supports the conclusion above that the BDS ansatz is
incomplete. Finding an analytic expression and an interpretation for the
appropriate modification remains an important open problem.

4. Conclusions

In these lectures we described modern techniques for the calculation of
scattering amplitudes at weak and strong coupling. Tools such as the MHV
vertex rules, on-shell recursion relations and generalized unitarity can lead
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to substantial simplifications of analytic calculations in weakly coupled in
N = 4 SYM theory as well as in theories with reduced or without supersym-
metry. We also discussed how the AdS/CFT correspondence implies that,
to leading order in the strong coupling expansion, scattering amplitudes
of the N = 4 SYM theory are related to special light-like Wilson loops
with cusps. This relation, confirmed by a direct two-loop calculation of the
six-point amplitude, cast doubts on a conjectured all-order resummation of
MHV amplitudes.

It is clear that additional structure, waiting to be uncovered, is present
in N = 4 SYM theory and that it may be sufficiently powerful to completely
determine, at least in some sectors, the kinematic dependence of the scatter-
ing matrix of the theory. There are many other amplitudes of interest in the
N = 4 SYM theory which are yet uncalculated; the techniques described
here offer means for attacking such calculations while nonetheless leaving
room for improvement.
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