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I review several old/new approaches to the string/gauge correspondence
for the cusped/lightcone Wilson loops. The main attention is payed to SYM
perturbation theory calculations at two loops and beyond and to the cusped
loop equation.
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The paper is organized as follows. In Sect. 1 a pedagogical introduc-
tion is given, including Wilson loops with cusps and their renormalization,
their relation to twist-two operators and the role they play in string/gauge
correspondence. Finally I discuss minimal surface in AdS5 ⊗ S5 for cusped
loops. Sect. 2 is devoted to perturbation theory to two loops and beyond.
In this context I discuss exact sum of ladders, explicit two loop calculation
and the anomaly terms. I also summarize results in the double logarithmic
approximation and describe problems with planar QFT. Finally in Sect. 3
I discuss cusped loop equation. First I present modern formulation of the
loop equation, then I introduce SUSY extension and discuss UV regulariza-
tion and specifics of cusped loops. I close by computing cusp anomalous
dimension from the loop equation.

For completeness of this paper I added three appendices with some detail
not given in the lectures but which might be useful for the reader.
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1. Pedagogical introduction

I review in this section Wilson loops with cusps, their renormalization
and the relation to twist-two operators. Then I discuss the role played by
the cusped Wilson loops in the string/gauge correspondence and describe a
proper minimal surface in AdS5 ⊗ S5 associated with cusped loops.

1.1. Wilson loops

Wilson loops play a crucial role in modern formulations of gauge theories
since the work by Wilson (1975).

The construction is based on a non-Abelian phase factor

U(C) = P eig
R

C
Aµ(x)dxµ def

=
∏

x∈C
(1 + igAµ(x)dx

µ) (1.1)

which is nothing but a parallel transporter in an external non-Abelian Yang–
Mills field Aµ(x). The trace over matrix indices TrU(C) is gauge-invariant
for closed C.

The Wilson loop vacuum expectation value (or the average in Euclidean
formulation) is defined by

W (C) = Z−1

∫

DAµDψ̄Dψ · · · eiS 1

N
TrU(C) , (1.2)

where the path integration goes over Yang–Mills and quark fields.
The importance of the Wilson loops in QCD is because

• observables are expressed via sum-over-path of W (C),

• dynamics is entirely reformulated via W (C).

These statements hold strictly speaking only at large N , while at finite
N correlators of several Wilson loops appear which factorize in the large-N
limit. Wilson loops W (C) obey the loop equation which is a closed equation
on loop space at large N (see the book by Makeenko (2002) for more detail
on these issues).

It is important that typical loops which are essential in the sum-over-
path are cusped. The properties of the Wilson loops of this kind differ from
those for smooth loops, e.g. a circular loop.

1.2. Renormalization of smooth Wilson loops

Renormalization properties of smooth Wilson loops are studied by Ger-
vais, Neveu (1980), Polyakov (1980), Vergeles, Dotsenko (1980). They be-
come finite after the charge renormalization:
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W (g;C) = e−const. L(C)/a WR(gR;C) , (1.3)

where WR is finite after the charge renormalization g =⇒ gR and a is a
certain (gauge-invariant) UV cutoff.

The exponential perimeter factor in Eq. (1.3) is associated with the renor-
malization of the mass of a heavy test particle propagating along the loop.
It does not emerge in dimensional regularization.

1.3. Renormalization of cusped Wilson loops

An additional logarithmic divergence appears for cusped loops as was
first discovered by Polyakov (1980). A cusped Wilson loop is depicted in
Fig. 1.

vu

θ

Fig. 1. Segment of a closed loop near the cusp. The cusp angle θ is formed by the

vectors u and v: cosh θ = u·v
√

u
2
√

v
2
.

The cusped Wilson loops are multiplicatively renormalizable as was shown
by Brandt, Neri, Sato (1981):

W (g;Γ ) = Z(g; θ)WR(gR;Γ ) , (1.4)

where (the divergent factor of) Z(g; θ) depends on the cusp angle θ.
Equation (1.4) is true only when the contour Γ has no light-cone seg-

ments. The peculiarities of the renormalization of light-cone Wilson loops
are described below.

1.4. Cusp anomalous dimension

The cusp anomalous dimension is defined by the formula

γcusp (g; θ) = −a d
da

lnZ(g; θ) , (1.5)

where Z is the renormalizing factor in Eq. (1.4).
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The cusp anomalous dimension depends in general both on the coupling
constant g and on the cusp angle θ. A very important observation by Ko-
rchemsky, Radyushkin (1987) is that in the limit of large θ it is linear in θ:

γcusp (g; θ)
θ→∞→ θ

2
f(g) . (1.6)

The same function f(g) appears in the anomalous dimensions of twist-two
conformal operators with large spin.

1.5. Conformal operators of twist two

Anomalous dimensions of twist-two operators of the type

O
(F )
J =

1

N
TrFµ· (∇·)J−2 Fµ· , (1.7)

O
(Ψ)
J = Ψ̄γ· (∇·)J−1

Ψ (1.8)

with Lorentz spin J are measurable in deep inelastic scattering. The opera-
tors in Eq. (1.7) are constructed from gauge field and those in Eq. (1.8) are
constructed from quarks.

In N = 4 supersymmetric Yang–Mills (SYM) there are also analogous
operators

O
(Φ)
J =

1

N
TrΦ (∇·)J Φ (1.9)

constructed from scalars.

The following notation is used in Eqs. (1.7), (1.8) and (1.9):

∇· ≡ ∇µξµ ξ2 = 0 . (1.10)

This multiplication by a light-like vector ξ provides symmetrization and
subtraction of traces, as is needed for a representation of the Lorentz group.

What is depicted in Eqs. (1.7), (1.8) and (1.9) by (∇·)J is in fact a

polynomial in
←
∇· and

→
∇·, the covariant derivatives acting on the left and on

the right. At the one-loop level it is a Gegenbauer polynomial dictated by
conformal invariance as was shown by Brodsky, Frishman, Lepage, Sachrajda
(1980), Makeenko (1981), Ohrndorf (1982). These conformal operators are
multiplicatively renormalizable at one loop and form a convenient basis for
two-loop computations.
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1.6. Relation between the anomalous dimensions

The relation between twist-two operators and cusped Wilson loops can be
understood by considering an open Wilson loop with matter fields attached
at the ends:

O(Cy0) = ψ̄(y)P eig
R y
0 dξµAµψ(0) . (1.11)

The case when this open loop is a straight line from 0 to y is depicted in
Fig. 2.

x=0y

Cx0

Fig. 2. Straight Wilson loop from 0 to y.

The standard triangular diagrams, which give the anomalous dimension
like in Gross, Wilczek (1973), come from the formula

〈

ψ(∞, ~y)O(Cy0)ψ̄(∞,~0)
〉

∝W (Π ) (1.12)

as mass of matter fields → ∞. The Wilson loop which emerges on the right-
hand side is Π -shaped as is depicted in Fig. 3. The vertical lines represent
propagation (in time) of static quarks, sitting at~0 and ~y, which are connected
by the straight line associated with the open Wilson loop.

y

u
−u

v
0

Fig. 3. Π -shaped Wilson loop.

To derive Eq. (1.12), remember that the propagator in an external field
Aµ is

〈

ψi(x)ψ̄j(y)
〉

ψ

large N
=

∑

Cyx

[

e
ig

R

Cyx
dξµAµ

]

ij

mass→∞∝
[

e
ig

R

C
(min)
yx

dξµAµ

]

ij

(1.13)
and thus the straight vertical lines appear in Π .
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The central segment of Π is near the light-cone to suppress the con-
tribution from operators of twists higher than two. Π has two cusps with
θ → ∞.

This is how the light-cone Wilson loop is related to the conformal oper-
ators of twist two.

1.7. Light-cone Wilson loops

For the Π -shaped loop with 1 light-cone segment as in Fig. 3, we have

W (Π ) = e−
1
2
f(λ) ln2 T

a
+const.(λ) ln T

a
+finite(λ) (1.14)

with the same f(λ) as before, as was shown by Korchemsky, Marchesini
(1993). Here vµ is along the light cone (v2 = 0) and yµ = vµT .

A very closely related (and more simple!) object, proposed by Alday,
Maldacena (2007), is a Γ -shaped loop which is formed by 2 light-cone seg-
ments:

W (Γ ) = e−
1
2
f(λ) ln T

a
ln S

a
+g(λ)(ln T

a
+ln S

a
)+finite1(λ) . (1.15)

Now both vµ and uµ are along the light cones (v2 = 0, u2 = 0) and yµ = vµT ,
xµ = uµS. Most probably it gives the same f(λ) but this is not yet rigorously
proved.

1.8. SYM Wilson loops

An extension of Wilson loops to N = 4 supersymmetric Yang–Mills
(SYM) was given by Maldacena (1998):

WSYM(C) =

〈

1

N
Tr P eig

H

C
dσ(ξ̇µAµ+|ξ̇|ni

Φi)
〉

(1.16)

with unit vector ni ∈ S5 (n2 = 1) and 6 scalars Φi (i = 1, · · · , 6). In
Minkowski space there is no relative i between the two terms in the exponent
in Eq. (1.16), which is present in Euclidean space.

Under a supersymmetry transformation

δAµ = Ψ̄Γµζ , δΦi = Ψ̄Γiζ , (1.17)

where an infinitesimal parameter ζ is a 10d Majorana–Weyl spinor and
(Γµ,Γi) are 10d gamma matrices, the SYM Wilson loop (1.16) remains un-
changed if

(

Γµξ̇
µ + Γi|ξ̇|ni

)

ζ = 0 . (1.18)

Noting that the combination of gamma matrices in the brackets is nilpotent
for timelike ξ̇, Eq. (1.18) is satisfied when a half components of ζ vanish.
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An example of such a BPS state possessing a half of supersymmetries is the
SYM Wilson loop for a straight line inside the light-cone, for which we have

WSYM(|) = 1 . (1.19)

An adjoint Wilson loop is related to the fundamental-representation one
by the formula

TrA U = |TrU |2 − 1 . (1.20)

Due to factorization at large N we have

〈

1

N2
TrA U(C)

〉

=

〈

1

N
TrU(C)

〉2

, (1.21)

where the adjoint Wilson loop is on the left-hand side and the (square of
the) fundamental one is on the right-hand side.

The same results as mentioned above for QCD hold for SYM Wilson
loops and there are some more. In particular, the perimeter factor in
Eq. (1.3) is missing for SYM Wilson loops owing to the cancellation be-
tween gauge fields and scalars.

1.9. Motivation (since 2002)

A remarkable prediction for the anomalous dimension of twist-two oper-
ators with large (Lorentz) spin J , based on the AdS/CFT correspondence,
was made by Gubser, Klebanov, Polyakov (2002). It states that

∆ − J − 2 = f(λ) ln J , large J (1.22)

with

f(λ) =

√
λ

π
, large λ = g2

YMN . (1.23)

It stems from the spectrum of closed folded string which is rotating in AdS5.
The same result holds for the cusp anomalous dimension at large θ

in the supergravity approximation to the AdS/CFT correspondence as is
demonstrated by Kruczenski (2002), Makeenko (2003) and reviewed by Al-
day, Roiban (2008). For completeness of this paper I describe the proper
minimal surface in AdS5 ⊗ S5 in Appendix A.

Equations (1.22), (1.23) have been remarkable reproduced recently from
the spin chain S-matrix by Staudacher (2005), Eden, Staudacher (2006),
Beisert, Eden, Staudacher (2007). Many more results are obtained along
this line as is reviewed in the lectures by M. Staudacher at this School.

Remarkably, the same function f(λ) appears in MHV gluon amplitudes
for SYM as conjectured by Bern, Dixon, Smirnov (2005) on the basis of
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a few lower orders of SYM perturbation theory and further elaborated by
Bern, Czakon, Dixon, Kosower, Smirnov (2007). This subject is reviewed in
the Alday, Roiban (2008) The BDS amplitude is reproduced for large λ from
the AdS/CFT correspondence by Alday, Maldacena (2007) and is reviewed
in the Alday, Roiban (2008).

It is a challenging problem to obtain
√
λ for the cusp anomalous dimen-

sion at large λ in SYM perturbation theory. I shall describe some steps
along this line in Sects. 2 and 3.

1.10. AdS/CFT for Wilson loops

The formulation of the AdS/CFT correspondence between Wilson loops
and open IIB strings in the AdS5 ⊗S5 background was given by Maldacena
(1998), Rey, Yee (1998). The statement is that the SYM Wilson loop equals
the sum over open surfaces bounded by the contour C:

WSYM(C) =
∑

S:∂S=C

e
iAIIB on AdS5⊗S5 . (1.24)

Here

C =



xµ(σ),

σ
∫

dσ |ẋ(σ)|ni(σ)



 (1.25)

is a (9-dimensional loop) in the boundary of AdS5 ⊗ S5, e.g. for ni =
(1, 0, 0, 0, 0, 0) only a 4d contour xµ(σ) remains. Equation (1.24) is graphi-
cally represented in Fig. 4.

)(
S

W =  Σ

Fig. 4. Open-string/Wilson-loop correspondence.

For a circular loop there is a remarkable perfect agreement between the
AdS supergravity calculation by Berenstein, Corrado, Fischler, Maldacena
(1998), Drukker, Gross, Ooguri (1999) and the CFT SYM calculation by
Erickson, Semenoff, Zarembo (2000), Drukker, Gross (2001).

However, the situation is not as good for a rectangular loop (or antipar-
allel lines), when the minimal surface in AdS5 ⊗S5 was found by Maldacena
(1998), Rey, Yee (1998), and the summation of ladder diagrams of the type
depicted in Fig. 5 was performed by Erickson, Semenoff, Szabo, Zarembo
(1999), Erickson, Semenoff, Zarembo (2000).
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Fig. 5. Ladder diagrams for a rectangular Wilson loop.

The results are:

AdS:

V (R) = − 4π2
√

2λ

Γ 4(1/4)R
,

SYM:

V (R) = −
√
λ

πR
. (1.26)

The coefficients in these two results obviously do not agree. The discrep-
ancy is customary attributed to interaction diagrams... But a remark is that
the SYM coefficient is what is needed for the cusp anomalous dimension at
large λ.

2. Perturbation theory: two loops and beyond

In this section I describe how to sum up ladder diagrams of perturbation
theory and explicitly consider the two-loop order where a cancellation of
interaction diagrams is not complete resulting in an anomaly term. I analyze
light-cone Wilson loops in the double logarithmic approximation which gives
a hint on higher-order anomaly terms and reveals problems with planar QFT
in describing the results.

2.1. One-loop perturbation theory

Diagrams of perturbation theory for SYM Wilson loops can be con-
structed by expanding Eq. (1.16) in the coupling constant λ.

To the order λ (one-loop order) we have explicitly

W (Γ ) = 1−λ
2

+∞
∫

−∞

dσ1

+∞
∫

−∞

dσ2

[

ẋµ(σ1)ẋµ(σ2)−|ẋ(σ1)||ẋ(σ2)|
]

D (x(σ1)−x(σ2)) ,

(2.1)
where

D(x) = −Γ (d/2 − 1)

4πd/2

[

−x2
]1−d/2

(2.2)

is the (scalar) propagator in d-dimensions.
The double integral on the right-hand side of Eq. (2.1) can be represented

as the sum of three diagrams in Fig. 6, where dashed lines correspond to
either gluon or scalar propagators. Actually, the diagrams (a) and (c) vanish
because gluons are cancelled by scalars (like in Eq. (1.19)).
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(b) (c)(a)

Fig. 6. Diagrams of perturbation theory to order λ. Diagrams (a) and (c) vanish

(gluons are canceled by scalars).

For the only nonvanishing diagram in Fig. 6(b), we have

W (Γ ) = 1 − λ

4π2
(cosh θ − 1)

∫

ds

∫

dt
1

s2 + 2st cosh θ + t2

= 1 − λ

4π2

cosh θ − 1

sinh θ
θ ln

L

a
large θ→ 1− λ

4π2
θ ln

L

a
(2.3)

which yields =⇒ f(λ) =
λ

2π2
. (2.4)

Notice that, in contrast to QCD, in SYM there is no mass-renormaliza-
tion term −λ/4πa.

An exact formula for the order λ result is

W (S, T ; a, b) = 1 − λ

4π2
(cosh θ − 1)

S
∫

a

ds

T
∫

b

dt
1

s2 + 2st cosh θ + t2

= 1 − λ

8π2

cosh θ − 1

sinh θ

(

Li2

(

−T
S
eθ
)

− Li2

(

−T
S
e−θ
)

−Li2

(

−T
a
eθ
)

+ Li2

(

−T
a
e−θ
)

− Li2

(

− b

S
eθ
)

+Li2

(

− b

S
e−θ
)

+ Li2

(

− b
a
eθ
)

− Li2

(

− b
a
e−θ
))

,(2.5)

where we cut the integrals by S, T from above and by a, b from below.
In Eq. (2.5) Li2 is Euler’s dilogarithm

Li2(z) =

∞
∑

n=1

zn

n2
= −

z
∫

0

dx

x
ln (1 − x) (2.6)
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which obeys the relation

Li2
(

−eΩ
)

+ Li2
(

−e−Ω
)

= −1

2
ln2

Ω − π2

6
. (2.7)

It is used to extract the double logarithms.

2.2. Double-logarithmic approximation

The final result for large θ in Eq. (2.3) can be extracted without an exact
computation using a double logarithmic approximation (DLA) quite similar
to the one for Sudakov’s form-factor.

The one-loop integral

W (S, T ; a, b) = 1 − 2β(cosh θ − 1)

S
∫

a

ds

T
∫

b

dt
1

s2 + 2st cosh θ + t2
, (2.8)

where we have introduced

β =
λ

8π2
, (2.9)

has a double-logarithmic region of integration:

te−θ . s . teθ or se−θ . t . seθ . (2.10)

As a consequence of this fact, we write Eq. (2.8) for θ ≫ 1 in DLA as

W (S, T ; a, b)
DLA
= 1 − β

T
∫

b

dt

t

min{S,teθ}
∫

max{a,te−θ}

ds

s
. (2.11)

Several limits are now possible. Let

1 ≪ θ . ln
T

b
≪ ln

S

a
. (2.12)

Then

W (S, T ; a, b) =⇒ 1 − 2βθ ln
T

b
(2.13)

reproducing the above result (2.3).
Alternatively, if

θ ≫ ln
T

b
, ln

S

a
, (2.14)

we obtain

W (S, T ; a, b) =⇒ 1 − β ln
T

b
ln
S

a
very large θ (2.15)

reproducing the result for 2 light-cone segments.
Some more results on the double logarithms are described in Appendix B.
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2.3. Sum of ladder diagrams

As was explained in the Section 1, we are motivated to consider ladder
diagrams of the type depicted in Fig. 7, which is a simplest class of diagrams
of planar QFT.

The ladder diagrams can be summed using a Bethe–Salpeter equation

G(S, T ) = 1 − λ(cosh θ − 1)

4π2

S
∫

a

ds

T
∫

b

dt
G(s, t)

s2 + 2st cosh θ + t2
. (2.16)

Several light-cone limits are again possible:
1 light-cone limit: θ → ∞ with fixed Tl.c. = 2Teθ resulting in

G (S, T ; a, b) = 1 − β

S
∫

a

ds

T
∫

b

dt
G (s, t; a, b)

αs2 + st
, (2.17)

where

α =
u2

2u · v (2.18)

and β is given by Eq. (2.9) (remember that v2 = 0 for the light-cone direc-
tion).
2 light-cone limit: for α = 0 when additionally u2 = 0, the cusped loop
has 2 light-cone segments.

S T

s t

Fig. 7. Typical ladder diagram for a cusped Wilson loop.

2.4. The ladder equation

Differentiating Eq. (2.17) we obtain

S
∂

∂S
T
∂

∂T
G (S, T ; a, b) = − β

1 + αS/T
G (S, T ; a, b) (2.19)
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and analogously

a
∂

∂a
b
∂

∂b
G (S, T ; a, b) = − β

1 + αa/b
G (S, T ; a, b) (2.20)

with the boundary conditions

G(a, T ; a, b) = G(S, b; a, b) = 1 . (2.21)

To separate variables, it is convenient to introduce the new variables

X = ln
S

a
− ln

T

b
, Y = ln

S

a
+ ln

T

b
. (2.22)

Then Eqs. (2.19) and (2.20) can be rewritten as

(

∂2

∂X2
− ∂2

∂Y 2

)

G =
β

1 + αab e
X

G αS≪T
= β G . (2.23)

It is similar to the equation by Erickson, Semenoff, Szabo, Zarembo (1999)
but with different boundary conditions.

2.5. Exact solution for ladders (α = 0)

A solution to Eq. (2.23) for α = 0 is the Bessel function

Gα=0 (S, T ; a, b) = J0

(

2

√

β ln
S

a
ln
T

b

)

(2.24)

which obviously obeys the boundary condition (2.21).
This can be easily shown by an iterative solution of

Gα=0 (S, T ; a, b) = 1 − β

S
∫

a

ds

s

T
∫

b

dt

t
Gα=0 (s, t; a, b) , (2.25)

where the integrals over s and t decouple and both are logarithmic:

Gα=0 (S, T ; a, b) =
∞
∑

n=0

(−β)n
(

ln S
a

)n

n!

(

ln T
b

)n

n!
= J0

(

2

√

β ln
S

a
ln
T

b

)

.

(2.26)
Asymptotically we have

Jk(z) ∼ cos z , large z (2.27)

which is not of the type expected in Eq. (1.14) from renormalization.
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2.6. Exact solution for ladders (α 6= 0)

An exact solution to Eq. (2.23) for α 6= 0 is found by Makeenko, Olesen,
Semenoff (2006).

Let us consider the ansatz

G (S, T ; a, b) =

∮

C

dω

2πiω

(

S

a

)

√
βω (T

b

)−
√
βω−1

F
(

−ω,αa
b

)

F

(

ω,α
S

T

)

,

(2.28)
where C is a contour in the complex ω-plane. This ansatz is motivated by
the integral representation of the Bessel function J0 at α = 0 (=⇒ F = 1).

The substitution into Eq. (2.19) reduces it to the hypergeometric equa-
tion (ξ = αS/T )

ξ(1 + ξ)F ′′ξξ + [1 +
√

β(ω + ω−1)](1 + ξ)F ′ξ + βF = 0 (2.29)

whose solution is given by hypergeometric functions. How to draw the con-
tour C to satisfy the boundary conditions (2.21) is described in Appendix C.

A great simplification of the solution (2.28) occurs at S = T , a = b and
α = −1:

Gα=−1(T, T ; a, a) =
1

√

βτ(τ − 2πi)
J1

(

2
√

βτ(τ − 2πi)
)

(2.30)

with

ln
T

a
= τ , ln

(

−T
a

)

= τ − iπ (2.31)

and β given by Eq. (2.9).

In Appendix B this Bessel function is reproduced in the double-logarith-
mic approximation. It is similar to that obtained by Erickson, Semenoff,
Zarembo (2000) for a circular Wilson loop. It is J1 rather than I1 because
of Minkowski space.

Nothing good happens with the contribution of ladders to the cusp
anomalous dimension. It is not of the form prescribed by the renormal-
izability (cf. Eq. (1.14)):

W (Γl.c.) ∝ e−
1
4
f(β) ln2 T

a . (2.32)

A mini conclusion of this fact is that diagrams with interaction have to
contribute.
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2.7. Two-loop ladder diagram

The contribution to the cusp anomalous dimension of the ladder diagram
with two rungs depicted in Fig. 8 was calculated by Korchemsky, Radyushkin
(1987).

The result is

γ(lad)
cusp =

λ2

128π4

(cosh θ − 1)2

sinh2 θ

∞
∫

0

dσ

σ
ln

(

1 + σeθ

1 + σe−θ

)

ln

(

σ + eθ

σ + e−θ

)

→ λ2

96π4

(

θ3 +
π2

2
θ + O(1)

)

. (2.33)

The θ3-term should be canceled by interaction! Therefore, not only
ladder diagrams are essential to order λ2.

S T

Fig. 8. Ladder diagram with two rungs.

Similar results hold for the light-cone Wilson loop, when

Gladd.
l.c. = 1 − β

2
ln2 T

ε
+
β2

12
ln4 T

ε
− β2π2

12
ln2 T

ε
. (2.34)

The term ln4 T
ε is again to be canceled by diagrams with interaction.

2.8. Anomaly surface term

As was shown by Makeenko, Olesen, Semenoff (2006), the cancellation
between the diagrams with the three-gluon vertex and the corrections to
propagators (both are of the order λ2) is not complete. These diagrams are
depicted in Fig. 9.

The cancellation of the diagrams (b), (c) and (d) on the right-hand side
is not complete as it is for a straight line or a circular loop. A nonvanish-
ing surface term comes from integration by parts. It is represented by the
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(c)

+ +

(b) (d)

=

(a)

Fig. 9. Interaction diagrams of the order λ2. The sum of the diagrams (b), (c)

and (d) on the right-hand side is equal to the anomalous term represented by the

diagram (a) on the left-hand side.

diagram (a) on the left-hand side. It gives the following contribution to the
cusp anomalous dimension

γanom
cusp = − λ2

16π4

cosh θ − 1

cosh θ

( θ
∫

0

+

π/2
∫

0

)

dψ ψ

1 − cosh2 ψ/ cosh2 θ
ln

cosh2 θ

cosh2 ψ

→ − λ2

96π4

(

θ3 + π2θ + O(1)
)

. (2.35)

The θ3-terms are mutually canceled in the sum of the contributions of
the ladder diagram (2.33) and the anomaly diagram (2.35). The remaining
linear-in-θ term reproduces the known results

γcusp =
θ

2

(

λ

2π2
− λ2

96π2

)

+ O(θ0) (2.36)

for the two-loop cusp anomalous dimension.
Both the ladder contribution (2.33) and the anomaly contribution (2.35)

simplify at the light cone. To demonstrate the exponentiation to the or-
der λ2, it is convenient to apply the so-called “non-Abelian exponentiation
theorem” which states that

lnW = G(1) +A(2) − G(2)
crossed + O(λ3) , (2.37)

where G(2)
crossed denotes the ladder diagram with two crossed rungs, which is

nonplanar and have to be added (and correspondingly subtracted) for the
exponentiation of the diagram in Fig. 6(b) of the order λ.

We calculate the difference of the anomaly and crossed ladder diagram
using the regularization via dimensional reduction to d = 4 − ǫ:

A(2) − G(2)
crossed = 2β2

S
∫

a

ds

s1−ǫ

T
∫

b

dt

t1−ǫ

[

π2

6
− Li2

( αs

αs + t

)

]

. (2.38)
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The integral in Eq. (2.38) is fast convergent when s → ∞ or t → 0
because Li2(1) = π2/6. Alternatively, the second term (dilogarithm) can
be omitted with the double-logarithmic accuracy for αs ≪ t. This justifies
the exponentiation to the order λ2 and reproduces the two-loop anomalous
dimension because only the domain αs . t is essential both for αS ≪ T and
αS ≫ T .

2.9. Higher-order anomaly terms

A question arises as to whether the anomaly surface term of the order
of β2 is the only one (like an anomaly in QFT) or next order anomaly
terms also appear. This question can be answered in the double logarithmic
approximation.

Let us consider the sum of the ladder diagram with three rungs and
the anomaly diagram of the order of λ2 dressed by a ladder as is depicted
in Fig. 10. It is easy to see that this sum does not provide the coefficient
required for the exponentiation to the order λ3, like in

Wl.c. (Γ ) = e−
β
2
T 2
, αS & T , (2.39)

which itself is a consequence of a dual conformal symmetry by Drummond,
Korchemsky, Sokatchev (2008), Drummond, Henn, Korchemsky, Sokatchev
(2008) and reviewed in the lectures by G. Korchemsky at this School.

S T

Fig. 10. Dressing of the anomaly diagram of the order λ2 by a ladder.

However, to guarantee the exponentiation in the double logarithmic ap-
proximation to the order λ3, it is enough to add a new anomaly diagram
depicted in Fig. 11. It appears from a particular class of interaction diagrams
of the order λ3 after two integrations by parts.
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S T

Fig. 11. New anomaly diagram of the order λ3 which provides the exponentiation

in the double logarithmic approximation.

2.10. Higher-order anomaly terms (continued)

The exponentiation to the order λ3, described in the previous section,
prompts to analyze anomaly diagrams of the type depicted in Fig. 12, i.e.
of the type of a sliced pie.

. . .

Fig. 12. Particular class of anomaly diagrams.

This class of diagrams can be exactly calculated recursively. Let us
denote x = −us and y = vt with y2 = 0 and x2 6= 0 to proceed recursively.
We find for the n-loop (n-slice) diagram

P (n)(x, y) = 2n−1(−1)n
βn

4(n − 1)!

(

4

ǫ

)n−1
Γ (1 − nǫ

2 )

Γn(1 − ǫ
2 )

×u · v
S
∫

0

ds

T
∫

0

dt

1
∫

0

dτ1 · · · dτn−1

∏n−1
k=1 τ

−kǫ/2
k (1 − τk)

−ǫ/2
(

x2 − 2
∏n−1
k=1 τk x · y

)1−nǫ/2 .

(2.40)

We have inserted a combinatorial factor of 2n−1 because the n−1 lines, that
are trapped by the cusp, may come from both sides. Equation (2.40) is the
exact result for the loop with 1 light-cone segment.



Topics in Cusped/Lightcone Wilson Loops 3065

For the loop with 2 light-cone segments, we put x2 = 0 after which the
integral is expressed via Γ -functions:

P (n) = (−1)n
βn

16(n!)2

(

4

ǫ

)2n
Γ (1 − nǫ

2 )Γ (1 + (n−1)ǫ
2 )

Γ (1 − ǫ
2 )

(2u · vST )nǫ/2 .

(2.41)
It gives again the Bessel function J0 in the double logarithmic approximation
rather than the exponential (2.39).

In fact this illustrates why it is very difficult to obtain the exponen-
tial (2.39) in the framework of planar QFT, where the appearance of Bessel
functions is instead quite natural and understandable from the relationship
between connected planar and all planar diagrams. The exponential (2.39)
is rather quite natural for Abelian theories when planar and nonplanar dia-
grams are both essential. Actually the role of the anomaly terms is simply
to complete the Bessel function to an exponential.

A question immediately arises as to what is the equation which sums
planar diagrams: ladders and anomalous to provide the exponentiation in
the double logarithmic approximation? For this purpose we shall consider
in the next section the cusped loop equation.

3. Cusped loop equation

In this section I consider the loop equation for cusped Wilson loops. I be-
gin with a review of the modern formulation of the loop equation, describe
its supersymmetric extension and a UV regularization. Then I concentrate
on specific features of the loop equation for cusped loops and show how to
extract the cusp anomalous dimension from the loop equation.

3.1. Loop equation in QCD

The Schwinger–Dyson equation of Yang–Mills theory

∇ab
µ F

b
µν(x)

w.s.
= ~

δ

δAaν(x)
, (3.1)

when applied for Wilson loops, was translated by Makeenko, Migdal (1979)
to the loop equation which is a closed equation as N → ∞:

∂xµ
δ

δσµν(x)
W (C) = λ

∮

C

dyν δ
(d)(x− y)W (Cyx)W (Cxy) . (3.2)

This original loop equation includes the operators of path and area deriva-
tives, which are defined for functionals of Stokes type obeying the zig-zag
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symmetry. The product of two W ’s on the right-hand side is due to the
large-N factorization.

The following vocabulary for translation from the ordinary space to loop
space is in order.

Ordinary space Loop space

Φ[A] Phase factor Φ(C) Loop functional

Fµν(x) Field strength
δ

δσµν(x)
Area derivative

∇x
µ Covariant derivative ∂xµ Path derivative

∇∧ F = 0 Bianchi identity Stokes functionals
−∇µFµν Schwinger–Dyson Loop

= δ/δAν equation equation

3.2. Loop-space Laplace equation

A very nice (and equivalent!) form of the loop equation can be obtained
by one more contour integration over x:

∆W (C) = λ

∮

C

dxµ

∮

C

dyµ δ
(d)(x− y)W (Cyx)W (Cxy) . (3.3)

The operator ∆ on the left-hand side of Eq. (3.3) is nothing but the
loop-space Laplacian

∆ ≡
∮

C

dxν ∂
x
µ

δ

δσµν(x)
=

σf
∫

σi

dσ

σ+0
∫

σ−0

dσ′
δ

δxµ(σ′)
δ

δxµ(σ)
(3.4)

which is a proper functional extension of a finite-dimensional Laplacian
that respects continuity of the loop. As is seen from the right-hand side
of Eq. (3.4), the loop-space Laplacian is defined for a much wider class of
functionals than Stokes functionals. This will be important for a supersym-
metric extension of the loop equation.

The loop-space Laplace equation (3.3) is associated with the second-order
Schwinger–Dyson equation

∫

ddx∇µF
a
µν (x)

δ

δAaν(x)

w.s.
= ~

∫

ddx ddy δ(d)(x− y)
δ

δAaν(y)

δ

δAaν(x)
(3.5)
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in the same sense as the original loop equation (3.2) is associated with
Eq. (3.1). This fact was utilized by Halpern, Makeenko (1989) to construct
a non-perturbative gauge-invariant regularization of Eq. (3.4) by substitut-
ing

δbcδ(d)(x− y)
reg.
=⇒

〈

y

∣

∣

∣

∣

(

ea
2∇2/2

)bc
∣

∣

∣

∣

x

〉

, (3.6)

where a is a UV cutoff.

3.3. Smearing of loop-space Laplacian

A smearing of the loop-space Laplacian is needed to invert it, i.e. to
produce a Green function.

The proper smearing procedure (which makes a second-order operator
from the first order loop-space Laplacian) reads as

∆
(G) =

1
∫

0

dσ

1
∫

0

dσ′G(σ, σ′)
δ

δxµ(σ′)
δ

δxµ(σ)

=

1
∫

0

dσ

1
∫

0

6 dσ′G(σ, σ′)
δ

δxµ(σ′)
δ

δxµ(σ)
+ ∆ (3.7)

with the parametric-invariant smearing function

G(σ1, σ2) = e
−| R σ2

σ1
dσ
√
ẋ2(σ)|/ε

(ε≪ L = length) . (3.8)

Here ε has the meaning of a stiffness of the loop.

3.4. Green function of functional Laplacian

Loop-space Laplacian was inverted by Makeenko (1988) to produce a
Green function which is useful for an iterative solution.

The functional Laplace equation

∆
(G)W [x] = J [x] (3.9)

with the proper choice of boundary conditions can be solved for a given J [x]
to give

W [x] = 1 − 1

2

∞
∫

0

dA

{

〈

J [x+
√
Aξ]
〉(G)

ξ
−
〈

J [
√
Aξ]
〉(G)

ξ

}

. (3.10)
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The average over the loops ξ(σ) in Eq. (3.10) is given by the path integral

〈F [ξ]〉(G)
ξ =

∫

ξ(0)=ξ(1)Dξe
−SF [ξ]

∫

ξ(0)=ξ(1)Dξe
−S (3.11)

over closed trajectories with the local action

S =
1

4

1
∫

0

dσ

{

ε
√

ẋ2(σ)
ξ̇2(σ) +

√

ẋ2(σ)

ε
ξ2(σ)

}

. (3.12)

This extends the results of the French mathematician R. Gâteaux (early
1900’s) for the functional Laplacian (obtained for the case of L2 space of
functions with an integrable square) to the case of loop space when loops are
always continuous functions. It is immediately seen from the action (3.12)
that the presence of the stiffness ε is crucial to have a Wiener-type measure
in the path integral (3.11) and correspondingly continuous trajectories.

3.5. Iterative solution

In large-N Yang–Mills theory the regularized J [x] is as above bilinear
in W :

J (G)[x] = λ

1
∫

0

1
∫

0

dσ1dσ2 (1 −G(σ1 − σ2)) ẋ
µ(σ1)ẋ

µ(σ2)

×
r(a2)=x(σ2)
∫

r(0)=x(σ1)

Dre− 1
2

R a2

0 dτ ṙ2(τ)

×W (Cx(σ1)x(σ2)rx(σ2)x(σ1))W (Cx(σ2)x(σ1)rx(σ1)x(σ2)) . (3.13)

It can been shown that an iterative solution in λ starting fromW0(C) = 1
recovers Yang–Mills perturbation theory. All that can be deduced from the
general formula

〈

ei
√
A

R

dσṗ(σ)ξ(σ)
〉(G)

ξ
= e−A

R

dσ
R

dσ′ ṗ(σ)G(σ−σ′)ṗ(σ′)/2 , (3.14)

where pµ(σ) (pµ(0) = pµ(1)) represents a momentum-space loop. In partic-
ular, the triple gluon vertex remarkably appears from doing an uncertainty
ε× 1/ε.
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3.6. SYM loop equation

An extension of the loop equation (3.3) to N = 4 SYM was proposed by
Drukker, Gross, Ooguri (1999). An equivalent equation was derived earlier
by Fukuma, Kawai, Kitazawa, Tsuchiya (1998) in connection with the IIB
matrix model.

The equation closes for general supersymmetric loops

C = {xµ(σ), Yi(σ); ζ(σ)} µ = 1, . . . , 4, i = 1, . . . , 6 , (3.15)

where ζ(σ) denotes the Grassmann odd component. An N = 4 supersym-
metric extension of the loop-space Laplacian (3.4) is

∆ = lim
η→0

∫

ds

s+η
∫

s−η

ds′
(

δ2

δxµ(s′)δxµ(s)
+

δ2

δY i(s′)δYi(s)
+

δ2

δζ(s′)δζ̄(s)

)

.

(3.16)

To return to the SYM Wilson loops (1.16), we have to put Ẏ 2 = ẋ2, ζ = 0
after acting by ∆. We use the bold C for general loops (3.15) and normal
C for SYM loops (1.25).

The resulting N = 4 SYM loop equation then reads

∆ lnW (C)
∣

∣

∣

C=C
= λ

∫

dσ1

∫

dσ2 (ẋµ(σ1)ẋµ(σ2) − |ẋµ(σ1)||ẋµ(σ2)|)

×δ(4)(x1 − x2)
W (Cx1x2)W (Cx2x1)

W (C)
. (3.17)

For latter convenience we have applied ∆ to lnW (C) and used the fact that
∆ is a first-order operator (obeys the Leibnitz rule). The right-hand side is
correspondingly divided by W (C).

Probably a simpler version of N = 4 SYM loop equation exists which
is written directly for SYM loops W (C) along the line of the derivation
of the loop equation for an Abelian scalar loop by Makeenko (1988). It is
crucial for this approach that the loop-space Laplacian is well-defined for
the functionals of the type (1.16) which do not obey the zig-zag symmetry

because of the presence of
√
ẋ2. But Eq. (3.17) will be enough for the

purposes below.

3.7. Cusped loop equation

The loop equation for cusped Wilson loops, which we denote by Γ , can be
obtained by substituting C = Γ in Eq. (3.17). We then obtain the following
cusped loop equation
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∆ lnW (C)
∣

∣

∣

C=Γ

= λ

∫

dσ1

∫

dσ2 (ẋµ(σ1)ẋµ(σ2) − |ẋµ(σ1)||ẋµ(σ2)|)

×δ(4)(x1 − x2)
W (Γx1x2)W (Γx2x1)

W (Γ )
. (3.18)

The cusped loop equation (3.18) has several remarkable properties. One
of them is the following. The right-hand side of the usual Yang–Mills loop
equation (3.3) is of the order of L/a3, where a is a UV cutoff. For the
N = 4 SYM loop equation (3.17) this term is canceled by scalars so the
right-hand side of Eq. (3.17) is ∼ (La)−1 for smooth loops. But it is easy to
estimate that it is ∼ a−2 for cusped loops which is larger. Therefore, some
interesting information about cusped Wilson loop can be extracted from the
loop equation at the order ∼ a−2. As we shall now see, this is the cusp
anomalous dimensions.

A crucial observation is the following relation that holds for cusped Wil-
son loops:

∆ lnW (C)
∣

∣

∣

C=Γ

= − d

da2
lnW (Γ ) + O(a−1) . (3.19)

Here the differential operator on the right-hand side which is, in general,
regularization-dependent is written for the Schwinger proper time regular-
ization, like in Eq. (3.13). The relation (3.19) can be verified in perturbation
theory for usual Yang–Mills and most probably extends to the SYM case.

Noting that the term of the order a−2 on the right-hand side of Eq. (3.19)
gives the cusped anomalous dimension owing to Eq. (1.5), we find that the
cusp anomalous dimension equals to the term of the order a−2 on the right-
hand side of the (regularized) loop equation:

2

a2
γcusp (θ, λ) + O

(

a−1
)

= λ

∫

dσ1

∫

dσ2(ẋµ(σ1)ẋµ(σ2)−|ẋµ(σ1)||ẋµ(σ2)|)

×δ(4)a (x1 − x2)
W (Γx1x2)W (Γx2x1)

W (Γ )
. (3.20)

Here the right-hand side is to be regularized according to Eq. (3.13).
This very interesting fact was first observed to the order λ of perturba-

tion theory by Drukker, Gross, Ooguri (1999) and verified to order λ2 for
arbitrary θ by Makeenko, Olesen, Semenoff (2006). The nontrivial function
of θ thus reproduced to the order λ2 is the sum of the contribution of the
ladder diagram (2.33) and the anomaly diagram (2.35).

The contribution of the ladder diagram of the order of λ2 straightfor-
wardly comes iteratively by substituting the ladder diagram of the order of
λ into the right-hand side of Eq. (3.20). A planar part is canceled between
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the numerator and the denominator on the right-hand side of Eq. (3.20) so
what is left is analogous to the diagram with two crossed ladders (with the
minus sign) as in Eq. (2.33). This is a well-know implementation of the
“non-Abelian exponentiation theorem” in the loop equation.

Alternatively, the contribution of the anomaly diagram is reproduced in
a very nontrivial way, when a gluon is attached to the regularizing path
rx1x2 . While the length of this path is ∼ a, i.e. very small, this smallness
is compensated by a very large factor. The calculation is performed using
an important formula of the loop dynamics derived by Makeenko, Migdal
(1981):

∫

z(0)=x

z(τ)=y

Dz(t)e−
R τ
0 dt ż2(t)/2

y
∫

x

dzµδ(d)(z − u) =

∞
∫

0

dτ1

∞
∫

0

dτ2 δ (τ − τ1 − τ2)

× 1

(2πτ1)d/2
e−(x−u)2/2τ1

↔
∂

∂uµ

1

(2πτ2)d/2
e−(y−u)2/2τ2 . (3.21)

This formula in the usual Yang–Mills theory was used to reproduce the
three gluon vertex. Now in N = 4 SYM it reproduces directly the anomaly
diagram, rather than individual interaction diagrams.

An expectation is that the loop equation may be useful for analyzing next
orders in λ and, in particular, to verify the exponentiated solution (2.39) in
the double logarithmic approximation.

3.8. Some comments about large-N QCD

Some of the results described above for cusped Wilson loops in N =
4 SYM are applicable also to large-N QCD. Actually, nobody considered
before specific features of the loop equation for cusped loops.

A first immediate consequence of the cusped loop equations is that |ẋ|
on the right-hand side (which comes from scalars) can be neglected near the
light-cone, reproducing the same cusped loop equation as in QCD.

This may indicate that γcusp coincide in both cases while the difference
is absorbed by the charge renormalization which is present in QCD and
missing in N = 4 SYM. This may be understood because supersymmetry
is broken by construction in the presence of a cusp and the larger the cusp
the larger is the breaking. However, this assertion is in fact rather vague
because the cusp anomalous dimension is regularization-dependent. But
this indeed works to the order λ2, if the regularization in both cases is via
dimensional reduction. A comparison of recent explicit calculations of the
anomalous dimensions of twist-two operators to the order λ3 in QCD by
Moch, Vermaseren, Vogt (2004) with those in SYM by Kotikov, Lipatov,
Onishchenko, Velizhanin (2004) may be useful for this purpose.
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4. Conclusions

I list below a (quite incomplete) set of conclusions from this paper:

• Cusped Wilson loops are convenient for studies of the anomalous di-
mensions;

• The minimal surface of an open string in AdS5⊗S5 determines the cusp
anomalous dimension at large λ via the AdS/CFT correspondence;

• Ladder diagrams themselves do not give a reasonable result for the cusp
anomalous dimension, so that diagrams with interaction are essential;

• A cancellation of interaction diagram to the order λ2 is not complete
for N = 4 SYM cusped Wilson loops and an anomaly surface term
remains;

• Results in the double logarithmic approximation indicate that higher-
order interaction diagrams are also essential for the exponentiation;

• The loop equation has specific features for cusped loops when its right-
hand side reproduces the cusp anomalous dimension;

• There are indications that some of the results about the cusp anoma-
lous dimension in N = 4 SYM could persist for QCD;

• A challenging problem is to obtain
√
λ for large λ in perturbation

theory.

Appendix A

Minimal surface in AdS5 ⊗ S
5

I briefly review in this Appendix the calculation of the cusp anomalous
dimension at large λ which is based on the open-string/Wilson-loop corre-
spondence described in Sect. 1.10. Only the leading order calculation by
Kruczenski (2002), Makeenko (2003) in the supergravity approximation is
considered.

Near cusp ansatz

We describe the AdS5 space by the Poincaré coordinates

x0 = t , x1 = x , x2 = x3 = 0 , z (A.1)

choosing the Π -shaped loop to be located in the 0, 1-plane. The associated
AdS3 metric is

ds2 = R2dt
2 − dx2 − dz2

z2
. (A.2)
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We parametrize the string worldsheet by the coordinates τ = t, σ = x
so the open-string action reads as

A = − R2

2πα′

y
∫

0

dx

∞
∫

x

dt
1

z2

√

1 +

(

∂z

∂x

)2

−
(

∂z

∂t

)2

. (A.3)

It is to be minimized for the function z(t, x).
Using scale and Lorentz invariance (at the worldsheet) the following

ansatz was proposed by Drukker, Gross, Ooguri (1999) near the cusp to
simplify the problem of minimizing the action (A.3):

z(t, x) =
√

t2 − x2
1

f(θ)
, θ = arctanh

x

t
. (A.4)

It works for the domain near the cusp depicted in Fig. 13. As we shall see
shortly it is the domain which contributes to the cusp anomalous dimension
at large θ and at the light cone.

x

t

(a)

y

θ=

θθ=0

(b)

oo

Fig. 13. Near cusp domains of the minimal surface which determines the cusp

anomalous dimension. In part (b) one of the two domains is magnified.

The original two-dimensional variational problem is thus reduced to a
one-dimensional Euler–Lagrange one.

Euler–Lagrange problem

We are led to minimize the one-dimensional action

A = −2
R2

2πα′

∫

dx

x

∫

dθ

√

f4 − f2 + f ′ 2 , (A.5)

where the factor of 2 is because the Π -shaped Wilson loop in Fig. 13(a) has
two cusps.
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The standard condition that z = 0 in the boundary is transformed into
the boundary condition for f(θ): f(0) = ∞ and an arbitrary value of f(∞)

because
√
t2 − x2 → 0 as θ → ∞. Also, f = 0 is the horizon and f = 1 is

the AdS light cone given by z2 = t2 − x2.
To minimize the action (A.5), we solve the following Euler–Lagrange

equation

f ′′V = f ′2V ′ +
1

2
V ′V , V = f4 − f2 (A.6)

with the described boundary conditions.

Solution for f(θ)

The equation (A.6) can be easily integrated utilizing the conserved “en-
ergy”

E =
V

√

f ′2 + V
=⇒ f ′ = −

√

V 2

E2
− V . (A.7)

It is seen from these formulas that θmax is finite unless E2 = −1/4 < 0 (an
instanton-like solution).

An exact analytic solution to Eq. (A.7) is

θ =
√

2 arctanh
√

2(1 − f2) − arctanh
√

1 − f2 − iπ

2

(√
2 − 1

)

. (A.8)

It obeys the boundary condition θ = 0 at f = ∞ and θ → ∞ approaching
the light cone as f → fmin = 1/

√
2.

Only a part of the surface near the light cone described by the equation

z =

√
t2 − x2

fmin
=
√

2(t2 − x2) (A.9)

will be essential for the cusp anomalous dimension. It is the same (space-
like) minimal surface as found by Kruczenski (2002) for space-like Wilson
loops, when it was always real.

Cusp anomalous dimension

Substituting the solution (A.8) into the action (A.5), we find that the
essential domain of integration is when

f → fmin =
1√
2

+
√

2e−
√

2θmax , θmax = ln
2
√

2x

a
(A.10)

and θ → θmax. We get for the divergent part of the minimal area
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Amin =
R2

πα′

y
∫

a

dx

x

θmax
∫

0

dθ
√

f4
min − f2

min

= i
R2

πα′

y
∫

a

dx

x

θmax

2
= i

R2

4πα′
ln2 y

a
. (A.11)

From the open-string/Wilson-loop correspondence, described in Sect. 1.10,
we obtain

WSYM(Π ) = e2iAmin with
√
λ =

R2

α′
. (A.12)

Comparing with Eq. (1.14) we find

f(λ) =

√
λ

π
, large λ (A.13)

which reproduces the result by Gubser, Klebanov, Polyakov (2002) quoted
in Sect. 1.9. It is obtained for open string in the supergravity approximation
while the original calculation dealt with closed string in the plane wave limit.

The asymptotic behavior (A.13) of the cusp anomalous dimension at
large λ has been remarkably reproduced from the spin-chain equation of
Beisert, Eden, Staudacher (2007) first numerically by Benna, Benvenuti,
Klebanov, Scardicchio (2007) and then analytically by Kotikov, Lipatov
(2007), Basso, Korchemsky, Kotanski (2008). The later authors constructed

a systematic expansion of the cusp anomalous dimension in 1/
√
λ, reproduc-

ing also the O(1) correction by Frolov, Tseytlin (2002) obtained from closed

stings. The next order in 1/
√
λ also agrees with the recent superstring

calculations by Roiban and Tseytlin (2007), (2008).

Appendix B

Double-logarithmic accuracy

I describe in this appendix how the double logarithmic accuracy works
for lightcone Wilson loops to the leading order, confirming in particular
previously obtained results.

Double logarithms at the light cone

Let us consider the 1 light-cone limit with β ≪ 1 while

T = ln
T

αa
, Σ = ln

S

a
(B.1)
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are both large for the double Logs to be of order 1. We assume α > 0 (for
α < 0 it should be substituted by |α|).

The double Logs appear in the ladder equation (2.17) from the domain
of integration t≫ αs, so we rewrite it with DLA as

G (S, T ; a, b ≤ αa) = 1 − β

min{S,T/α}
∫

a

ds

s

T
∫

max{αs,b}

dt

t
G (s, t; a, b ≤ αa) .

(B.2)
We solve it first for G (S, T ≥ αS; a, b), which then determines
G (S, T ≤ αS; a, b) in DLA.

Leading-order solution

An exact solution to Eq. (B.2) for b ≤ αa is given by the sum of two
Bessel functions

G (S, T ≥ αS; a, b ≤ αa) = J0

(

2
√

βΣT
)

+
Σ

T J2

(

2
√

βΣT
)

. (B.3)

The first term on the RHS of Eq. (B.3) is familiar from the α = 0 solution.
But now the solution is for any α with DLA.

The solution (B.3) obeys the boundary condition G(a, T ; a, b) = 1. The
second one, G(S, b; a, b) = 1, cannot be verified because T ≥ αS. In-
stead (B.3) obeys

∂

∂S
G(S, T ≥ αS; a, b)

∣

∣

∣

S=T/α
= 0 (B.4)

at the boundary S = T/α, which can be deduced from Eq. (B.2).

Substituting S = T/α we have from Eq. (B.3)

G (T, T ; a, b ≤ αa) =
J1

(

2
√
βT
)

√
βT (B.5)

which is the same Bessel function as in Makeenko, Olesen, Semenoff (2006).

Finally, substituting Eq. (B.3) into Eq. (B.2), we get

G (S ≥ T/α, T ; a, b ≤ αa) =
J1

(

2
√
βT
)

√
βT (B.6)

which does not depend on Σ with DLA. We can set S = ∞ in Eq. (B.6).
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Appendix C

Exact sum of lightcone ladders

I describe in this appendix now to draw the contour in the complex
ω-plane for the solution (2.28) with F obeying Eq. (2.29) to satisfy the
boundary condition (2.21) and correspondingly to be a solution for the sum
of the lightcone ladder diagrams.

The exact solution

The ansatz (2.28) with F obeying Eq. (2.29) will satisfy the boundary
condition (2.21) if the integrand has no poles in the complex ω-plane. Then
the contour of the integration over ω can be arbitrarily deformed.

The following linear combination of solutions of the hypergeometric equa-
tion (2.29) solves the problem as was shown by Makeenko, Olesen, Semenoff
(2006):

G(S, T ; a, b) =

∮

Cr

dω

2πiω
2F1

(

−
√

βω,−
√

βω−1; 1 −
√

β(ω + ω−1);−αa
b

)

×
(

S

a

)

√
βω (T

b

)−
√
βω−1

2F1

(

√

βω,
√

βω−1; 1 +
√

β(ω + ω−1);−αS
T

)

+

∫

|nmin−0

ds

2πi

Γ (−s)
Γ (s)

1√
β(ωR

+ − ωR
−)

Γ (
√
βωR

+)Γ (1 +
√
βωR

+)

Γ (
√
βωL

+)Γ (1 +
√
βωL

+)

×
[

(

αS

b

)

√
βωR

+
(

T

αa

)−
√
βωR

−

+

(

αS

b

)

√
βωR

−
(

T

αa

)−
√
βωR

+

]

×2F1

(

√

βωR
+,
√

βωR
−; s+ 1;−αa

b

)

2F1

(

√

βωR
+,
√

βωR
−; s+ 1;−αS

T

)

(C.1)

with

ωR
± =

s

2
√
β
±
√

s2

4β
− 1 ωL

± = −ωR
∓ = − s

2
√
β
±
√

s2

4β
− 1 . (C.2)

The contour Cr in the first term runs over a circle of arbitrary radius r
(|ω| = r). The second contour integral runs parallel to imaginary axis along

s = nmin − 0 + ip (−∞ < p < +∞) , (C.3)
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where

nmin =
[

√

β(r + 1/r)
]

+ 1 (C.4)

and [· · ·] denotes the integer part.

Cancellation of poles

The integrand in the first term on the right-hand side of Eq. (C.1) has
poles at

ω = ωR
±(n) =

n

2
√
β
±
√

n2

4β
− 1 , ω = ωL

±(n) = − n

2
√
β
±
√

n2

4β
− 1 (C.5)

as the hypergeometric functions have. These poles are depicted in Fig. 14.

ω

123123 3 1 2 321

ω

123123 3 1 2 321

Fig. 14. Location of poles of the integrand in the first term in Eq. (C.1) for β < 1

4
,

r = 1 (above) and β < 1

4
, r < 1 (below). The circle represents the contour of

integration Cr.

The poles of the integrand in the first term are canceled by the poles at
s = n of the integrand in the second term, so the contour of integration can
be arbitrarily deformed. This is guaranteed by the value of nmin, given by
Eq. (C.4), which changes accordingly with r to provide the cancellation of
the poles of the first term, that are located inside Cr, by those of the second
term, that are located to the right on nmin.
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The boundary conditions (2.21) are satisfied by the solution (C.1): we
choose the integration contour in the first term to be a circle of the radius
which is either small for T = b or large for S = a. Then the residue at the
pole at ω = 0 or ω = ∞ equals 1 which proves that the boundary conditions
is satisfied.

For S = T , a = b and α = −1 the solution (C.1) simplifies to the Bessel
function (2.30).
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