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We study the semiclassical spectrum of bosonic string theory on
AdS3 × S1 in the limit of large AdS angular momentum. At leading semi-
classical order, this is a subsector of the IIB superstring on AdS5×S5. The
theory includes strings with K ≥ 2 spikes which approach the boundary in
this limit. We show that, for all K, the spectrum of these strings exactly
matches that of the corresponding operators in the dual gauge theory up to
a single universal prefactor which can be identified with the cusp anoma-
lous dimension. We propose a precise map between the dynamics of the
spikes and the classical SL(2,R) spin chain which arises in the large-spin
limit of N = 4 Super Yang–Mills theory.

PACS numbers:

1. Introduction

Logarithmic scaling of anomalous dimensions with Lorentz spin (S) is
a characteristic feature of composite operators in four-dimensional gauge
theory [1, 2] (for a recent discussion see [3]). Although initially observed
in perturbative gauge theory, the AdS/CFT correspondence has provided
strong evidence that logS scaling persists at strong coupling [4]. The best
understood example is the anomalous dimension of twist-two operators in
the planar limit of N = 4 SUSY Yang–Mills, which has the form,

γ = 2Γ (λ) log(S) +O(S0) .

Here Γ is a function of the ’t Hooft coupling λ = g2
YMN , known as the

cusp anomalous dimension, with the following behaviour at weak and strong
coupling, respectively1,

∗ Presented at the XLVIII Cracow School of Theoretical Physics, “Aspects of Duality”,
Zakopane, Poland, June 13–22, 2008.

1 The emergent integrability of the N = 4 theory has subsequently lead to a conjecture
[17] for Γ (λ) which should hold for all values of λ.
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Γ (λ) =
λ

4π2
+O(λ2) , for λ≪ 1 ,

=

√
λ

2π
+O(λ0) , for λ≫ 1 .

The strong coupling result was first obtained in [4] by evaluating the classical
energy of the corresponding state in the dual string theory on AdS5 × S5 in
the limit S → ∞. One of the aims of this paper is to extend this analysis
to string states dual to operators of arbitrary twist.

In one-loop gauge theory, the large-S spectrum of operators of fixed twist
has been studied in detail by Belitsky, Gorsky, Korchemsky and collaborators
(see [5–7] and references therein). We will focus on operators of the form

Ô ∼ TrN
[

Ds1
+ ZDs2

+ Z . . . DsJ
+ Z

]

(1)

having total Lorentz spin S =
∑J

l=1 sl and twist J . Here D+ is a covariant
derivative with conformal spin plus one and Z is one of the three complex
adjoint scalar fields of the N = 4 theory. For S ≫ 1, the resulting one-loop
spectrum of anomalous dimensions lies in a band

γmin =
λ

4π2
2 log (S) ≤ γ1−loop ≤ γmax =

λ

4π2
J log (S) . (2)

More precisely, for each positive integer K with 2 ≤ K ≤ J , the large-S
theory contains families of states labelled by K−1 non-negative integers
lk ∼ S with

∑K−1
k=1 lk = S. The spectrum of these states is,

γ1−loop[l1, l2, . . . , lK−1] =
λ

4π2

(

K log S +HK

[

l1
S
,
l2
S
, . . . ,

lK−1

S

]

+C1−loop +O(1/ log2 S)

)

, (3)

where C1−loop is a constant of order S0 which may depend on K and J but
not on the integers lk. The function HK is the Hamiltonian of a certain
classical spin chain with K sites. This chain can be thought of as a classical
S → ∞ limit of the quantum spin chain which governs the complete one-loop
spectrum of anomalous dimensions (i.e. for all values of S and J), in the
planar N = 4 theory [8–10]. The dynamical variables are classical “spins”
L±

k , L0
k, for k = 1, 2, . . . ,K whose Poisson brackets provide a representation

of the sl(2,R) Lie algebra at each site,

{L+
k ,L−

k′} = 2iδkk′L0
k , {L0

k,L±

k′} = ±iδkk′L±

k . (4)
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The corresponding quadratic Casimir at each site is appropriate for a rep-
resentation of zero spin,

L+
k L−

k +
(

L0
k

)2
= 0 , (5)

for k = 1, . . . ,K. As we review in the next section, the classical chain is
integrable [11] with a continuous spectrum governed by a spectral curve of
genus K−2. The discrete spectrum (3) is obtained by applying appropriate
Bohr–Sommerfeld semiclassical quantization conditions.

In this paper we will study the corresponding large-S limit of the dual
string theory. Importantly, we are interested in the S → ∞ limit with
J fixed. Thus the string states we seek are dual to the states of a spin
chain of fixed length. For earlier work relevant to this limit see [3, 7, 12–18]
and especially [19]. Our main result is a calculation the semiclassical string
spectrum at large S. We find precise agreement with the gauge theory
spectrum (3) up to a single overall function of the coupling which can be
identified with the cusp anomalous dimension Γ (λ). We will also propose
a mechanism whereby the gauge theory spin chain emerges as a decoupled
subsector of semiclassical string theory in the large-S limit. The main results
are briefly described in the remainder of this introductory section.

For large ’t Hooft coupling, operators of the form (1) are dual to semi-
classical strings moving on an AdS3 × S1 submanifold of AdS5 × S5. Here
spin S corresponds to angular momentum on AdS3 and twist J to angular
momentum on S1. Generic solutions of the equation of motion can be con-
structed (somewhat implicitly) by the method of finite gap integration [22]
(see also [20, 21, 23, 24]). The leading-order semiclassical spectrum is then
obtained by applying the Bohr–Sommerfeld conditions derived in [23, 24].
Solutions are classified by the number of gaps, K, in the spectrum of the
auxiliary linear problem. These solutions are analogous to classical solutions
with K oscillator modes turned on in flat space string theory2.

There are some superficial similarities between the spectrum of K-gap
strings and that of the classical spin chain described above. In particular
both are governed by a hyperelliptic spectral curve and solutions correspond
to linear motion on the Jacobian in both cases. However, there are also
important differences which reflect the fact that the string has an infinite
number of degrees of freedom while the chain has a only one degree of
freedom on each of its K sites. As we review in Section 3, the infinite
tower of string modes leads to essential singularities in the spectral data
of the string which are absent in the corresponding description of the spin

2 In fact this is not just an analogy. In a limit where the equations of motion linearize
around a pointlike string there is a one-to-one correspondence between the mode
expansion of the linear problem and the gaps of the non-linear one.
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chain. A related issue is that the string theory curve is only determined
implicitly by the existence of a certain normalised abelian differential dp.
The normalisation conditions for dp are transcendental and generally cannot
be solved to give an unconstrained parametrisation of the curve3.

In the following we will consider the large-S limit of the finite gap con-
struction at fixed K and J . We will find that large AdS angular momentum
leads to drastic simplifications which allow the solution of the period con-
ditions in closed form. The main result is that the resulting semiclassical
string spectrum coincides precisely with the spectrum (3) of the spin chain
up to the overall coupling dependence. In particular we find,

γstring[l1, l2, . . . , lK−1] =

√
λ

2π

(

K log S +HK

[

l1
S
,
l2
S
, . . . ,

lK−1

S

]

+Cstring +O(1/ log2 S)

)

, (6)

where HK is the spin chain Hamiltonian, Cstring is an undetermined constant

and li ∼ S are positive integers such that
∑K−1

i=1 li = S. Worldsheet σ-model
loop corrections to this semiclassical formula are suppressed by powers of
1/
√
λ. The occurrence of the first term on the RHS of (6) has been verified

in a previous studies of finite gap solutions [7, 15], the new feature of our
result is the detailed agreement with the spin chain which emerges in the
second term which is O(S0). The results are consistent with the conjecture,

γ[l1, l2, . . . , lK−1] = Γ (λ)

(

K log S +HK

[

l1
S
,
l2
S
, . . . ,

lK−1

S

]

+ C(λ)

)

+O(1/ log2 S) , (7)

for the exact large-S spectrum where Γ (λ) is the cusp anomalous dimension
introduced above. A similar conjecture was made for the exact spectrum
of a closely related set of operators in large-N QCD in [5]4. The exactness
of this relation to all loops was also established in [5], for the leading term
of order log S, using a relation between anomalous dimensions and Wilson
lines.

The S → ∞ limit considered here is quite different from the thermody-
namic J → ∞ limit of the chain where the full spectrum is determined by
the Asymptotic Bethe Ansatz Equations (ABAE) [17,25,26]. A priori there
is no reason why the ABAE should apply to a spin chain of fixed length.

3 I would like to thank Harry Braden for emphasising this point.
4 See Eq. (3.45) in this reference.
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On the other hand, it was argued in [16], that the lowest operator dimen-
sion for fixed, large S is independent of J and can therefore be evaluated
in the J → ∞ limit using the ABAE5. The large-S semiclassical spectrum
(6) obtained in this paper is also independent of J which suggests that the
universality proposed in [16] should apply to all operators with (one) large
spin, not just the operator of lowest dimension.

The exact agreement between the semiclassical spectrum of a discrete
spin chain and a continuous string initially seems somewhat mysterious6.
In the final part of the paper, we will propose a precise account of how
the classical spins naturally emerge from the string at large S. The key
phenomenon is already visible in the rotating folded string studied in [4].

Logarithmic scaling of the form ∆ − S ≃
√
λ/2π 2 log S naturally arises

arises when the two folds of the string approach the boundary of AdS3.
It is natural to expect that the finite gap solutions studied in this paper
correspond to configurations with K spikes which approach the boundary
as S → ∞ giving the scaling ∆ − S ≃

√
λ/2πK logS. Rigidly rotating

solutions of this type were constructed in [19].
In static conformal gauge, the string σ-model coincides with the SL(2,R)

Principal Chiral Model. The dynamical variable is the Noether current
j±(σ, τ) = g−1∂±g with g(σ, τ) ∈ SL(2,R) corresponding to right multipli-
cation in the group. In the limit S → ∞ we will argue that the corresponding
charge density becomes δ-function localised at the positions of the K spikes.
This localisation leads to a natural proposal for spin degrees of freedom,

LAk = lim
S→∞





√
λ

8π

µk+1
∫

µk

dσ jAτ (σ, τ)



 (8)

for k = 1, 2, . . . K where the index A = 0, 1, 2 runs over the generators of
SL(2,R). Here, the K-th spike is located at σ = σk and µk is are arbitrary
points on the string with µk < σk < µk+1. We propose that the variables
defined in (8) are related to the spins introduced above as, L0

k = L0
k and

iL±

k = L1
k ± iL2

k. In particular one may then verify the Poisson brackets (4)
and the quadratic Casimir relation (5). With this identification it can be
shown that the monodromy matrix of the string reduces to that of the clas-
sical spin chain as S → ∞. A related correspondence between the dynamics
of spikes and the spin chain was suggested in [19]. The emergence of a spin
chain from a limit of string theory was also discussed in [28].

The remainder of the paper is organised as follows. In Section 2 we
provide a brief review of the semiclassical spin chain which arises in one-

5 Indeed this strategy was used in [17] to obtain the conjectured exact form of Γ (λ).
6 Discreteness here refers to the fact that the spin chain lives on a spatial lattice.

A related mystery for the case of the magnon dispersion relation is resolved in [27].
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loop gauge theory. In Section 3 we introduce the finite gap construction of
string solutions and the corresponding spectral curve Σ. In Section 4 we
study the S → ∞ limit for generic solutions and show that it corresponds
to a particular degeneration of the spectral curve. In Section 5, we solve the
period conditions for the differential dp in the degenerate limit and find the
semiclassical spectrum of the model. In Section 6 we give an interpretation
of our results in terms of spikey strings and propose a precise map between
spikes and spins. Finally the results are discussed in Section 7.

2. The gauge theory spin chain

We consider the one-loop anomalous dimensions of operators in the non-
compact rank one subsector of planar N = 4 SUSY Yang–Mills (also known
as the sl(2) sector). Generic single-trace operators in this sector are labelled
by their Lorentz spin S and U(1)R charge J and have the form (1). The
classical dimension of each operator is ∆0 = J + S and its twist (classical
dimension minus spin) is therefore equal to J .

The one-loop anomalous dimensions of operators in the sl(2) sector are
determined by the eigenvalues of the Hamiltonian of the Heisenberg XXX

−
1
2

spin chain with J sites. Each site of this chain carries a representation of
SL(2,R) with quadratic Casimir equal to minus one half. Our discussion of
the chain in this section follows that of [5, 7] (see in particular Section 2.2
of [7]). Here we will focus on the large-spin limit of the chain: S → ∞ with
J fixed. This is a effectively a semiclassical limit where 1/S plays the role
of Planck’s constant ~ [5, 7]. In this limit the quantum spins are replaced
by the classical variables L±

k , L0
k, for k = 1, 2, . . . , J , introduced above. The

commutators of spin operators are replaced by the Poisson brackets (4) of
these classical spins. As the quadratic Casimir equal to −1/2 is negligable
in the S → ∞ limit, the classical spins at each site obey the relation (5)
up to 1/S corrections. We will restrict our attention to states obeying the
highest weight condition,

J
∑

k=1

L±

k = 0 . (9)

Integrability of the classical spin chain starts from the existence of a Lax
matrix,

Lk(u) =

(

u+ iL0
k iL+

k
iL−

k u− iL0
k

)

,

where u ∈ C is a spectral parameter. A tower of conserved quantities are
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obtained by constructing the monodromy,

tJ(u) = Tr2 [L1(u)L2(u) . . .LJ(u)]

= 2uJ + q2u
J−2 + . . .+ qJ−1u+ qJ . (10)

At large-S we find q2 = −S2 up to corrections of order of 1/S. One may
check starting from the Poisson brackets (4) that the conserved charges, qj,
j = 2, 3, . . . J are in involution: {qj, qk} = 0 ∀ j, k. Taking into account
the highest-weight constraint (9), this is a sufficient number of conserved
quantities for complete integrability of the chain.

The one-loop spectrum of operator dimensions at large-S is determined
from the semiclassical spectrum of the spin chain. It has different branches,
labelled by an integer K ≤ J , corresponding to the highest non-zero con-
served charge [7],

qK 6= 0 , qj = 0 , for all j > K .

The one-loop anomalous dimensions are given as,

γone−loop = ∆−J−S =
λ

8π2
log (qK) + C1−loop +O(1/ log2 S) , (11)

where C1−loop is an undetermined constant which is independent of the
moduli qj. We call the branch with K = J the highest sector. For each
K < J there is also a sector of states isomorphic to the highest sector of
a shorter chain with only K sites. In the limit of large-S, the conserved
charge qj scales as Sj for j = 2, . . . ,K. Hence (11) exhibits the expected
logarithmic scaling with S. In the following it will be useful to introduce
rescaled charges q̂j, such that qj = Sj q̂j. In particular q̂2 = −1 up to
corrections of the order of 1/S.

At the classical level, the conserved charges q̂j vary continuously. The
discrete spectrum described in the Introduction arises from imposing ap-
propriate Bohr–Sommerfeld quantisation conditions. To describe these we
introduce the spectral curve of the spin chain,

ΓK : y2 =

K−2
∏

l=1

(x− xl)

= x2K

[

1 − 1

4
P̂K

(

1

x

)2
]

with

P̂K

(

1

x

)

= 2 − 1

x2
+
q̂3
x3

+ . . .+
q̂K
xK

,
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which is a hyperelliptic Riemann surface of genus K− 2. The rescaled spec-
tral parameter x = u/S is held fixed as S → ∞ and the rescaled conserved
charges q̂j, j = 3, . . . ,K correspond to moduli of the curve. Notice that
the curve is highly non-generic in that the positions of the 2K − 2 branch
points xl are determined in terms of K − 2 parameters q̂j. The curve ΓK
corresponds to a double cover of the x plane as shown in Fig. 1. We also
define K − 1 one-cycles αj, j = 1, . . . , J − 1 as shown in the figure7.

x

x2K−2 x2K−1
x4 x3 x2 x1

α1α2αK−1

Fig. 1. The cut x-plane corresponding to the curve ΓK .

The Bohr–Sommerfeld conditions are expressed in terms of a certain
meromorphic differential on ΓK ,

dp̂ = −i dx
x2

P̂
′
K

(

1
x

)

√

P̂K

(

1
x

)2 − 4
(12)

and they read,

− 1

2πi

∮

αj

x dp̂ =
lj
S
, lj ∈ Z

+ , (13)

for j = 1, 2, . . . ,K−1. The integers lj which label the states in the spectrum
obey the conditions,

K−1
∑

j=1

lj = S ,

K−1
∑

j=1

jlj = 0 mod K . (14)

The first equality is related to the fact that the integers lj count numbers
of Bethe roots associated with each cut. Each root carries one unit of spin
and thus the total number of roots is equal to S. The second condition is

7 To state the main results of [5,7], we will not need a to introduce a full basis of cycles
on ΓK .



A Spin Chain from String Theory 3089

imposed by the cyclicity of the trace and corresponds to a vanishing of the
total momentum of the chain.

In order for a leading order semiclassical approach for any quantum me-
chanical problem to be valid it is necessary that the quantum numbers are
large. Thus we must take lj ∼ O(S) as S → ∞ for each j. Then both sides
of Eq. (13) scale like S0. The K − 2 independent equations (13) determine
the charges,

q̂j = q̂j

[

l1
S
,
l2
S
, . . . ,

lK−1

S

]

,

j = 3, . . . ,K. Finally the spectrum of one-loop anomalous dimensions is
given as,

γ[l1, . . . , lK−1] =
λ

4π2

(

K log S +HK

[

l1
S
,
l2
S
, . . . ,

lK−1

S

]

+C1−loop +O(1/ log2 S)

)

, (15)

where HK = log q̂K .

3. Semiclassical string theory

At large ’t Hooft coupling
√
λ ≫ 1, gauge theory operators of the sl(2)

sector are dual to semiclassical strings moving on AdS3 × S1. The U(1)
R-charge J corresponds to momentum in the S1 direction and the conformal
spin S corresponds to angular momentum in AdS3. We introduce string
worldsheet coordinates σ ∼ σ + 2π and τ and the corresponding lightcone
coordinates σ± = (τ±σ)/2 and we define lightcone derivatives ∂± = ∂τ±∂σ.
The space-time coordinates correspond to fields on the string worldsheet:
we introduce φ(σ, τ) ∈ S1 and parametrize AdS3 with a group-valued field
g(σ, τ) ∈ SL(2,R) ≃ AdS3. The SL(2,R)R × SL(2,R)L isometries of AdS3

correspond to left and right group multiplication. The Noether current
corresponding to right multiplication is j± = g−1∂±g. Following [22], we
work in static, conformal gauge with a flat worldsheet metric and set,

φ(σ, τ) =
J√
λ
τ .

In this gauge, the string action becomes that of the SL(2,R) Principal Chiral
model,

Sσ =

√
λ

4π

2π
∫

0

dσ
1

2
Tr2 [j+j−] .
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String motion is also subject to the Virasoro constraint,

1

2
Tr2

[

j2±
]

=
J2

λ
.

Classical integrability of string theory on AdS3 × S1 follows from the
construction of the monodromy matrix [29],

Ω [x; τ ] = P exp





1

2

2π
∫

0

dσ

(

j+
x− 1

+
j−
x+ 1

)



 ∈ SL(2,R) ,

whose eigenvalues w± = exp(±i p(x)) are τ -independent for all values of the
spectral parameter x. It is convenient to consider the analytic continuation
of the monodromy matrix Ω[x; τ ] and of the quasi-momentum p(x) to com-
plex values of x. In this case Ω will take values in SL(2,C) and appropriate
reality conditions must be imposed to recover the physical case.

The eigenvalues w±(x) are two branches of an analytic function defined
on the spectral curve,

ΣΩ : det (wI −Ω[x; τ ]) = w2 − 2 cos p(x)w + 1 = 0 , w, x ∈ C .

This curve corresponds to a double cover of the complex x-plane with branch
points at the simple zeros of the discriminant D = 4 sin2 p(x). In addition
the monodromy matrix defined above is singular at the points above x = ±1.
Using the Virasoro constraint, one may show that, p(x) has a simple poles
at these points,

p(x) ∼ πJ√
λ

1

(x± 1)2
+ O

(

(x± 1)0
)

(16)

as x→ ∓1. Hence the discriminant D has essential singularities at x = ±1
and D must therefore have an infinite number of zeros which accumulate at
these points. Formally we may represent the discriminant as a product over
its zeros and write the spectral curve as

ΣΩ : y2
Ω = 4 sin2 p(x) =

∞
∏

j=1

(x− xi) .

For generic solutions the points x = xi are distinct and the curve ΣΩ has
infinite genus.

In order to make progress it is necessary to focus on solutions for which
the discriminant has only a finite number 2K of simple zeros and the spectral
curve ΣΩ has finite genus. The infinite number of additional zeros of the
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discriminant D must then have multiplicity two or higher. These are known
as finite gap solutions8. In this case, dp is a meromorphic differential on the
hyperelliptic curve,

Σ : y2 =
2K
∏

i=1

(x− xi)

of genus g = K − 1 which is obtained by removing the double points of Σ̂
(see [23]). For ease of presentation we will consider only even values of K,
the generalisation to odd values is straightforward.

In the following we will focus on curves where all the branch points
lie on the real axis and outside the interval [−1,+1]. This corresponds to
string solutions where only classical oscillator modes which carry positive
spin are activated. In the dual gauge theory these solutions are believed to
correspond to operators of the form (1) where only the covariant derivative
D+, which carries positive spin, appears [22,30]. We label the branch points
of the curve according to,

Σ : y2 = (x− b+) (x− b−)

K−1
∏

i=1

(

x− a
(i)
+

)(

x− a
(i)
−

)

, (17)

with the ordering,

a
(K−1)
− ≤ a

(K−2)
− . . . ≤ a

(1)
− ≤ b− ≤ −1 ,

a
(K−1)
+ ≥ a

(K−2)
+ . . . ≥ a

(1)
+ ≥ b+ ≥ +1 .

The branch points are joined in pairs by cuts C±

I , I = 1, 2, . . . ,K/2 as shown

in Fig. 2. We also define a standard basis of one-cycles, A±

I , B±

I . Here A±

I

encircles the cut C±

I on the upper sheet in an anti-clockwise direction and

B±

I runs from the point at infinity on the upper sheet to the point at infinity

x

−1 +1
C−

1 C+
1

C−

K/2 C+
K/2

a
(K−1)
− a

(K−2)
− a

(1)
− b− b+ a

(1)
+ a

(K−2)
+ a

(K−1)
+

Fig. 2. The cut x-plane corresponding to the curve Σ.

8 Strictly speaking these are not generic solutions of the string equations of motion.
However, as K can be arbitrarily large, it is reasonable to expect that generic solutions
could be obtained by an appropriate K → ∞ limit.
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�
�
�
�

�
�
�
�

A
±

I

B
±

I

C±

I

∞
+

∞
−

Fig. 3. The cycles on Σ. The index I runs from 1 to K/2.

on the lower sheet passing through the cut C±

I , as shown in Fig. 3. For any

x0 ∈ C, we will sometimes use the notation x±0 to denote the two points on
Σ where x = x0.

The quasi-momentum p(x) gives rise to a meromorphic abelian differen-
tial dp on Σ. From (16) we see that the differential has second-order poles
at the points above x = +1 and x = −1 on Σ. On the top sheet we have,

dp −→ − πJ√
λ

dx

(x± 1)2
+O

(

(x± 1)0
)

(18)

as x → ∓1. There are also two second-order poles at the points x = ∓1
on the lower sheet related by the involution dp → −dp. The value of the
Noether charges ∆ and S is encoded in the asymptotic behaviour of dp near
the points x = 0 and x = ∞ on the top sheet,

dp −→ − 2π√
λ

(∆+ S)
dx

x2
as x→ ∞ , (19)

dp −→ − 2π√
λ

(∆− S) dx as x→ 0 . (20)

For a valid semiclassical description, the conserved charges J , S and ∆
should all be O(

√
λ) with

√
λ≫ 1.

In addition to the above relations, dp must obey 2K normalisation con-
ditions,

∮

A
±

I

dp = 0 ,

∮

B
±

I

dp = 2πn±I , (21)

with I = 1, 2, . . . ,K/2. The integers n±I correspond to the mode numbers
of the string. In the following we will assign the mode numbers so as to
pick out the K lowest modes of the string which carry positive angular
momentum, including both left and right movers. This is accomplished by
setting n±I = ±I for I = 1, . . . ,K/2.
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To find the spectrum of classical string solutions we must first construct
the meromorphic differential dp with the specified pole behaviour (18). The
most general possible such differential has the form,

dp = dp1 + dp2 = −dx
y

[f(x) + g(x)] ,

f(x) =
K−2
∑

ℓ=0

Cℓ x
ℓ ,

g(x) =
πJ√
λ

[

y+

(x− 1)2
+

y−
(x+ 1)2

+
y′+

(x− 1)
− y′−

(x+ 1)

]

, (22)

with y± = y(±1) and

y′± =
dy

dx

∣

∣

∣

∣

x=±1

.

Here the second term dp2 is a particular differential with the required poles
and the first term dp1 is a general holomorphic differential on Σ. The result-
ing curve Σ and differential dp depend on 3K − 1 undetermined parameters

{b±, a(i)
± , Cℓ} with i = 1, . . . ,K − 1, ℓ = 0, 1, . . . ,K − 2. We then obtain 2K

constraints on these parameters from the normalisation equations (21), leav-
ing us with a K−1 dimensional moduli space of solutions [22]. As mentioned
above, a significant difficulty with this approach is that the normalisation
conditions are transcendental and cannot be solved in closed form.

A convenient parametrisation for the moduli space is given in terms of
the K filling fractions,

S±

I =
1

2πi

√
λ

4π

∮

A
±

I

(

x +
1

x

)

dp ,

with I = 1, . . . ,K/2, subject to the level matching constraint,

K/2
∑

I=1

n+
I S+

I + n−I S−

I = 0 .

Here the total AdS angular momentum is given as

S =

K/2
∑

I=1

S+
I + S−

I
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and is regarded as one of the moduli of the solution. The significance of the
filling fractions is that they constitute a set of normalised action variables for
the string9. They are canonically conjugate to angles ϕI ∈ [0, 2π] living on
the Jacobian torus J (Σ). Evolution of the string solution in both worldsheet
coordinates, σ and τ , corresponds to linear motion of these angles [23].

The constraints described above uniquely determine (Σ, dp) for given
values of S±

I , and one may then extract the string energy from the asymp-
totics (19,20) which imply,

∆ + S = −
√
λ

2π
CK−2 ,

∆− S = −
√
λ

2π

C0

y(0)
+

J

2y(0)

(

y+ + y− − y′+ − y′−
)

.

In this way, one obtains a set of transcendental equations which determine
the string energy as a function of the filling fractions,

∆ = ∆
[

S+
1 ,S−

1 , . . . ,S+
K/2,S

−

K/2

]

.

Finally the leading order semiclassical spectrum of the string is obtained by
imposing the Bohr–Sommerfeld conditions which impose the integrality of
the filling fractions [23,24]: S±

I ∈ Z, I = 1, 2, . . . ,K/2. For uniform validity

of the semi-classical approach we should focus on states where S±

I ∼
√
λ for

each I. Higher-loop corrections in the string σ-model are then suppressed
by powers of 1/

√
λ.

4. The large-S limit

In this section we will take an S → ∞ limit with fixed J for the generic
K-gap solution. The ’t Hooft coupling λ≫ 1 is also held fixed in the limit.
In the genus one (K = 2) case this limit has been studied in [7]. At the level

of the curve (17), the “outer” branch points a
(1)
± of the K = 2 curve scale

linearly with S approaching infinity in the large-S limit, while the inner
branch points b± approach the singular points of dp at x = ±1. For K > 2

we will take a similar limit where the 2K− 2 branch points a
(i)
± will all scale

linearly with the spin. To implement this we set,

a
(i)
± = ρã

(i)
±

9 The symplectic structure of the string was analysed in detail for the case of strings on
S3

× R in [23,24]. The resulting string σ-model was an SU(2) principal chiral model
(PCM). In the context of the finite gap construction one works with a complexified
Lax connection and results for the SU(2) and SL(2, R) PCMs differ only at the level
of reality conditions which do not affect the conclusion that the filling fractions are
the canonical action variables of the string.
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for i = 1, 2, . . . ,K − 1 and take the limit ρ → ∞ with ã
(i)
± held fixed. The

remaining branch points, b±, are treated as O(ρ0). Eventually we will see
that S ∼ ρ and also that we are forced to take b± → 1 as ρ → ∞ as in
the genus one case of [7]. A related limit of the K-gap solution was studied
in [15]. For convenience we will also set b+ = −b− = b ≥ 1 although the
same results are obtained without this condition.

Our main concern is to analyse the limiting behaviour of the equations
(17), (21), (22) which define the pair (Σ, dp). The limit has a convenient
description in terms of a degeneration of the spectral curve Σ. The relevant
degeneration is one where the closed cycle B̂ = B+

K/2 − B−

K/2 on Σ pinches

at two points as shown in Fig. 4. The result is that the curve Σ, which has
genus K − 1, factorises into two components,

Σ −→ Σ̃1 ∪ Σ̃2 , (23)

where Σ̃1 is a curve of genus K − 2 and Σ̃2 is a curve of genus zero. There
are two additional marked points on each component where the two curves
touch. The degeneration of the curve is determined by the condition that
the differential dp has a good limit as ρ → ∞. The main point is that,
as ρ → ∞ the normalisation conditions for the differential dp on Σ reduce
to conditions on two meromorphic differentials dp̃1 and dp̃2 defined on the
curves Σ̃1 and Σ̃2, respectively.

Σ

B̂

C

Σ̃1 Σ̃2

Fig. 4. The degeneration Σ → Σ̃1 ∪ Σ̃2. The four singular points ±1± are marked

with crosses on the curve.

Starting from the original spectral curve,

Σ : y2 = (x− b+) (x− b−)
K−1
∏

i=1

(

x− a
(i)
+

)(

x− a
(i)
−

)
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the curve Σ̃1 is obtained by “blowing-up” the region near x=∞. Thus we set

x = ρx̃ , y = ρK x̃ỹ1 (24)

holding x̃ and ỹ1 fixed as ρ→ ∞. Thus we obtain the curve,

Σ̃1 : ỹ2
1 =

K−1
∏

i=1

(

x̃− ã
(i)
+

)(

x̃− ã
(i)
−

)

.

This is a generic hyper-elliptic curve of genus K − 2. It can be repre-
sented as a double cover of the complex x̃-plane with K − 2 cuts, C̃±

I , with

I = 1, 2, . . . ,K/2 − 1, and C̃0 arranged as shown in Fig. 5. We introduce

a corresponding set of one-cycles, Ã±

I , Ã0 which encircle the cuts C̃±

I and

C̃0, respectively, as shown in Fig. 6. The conjugate cycles B̃±

I , B̃0 run from
the point at infinity on the top sheet to the point at infinity on the lower
sheet, passing through the corresponding cut as also shown in this figure.
The curve also has punctures at the two points 0± above x̃ = 0, which
correspond to the shrinking cycle10.

x̃

0 C̃0C̃−

1 C̃+
1

C̃−

K/2−1 C̃+
K/2−1

ã
(K−1)
− ã

(K−2)
−

ã
(K−2)
+ ã

(K−1)
+

ã
(1)
− ã

(1)
+

Fig. 5. The cut x̃-plane corresponding to the curve Σ̃1.

We now consider the ρ → ∞ limit of the differential dp = dp1 + dp2.
The first term in (22), denoted dp1, involves K − 1 arbitrary constants Cℓ,
ℓ = 0, . . . ,K − 2. Its limiting behaviour is,

dp1 → −dx̃
ỹ1

K−2
∑

ℓ=0

ρℓ+1−KCℓx̃
ℓ−1 .

We will choose to scale the undetermined coefficient Cℓ so as to retain K−1
free parameters in the resulting differential on Σ̃1. Thus we set Cℓ =
C̃ℓρ

K−ℓ−1 and hold C̃ℓ fixed. In this case dp1 has a finite limit as ρ → ∞
while dp2 → 0. The net result is,

dp = dp1 + dp2 → dp̃1 = −dx̃
ỹ1

K−2
∑

ℓ=0

C̃ℓx̃
ℓ−1 . (25)

10 More precisely the resulting meromorphic differential dp̃1 on Σ̃1 discussed below has
poles at these points.
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�
�
�
�

�
�
�

�
�
�

Ã
±

I (Ã0)

B̃
±

I (B̃0)

C̃±

I (C̃0)

∞
+

∞
−

Fig. 6. The cycles on Σ̃1. The index I runs from 1 to K/2 − 1.

This is a meormorphic differential on Σ̃1. It has simple poles at the punctures
0± above x̃ = 0 with residues ±C̃0/Q̃ and no other singularities on Σ̃1.

It is easy to check that all but one of the periods of dp on Σ go over to
corresponding periods of dp̃1 on Σ̃1. In particular we find,

lim
ρ→∞







∮

A
±

I

dp






=

∮

Ã
±

I

dp̃1 , lim
ρ→∞







∮

B
±

I

dp






=

∮

B̃
±

I

dp̃1 ,

for I = 1, 2, . . . ,K/2 − 1 and also,

lim
ρ→∞





∮

Ā

dp



 =

∮

Ã0

dp̃1 , lim
ρ→∞









∮

B
±

K/2

dp









= ±
∮

B̃0

dp̃1 ,

where Ā = Ã+
K/2 + Ã−

K/2. The above results are straightforwardly obtained

by making the change of variables (24) in each period integral and keeping
only the leading contribution as ρ→ ∞.

As shown in Fig. 4, the vanishing cycle B̂ = B+
K/2−B−

K/2 becomes a closed

contour C surrounding the marked point on the top sheet above x̃ = 0, so
we also have,

lim
ρ→∞





∮

Ā

dp



 =

∮

C

dp̃1 = 2πK . (26)

Comparing with (25), we see that this integral is equal to the residue of dp̃1

at the point 0+. Then Eq. (26) is solved by setting C̃0 = Q̃K.
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To summarise the above discussion the defining conditions for the dif-
ferential dp on Σ have reduced to a set of conditions for the meromorphic
differential dp̃1 on Σ̃1,

• dp̃1 has simple poles at the points O± above x̃ = 0 with residues ±K/i,
and no other singularities on Σ̃. Thus,

dp̃1 −→ ±K
i

dx̃

x̃
, as x̃→ 0 ,

• dp̃1 obeys the normalisation conditions,

∮

Ã
±

I

dp̃1 = 0 ,

∮

B̃
±

I

dp̃1 = ±2πI , (27)

for I = 1, 2, . . . ,K/2 − 1 and,

∮

Ã0

dp̃1 = 0 ,

∮

B̃0

dp̃1 = πK . (28)

The second component in (23), the curve Σ̃2, arises from blowing up the
region around the points 0± above x = 0. We scale the coordinates as,

y = Q̃ρK−1ỹ2 with Q̃2 =

K−1
∏

i=1

ã
(i)
+ ã

(i)
− (29)

and take the limit ρ→ ∞ with x and ỹ2 held fixed to get the curve,

Σ̃2 : ỹ2
2 = x2 − b2 ,

which has genus zero. This curve contains the original four singular points
±1± and also has two new punctures at the points ∞± corresponding to the
vanishing cycles.

The differential dp2 on Σ gives rise to the following meromorphic differ-
ential on Σ̃2 with double poles at the points over x = ±1;

dp̃2 = − iπJ√
λ

[

√

b2 − 1

(

1

(x− 1)2
+

1

(x+ 1)2

)

− 1√
b2 − 1

(

1

(x− 1)
− 1

(x+ 1)

)

]

dx

ỹ2
. (30)
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The surface Σ̃2 enters when considering the limit of the final period con-
dition corresponding to the cycle Â = A+

K/2. The analysis of this condition

is presented in the Appendix. In particular we find the following limit for
this equation,

lim
ρ→∞







∮

Â

dp






=

∫

Â
reg
1

dp̃1 +

∫

Â2

dp̃2 = 0 , (31)

where Âreg
1 and Â2 are suitably regulated “chains” (i.e. open contours) on

Σ̃1 and Σ̃2 as shown in Fig. 7. More precisely, we define,

∫

Â
reg
1

dp̃1 =

ǫ+
∫

ǫ−

dp̃1 ,

∫

Â2

dp̃2 = −
∞+
∫

∞−

dp̃2 ,

where ǫ = b/ρ and ǫ± are the two points above x̃ = ǫ on Σ̃1 and ∞± are the

two points above x = ∞ on Σ̃2.

Σ

A
+
K/2

Σ̃1 Σ̃2

Â1

Â2

Fig. 7. The “extra” cycle A+

K/2
becomes the sum of the chains Â1 and Â2.

Finally in the ρ→ ∞ limit, the conserved charges have the behaviour,

∆+ S ≃
√
λ

2π
ρ → ∞ ,

∆− S ≃
√
λ

2π

K

b
+
J

b

(

√

b2 − 1 +
1√
b2 − 1

)

, (32)

up to corrections which vanish as ρ→ ∞.



3100 N. Dorey

5. The solution

To solve for the spectrum in the large-S limit we need to determine the
pair (Σ̃1, dp̃1) and then solve the matching condition (31). The first task
is similar in nature to the original problem of finding dp, in that we must
solve the normalisation conditions for the meromorphic differential dp̃1 on
a generic hyperelliptic curve Σ̃1. There is however, an important difference:
while the original differential dp had double poles at four points on Σ, the
new differential dp̃1 has only simple poles with integral residues,

dp̃1 −→ ±K
i

dx̃

x̃
as x̃→ 0 , (33)

and no other singularities. The resulting problem of reconstructing (Σ̃1, dp̃1)
is then a standard one which arises for example in the study of the F-terms
of N = 2 SUSY gauge theories [31]11. We now describe its solution.

Integrating (33) we find that,

p̃1(x̃) −→ ±K
i

log x̃ , as x̃→ 0 ,

and thus we have,

exp (±ip̃1(x̃)) −→ (x̃)±K , as x̃→ 0 . (34)

Now consider the function,

f(x̃) = 2 cos p̃1(x̃) = exp (+ip̃1(x̃)) + exp (−ip̃1(x̃)) .

As the periods of dp̃1 are normalised in integer units f is analytic on the
complex x̃ plane. According to Eq. (34) it has a pole of order K at x̃ = 0
and no other singularities. Its behaviour at infinity is inherited from that of
p(x);

p̃1(x̃) → 0 , as x̃→ ∞
and thus f → 2 as x̃→ ∞. The most general analytic function obeying these
conditions can be parametrised in terms of K − 1 undetermined coefficients
q̃j, with j = 2, . . . ,K, as,

f(x̃) = P

(

1

x̃

)

= 2 +
q̃2
x̃2

+
q̃3
x̃3

+ . . .+
q̃K
x̃K

. (35)

Thus we have an explicit solution for p̃1(x̃) = cos−1(f/2) which yields
a meromorphic differential,

dp̃1 = −i dx̃
x̃2

P
′
K

(

1
x̃

)

√

PK

(

1
x̃

)2 − 4
. (36)

11 See in particular subsection 3.3 of this reference.
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One may easily check that this differential satisfies the normalisation condi-
tions (27), (28) and has poles with the required residues at the points over
x̃ = 0. The differential dp̃1 is meromorphic on the curve,

Σ̃1 : ỹ2
1 =

K−1
∏

i=1

(

x̃− ã
(i)
+

)(

x̃− ã
(i)
−

)

=
x̃2K

4q̃2

[

PK

(

1

x̃

)2

− 4

]

,

and we can rewrite (36) as,

dp̃1 = −dx̃
ỹ1

K−2
∑

ℓ=0

C̃ℓ x̃
ℓ−1 , with C̃ℓ = −(K − ℓ)q̃K−ℓ

2
√−q̃2

.

Thus we have expressed the 2K−2 parameters corresponding to the branch-

points ã
(i)
± of the curve Σ̃1 and the K − 1 parameters corresponding to the

undetermined coefficients C̃ℓ in the differential dp̃1 in terms K − 1 param-
eters q̃j, j = 2, . . . ,K. At this point we observe that the curve Σ̃1 and
differential dp̃1 are essentially identical to the curve ΓK and differential dp̂
of the SL(2,R) spin chain.

The matching condition,

p̃1(x̃ = ǫ) = −1

2

∞+
∫

∞−

dp̃2 ,

with ǫ = b/ρ can now be evaluated explicitly in terms of the closed formulae
(36), (30) for the differentials dp̃1 and dp̃2. It yields,

1

i
log

(

ρK q̃K
b

)

=
2πiJ√
λ

1√
b2 − 1

,

or equivalently,
√

b2 − 1 =
2πJ√
λ

× 1

K log
(

ρq̃
1/K
K

) . (37)

Thus b → 1 and the inner branch points approach the punctures at the
points x = ±1 as the scaling parameter ρ goes to infinity.

Finally, we can evaluate the conserved charges in the limit ρ→ ∞,

∆+ S =

√
λ

2π

√

−q̃2ρ → ∞ ,

∆− S =

√
λ

2π
K +

J√
b2 − 1

. (38)
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These relations confirm that S → ∞ as ρ → ∞ as anticipated. Using (37)
we obtain,

ρ ≃ 4π√
λ

S√−q̃2
. (39)

Eliminating ρ from (38) then gives,

∆− S =

√
λ

2π

[

K log S + log(q̃K/
√

−q̃2)
]

+O(1/ log S) . (40)

In classical string theory the parameters q̃i are continuous variables. To
complete the solution of the model we must also consider the semiclassical
quantisation conditions [23, 24]. As mentioned above, semiclassical quanti-
zation of string theory on AdS3×S1 is accomplished by quantizing the filling
fractions in integer units,

S±

I = − 1

2πi

√
λ

4π

∮

A
±

I

(

x+
1

x

)

dp = l±I ∈ Z
+ (41)

for I = 1, 2, . . . ,K/2. The integers l±I obey,

K/2
∑

I=1

(

l+I + l−I
)

= S ,

K/2
∑

I=1

I
(

l+I − l−I
)

= 0 . (42)

We now consider the limiting form of these conditions in the scaling
limit ρ→ ∞. This is easily implemented by setting x = ρx̃ in the integrals
appearing on the LHS of (41) holding x̃ fixed in the limit. In this case the
periods of the differential (x + 1/x)dp on Σ go over to periods of x̃dp̃1 on

Σ̃1 as ρ→ ∞. In particular we find,

− 1

2πi

1√−q̃2

∮

Ã
±

I

x̃ dp̃1 =
l±I
S

(43)

for I = 1, 2, . . . ,K/2 − 1 and,

− 1

2πi

1√−q̃2

∮

Ã0

x̃ dp̃1 =
l̄

S
, (44)

with l̄ = l+K/2 + l−K/2.
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The quantization conditions (43), (44) lead to a discrete spectrum labeled
by the K − 1 integers l±I and l̄,

γ
[

l+1 , l
−

1 , . . . , l
+
K/2−1, l

−

K/2−1, l̄
]

≃
√
λ

2π

[

K log S + log

(

q̃K

(−q̃2)
K
2

)

+C +O

(

1

log S

)

]

. (45)

Finally, one may check that the spectrum defined by equations (43)–(45) is
identical to the result (6) given in the Introduction with the identifications,

q̂j =
q̃j

(−q̃2)
K
2

for j = 2, . . . ,K, HK = log q̂K and,

lj = l+j , j = 1, . . . ,K/2 − 1 ,

= l̄ , j = K/2 ,

= l−K−j , j = K/2 + 1, . . . ,K − 1 .

In particular the conditions (42) ensure that the integers lj obey the cor-
responding relations (13). Thus we see that the spectra of one-loop gauge
theory and string theory differ only in the overall λ dependent prefactor
which takes the value

√
λ/2π in semiclassical string theory and λ/4π2 in

one-loop gauge theory.
Finally, one feature of the gauge theory results which remains unclear

on the string side is the bound K ≤ J . In fact the large-S string spectrum
derived above does not depend on J at all. Despite this, our semiclassical
analysis formally requires J ∼

√
λ≫ 1. Thus the upper bound is, therefore,

reached for solutions with K spikes only when K ∼
√
λ ≫ 1. It is unclear

whether higher-loop worldsheet corrections remain suppressed whenK scales
with λ in this way and it may therefore require a more sophisticated analysis
than the one presented above to detect the presence of an upper bound on
K in string theory.

6. Interpretation

In the minimal case K = 2, the finite gap solution (with symmetric cuts)
considered above reduces to the folded GKP string. Logarithmic scaling in
S with prefactor 2

√
λ/2π arises when the two folding points of the string

approach the boundary of AdS3. Following [19], it is natural to expect that
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log S scaling with prefactor K
√
λ/2π corresponds to strings with K spikes12

which approach the boundary as S → ∞. Solutions with ZK symmetry,
where the spikes lie at the vertices of a regular polygon were constructed
in [19]. Based on the scaling limit of the finite gap construction considered
above, we expect to find (K−2)-parameter families of spikey solutions in this
limit. More precisely there should be K−2 parameters corresponding to the
conserved action variables for solutions with fixed S and an additional K−2
corresponding to the initial values of the conjugate angle variables. Solutions
are also labelled by an orientation angle ψ0 canonically conjugate to S. The
generic solution need not have the symmetric form considered in [19], but
rather should have variable angular separations between the spikes as shown
in Fig. 8. The details of this picture will be presented elsewhere and will not
be needed for the following arguments.

Fig. 8. A spinning string in AdS3 with spikes approaching the boundary.

To analyse the S → ∞ limit it will be convenient to use the representa-
tion of AdS3 as the group manifold SU(1,1) with complex coordinates, Z1,
Z2 obeying |Z1|2 − |Z2|2 = 1. The complex coordinates are related to the
standard global coordinates (t, ρ, ψ) on AdS3 by,

Z1 = cosh ρ exp(it) , Z2 = sinh ρ exp(iψ) .

We introduce the group-valued worldsheet field,

g(σ, τ) =

(

Z1 Z2

Z̄2 Z̄1

)

in SU(1, 1)

and the conserved current corresponding to right multiplication in the group,

j±(σ, τ) = g−1 ∂±g =
1

2
ηABj

AsB .

12 In the S → ∞ limit with fixed J , the motion on S1 can be neglected so that the
string effectively move in the two spatial dimensions of AdS3 as do the solutions
of [19]. More generally, motion in the extra S1 will tend to smooth out the spikes.
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Here sA, with A = 0, 1, 2 are generators satisfying,

[sA, sB] = −2εABCsC

and,

ηAB =
1

2
Tr2

[

sAsB
]

,

where η = diag(−1, 1, 1) is the Killing form of the Lie algebra su(1,1) which
is used to raise and lower indices with the usual summation convention. For
a generic Lie algebra valued quantity,

X =
1

2
ηABX

AsB

we will sometimes use vector notation ~X = (X0,X1,X2). In the following
we will use the explicit choice (s0, s1, s2) = (−iσ3, σ1,−σ2) where σi are the
usual Pauli matrices.

The Noether charge corresponding to right multiplication is,

QR =
1

2
ηABQ

A
Rs

B =

√
λ

4π

2π
∫

0

dσ jτ ∈ su(1, 1) .

The corresponding Cartan generator is,

Q0
R = ∆+ S =

√
λ

4π

2π
∫

0

dσ j0τ . (46)

We will focus on states of highest weight for which Q1
R = Q2

R = 0.
At fixed worldsheet time, we will assume that our solution has K spikes

at the points σ = σj ∈ [0, 2π] with j = 1, . . . ,K. At these points the
σ-derivatives of all world-sheet fields vanish and thus,

j±(σ = σj, τ) = jτ (σ = σj, τ)

for all j. To understand the behaviour of the charge density near the spikes,
we consider the simplest two-spike solution: the GKP folded string [4]. This
describes a folded string rotating around its midpoint in AdS3. In global
coordinates it has the form t = τ̃ , ψ = ψ0 +ωτ̃ (with ω ≥ 1) and ρ = ρ(σ) =

am[iσ̃|
√

1 − ω2] where,

σ̃ =
L

2π
σ , τ̃ =

L

2π
τ with L =

4

ω
K

(

1

ω

)

.
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This is a two-parameter family of solutions labelled by ω (which determines
S) and ψ0. The spikes are located at the points σ = σ1 = π/2 and σ = σ2 =
3π/2. One may obtain the following explicit form for the conserved current,

j0τ (σ, τ) =
L

π

[

1 + 1
ω sn2

(

ωσ̃
∣

∣

1
ω

)]

dn2 (ωσ̃
∣

∣

1
ω

) ,

j1τ (σ, τ) + i j2τ (σ, τ) = i
L

π

ω + 1

ω
exp (iψ0 + i(ω − 1)τ̃ )

sn (ωσ̃
∣

∣

1
ω

)

dn2 (ωσ̃
∣

∣

1
ω

) . (47)

Conventions for elliptic integrals and functions are as in [32].
The two spikes approach the boundary in the limit ω → 1. In this limit

the conserved charges of the solution scale as,

S ≃
√
λ

π

1

ω − 1
+. . . , ∆−S ≃

√
λ

π
log

1

ω − 1
+. . . ≃

√
λ

π
log S+. . . .

Thus the limit ω → 1 implies S → ∞. By inspection the current j0τ (σ, τ),
which is the density of the conserved charge ∆+S ≃ 2S, diverges as S → ∞.
We define a normalised charge density,

µA(σ, τ) = lim
S→∞

[ √
λ

8πS
jAτ (σ, τ)

]

,

which remains finite and obeys,

2π
∫

0

dσ~µ(σ, τ) =





1
0
0



 ,

for highest-weight states.
Expanding around the spike point σ1 we set, σ = σ1 + σ̂ with σ̂ ≪ 1 we

find,

µ0(σ, τ) ≃ lim
κ→0

[

1

2πκ
sech2

(

2σ̂

κπ

)]

=
1

2
δ(σ̂) (48)

and

µ1(σ, τ) + i µ2(σ, τ) ≃ lim
κ→0

[

−e
iψ0

2πκ
sech2

(

2σ̂

κπ

)]

= −e
iψ0

2
δ(σ̂) (49)
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with κ−1 = log(1/
√
ω − 1). Here we have used the standard definition of

the Dirac δ-function,

δ(x) = lim
ε→0

[

1

2ε
sech2

(x

ε

)

]

.

The κ→ 0 limit leading to (48), (49) focuses on the region of the string
near the first spike. The full charge density is obtained by including a similar
contribution from the second spike at σ = σ2,

µ0(σ, τ) =
1

2
δ(σ − σ1) +

1

2
δ(σ − σ2) ,

µ1(σ, τ) + i µ2(σ, τ) = i
eiψ0

2
δ(σ − σ1) − i

eiψ0

2
δ(σ − σ2) .

Equivalently we can write the large-S limit of the current as,

lim
S→∞

[

jAτ (σ, τ)
]

=
8π√
λ

2
∑

k=1

LAk δ (σ − σk) , (50)

with

~L1 =
S

2





1
− sinψ0

cosψ0



 , ~L2 =
S

2





1
sinψ0

cosψ0



 . (51)

One can easily check that the highest weight conditions Q1
R = Q2

R = 0 and
the normalisation condition (46) are satisfied.

The key feature of the above result is that the charge density jτ becomes
δ-function localised at the spikes in the limit they approach the boundary.
We do not have much explicit information about solutions for K > 2 ex-
cept in the ZK symmetric case considered in [19]. Recently the symmetric
solution of [19] has been analysed [33] (see also [34]) in the same conformal
gauge as we have just used to describe the GKP string. The behaviour in
the vicinity of each spike is similar to that at the folds of the GKP string
and in particular δ-function localisation of the charge density will occur at
each spike as it approaches the boundary. We will assume that the same is
true for generic solutions with K spikes and thus we propose the obvious
generalisation of (50),

lim
S→∞

[

jAτ (σ, τ)
]

=
8π√
λ

K
∑

k=1

LAk δ (σ − σj) , (52)
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where LAk are undetermined functions of the worldsheet time. The above
expression is also subject to the Virasoro constraint which implies that,

lim
σ→σk

[

1

2
Tr2[j

2
±(σ, τ)]

]

= lim
σ→σk

[

1

2
Tr2[j

2
τ (σ, τ)]

]

=
J2

√
λ
, (53)

where we have used the fact that the space-like component of the current
vanishes at the spike. The above constraint can only be obeyed in (52) if,

ηABL
A
k L

B
k = 0 (54)

for each value of k. Evaluating the total charge by integrating over the
string, the highest-weight condition becomes,

K
∑

k=1

~Lk =





S
0
0



 . (55)

As a check, for K = 2 we can solve the conditions (54), (55) and recover
(51) as the general solution. In the general case there are 2K − 2 remaining
free parameters (including S), as expected from the finite gap construction.

We will now treat the unknown quantities LAk as dynamical variables. We
choose a cyclic ordering for the K spikes; 0 < σ1 < σ2 < . . . < σK < 2π and
introduce K arbitrary points on the string µk ∈ (0, 2π) with, µk < σk < µk+1

for j = 1, . . . ,K with the convention that µK+1 = µ1. We can then write,

LAk = lim
S→∞





√
λ

8π

µk+1
∫

µk

dσ jAτ (σ, τ)



 . (56)

In the Hamiltonian formalism for the Principal Chiral Model, the
τ -component of the Noether current has Poisson brackets,

{jAτ (σ, τ), jBτ (σ′, τ)} = − 4π√
λ

2εABCjτ C(σ.τ) δ(σ − σ′) . (57)

Substituting (56) for jAτ in (57) we obtain the brackets,

{LAj , LBk } = −εABCδjkLC k (58)

for the variables LAk . These steps certainly involve dynamical assumptions
and it remains to be shown that the LAk are not subject to additional con-
straints. Another question is whether we should also include dynamics for
the locations, σj, of the spikes. These issues could be addressed by recon-
structing actual string solutions as in [23, 24] and then taking the large-S
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limit. For the moment we will rely on the consistent outcome of this analysis
to provide some retrospective justification for the assumptions made.

Now we are ready to consider the scaling limit of the monodromy matrix,

Ω [x; τ ] = P exp





1

2

2π
∫

0

dσ

(

j+
x− 1

+
j−
x+ 1

)



 .

As above we have jA± ∼ S and we also scale the spectral parameter as x ∼ S
as S → ∞. The monodromy matrix becomes,

Ω [x; τ ] ≃ P exp





1

x

2π
∫

0

dσjτ



 .

Using the limit form (52) for jτ (σ, τ) we obtain,

Ω [x; τ ] ≃
K
∏

k=1

exp

[

4π√
λ

1

x
ηABL

A
k s

B

]

=
1

uK

K
∏

k=1

Lk(u) , (59)

where we set u =
√
λx/4π and identify,

Lk(u) =
[

uI + ηABL
A
k s

B
]

=

(

u+ iL0
k L1

k + iL2
k

L1
k − iL2

k u− iL0
k

)

,

where we have used the explicit choice form of the generators given above.
Notice that the last equality in (59) is exact because the Taylor expansion
of the exponential truncates after two terms by virtue of the relation (54).
Finally, the above expression for Ω coincides (up to an irrelevant overall
factor) with the monodromy (10) of the classical SL(2,R) spin chain if we
identify L0

k = L0
k and iL±

k = L1
k ± iL2

k as the classical spin at the k-th
site. With this identification we also reproduce the Poisson brackets (4),
quadratic Casimir condition (5) and highest-weight condition (9) of the spin
chain.

The above analysis indicates that the motion of the spikes is governed by
the same finite-dimensional complex integrable system as the gauge theory
spins. In particular the evolution of the spikes in globalAdS time should be
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generated by the Hamiltonian HK =log qK . It is not quite clear if the rele-
vant trajectories are literally the same as the depends also on reality condi-
tions for the initial data. It would be interesting to investigate this further
and construct some explicit trajectories of the spikes using the methods
of [35].

7. Conclusion

In this paper we have argued that the dynamics of the K gap solution
of classical string theory on AdS3 × S1 is effectively described by a classical
spin chain of length K in the limit of large angular momentum, S → ∞.
Thus the continuous string effectively gives rise a finite-dimensional lattice
system in the large-S limit. This is the opposite of the usual situation
where a continuous system arises as the thermodynamic or continuum limit
of a discrete one.

Building on the ideas of [19], we have argued that this new phenomenon
can be understood in terms of the localisation of the worldsheet fields at K
special points or spikes. Another point of view is provided by the degener-
ation of the spectral curve shown in Fig. 4. The moduli of the degenerate
curve Σ̃1 correspond to the the K lowest modes of the string13. The re-
maining modes of the string correspond to the double points mentioned in
Section 3 where the quasi-momentum p(x) attains a value nπ for some n ∈ Z.
On the initial curve Σ these double points accumulate at the four singular
points ±1±. In the limit S → ∞, the singular points and all the double
points end up on the genus zero curve Σ̃2. This has a simple interpreta-
tion: the lowest K modes of the string effectively decouple from the infinite
tower of higher modes as S → ∞ and become an isolated finite dimensional
system.

Another mysterious aspect of the results presented above is the precise
matching between one-loop gauge theory and semiclassical string theory
up to a single universal function of the ’t Hooft coupling. The decoupling
described in the previous paragraph throws some light on this. Consider
the one-loop correction to the semiclassical large-S spectrum in the string
σ-model. This is calculated by summing the small fluctuation frequencies for
all the worlsheet fields (including fluctuations of all the AdS5×S5 worldsheet
fields). These frequencies are in turn determined by evaluating a particu-
lar abelian integral q(x) (the quasi-energy) at each of the double points
mentioned above [36]. Because of the factorisation of Σ into two disjoint

components Σ̃1 and Σ̃2, it is easy to see that the frequencies which only
depend on data determined by Σ̃2 are independent of the moduli of Σ̃1.

13 As mentioned above we are exciting only modes of the string which carry positive
angular momentum S.
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Similar considerations should also apply to the fluctuations of the string
outside AdS3 × S1. It follows that the one-loop correction will be the same
for all states in the spectrum (6). The agreement we have found suggests
that this argument might extend to all σ-model loops.

It would also be interesting to understand these results in more detail
from the point of view of the planar N = 4 theory. Spikes near the boundary
are dual to localised excitations on S3 with the same quantum numbers as
an elementary gluon (or other adjoint field). It would be interesting to inves-
tigate possible connections with the gluon scattering amplitudes discussed
in [37]. Finally we note that one-loop, large-spin operator spectrum (3) is
essentially universal to all planar four-dimensional gauge theories. This sug-
gests that the limit of semiclassical string theory studied in this paper may
have applications to large-N QCD.
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minor errors in the final section. The author acknowledges the hospitality
of the GGI, Florence where some of this work was completed and also of the
XLVIII Cracow School of Theoretical Physics in Zakopane where this work
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Appendix A

Matching condition

On the original spectral curve

Σ : y2 = (x− b) (x+ b)

K−1
∏

i=1

(

x− a
(i)
+

)(

x− a
(i)
−

)

,

the extra A-cycle condition can be written as,
∮

A
+
K/2

dp = 2I1 + 2I2 = 0 , (A.1)

where, I1 =

a
(1)
+
∫

b

dp1 , I2 =

a
(1)
+
∫

b

dp2 ,

with the explict expressions for dp1 and dp2 given in Eq. (22).
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The first integral can be treated using the change of variables x = ρx̃
which gives,

y2 = ρ2K

(

x̃2 − b2

ρ2

)

ỹ2
1 ,

where ỹ1 is the hyperelliptic coordinate on the curve Σ̃1,

Σ̃1 : ỹ2
1 =

K−1
∏

i=1

(

x̃− ã
(i)
+

)(

x̃− ã
(i)
−

)

.

Then we have,

I1 = −
ã
(1)
+
∫

ǫ

(

∑K−2
ℓ=0 C̃ℓ x̃

ℓ
)

ỹ1

dx̃√
x̃2 − ǫ2

,

where ǫ = b/ρ. We need to find the leading behaviour of this integral as
ǫ→ 0. For this purpose it is convenient to write,

I1 =
1

ǫ

∂

∂ǫ
Î(ǫ) , where Î(ǫ) =

ã
(1)
+
∫

ǫ

√

x̃2 − ǫ2

(

∑K−2
ℓ=0 C̃ℓ x̃

ℓ
)

ỹ1
dx̃ ,

and expand the square root in the integrand in powers of ǫ2.

Î(ǫ) =
∞
∑

k=0

ǫ2k Îk(ǫ) ,

with,

Îk(ǫ) = (−1)k
(

1
2
k

)

ã
(1)
+
∫

ǫ

x̃1−2k
(

∑K−2
ℓ=0 C̃ℓ x̃

ℓ
)

ỹ1
dx̃ .

Each term Îk(ǫ), with k 6= 1, is analytic in ǫ the leading contribution as ǫ→ 0

is proportional to C̃0/Q̃ = K (Q̃ is defined in Eq. (29) above). As a result
each of these terms only gives rise to a moduli independent constant in the
ǫ→ 0 limit. The leading moduli-dependence comes from the remaining term
Î1(ǫ) which is non-analytic at ǫ = 0. The resulting contribution to I1 is,

I1 ≃ 1

ǫ

∂

∂ǫ
ǫ2 Î1(ǫ) ≃ −

ã
(1)
+
∫

ǫ

(

∑K−2
ℓ=0 C̃ℓ x̃

ℓ−1
)

ỹ1
dx̃ .
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The remaining integral can be then expressed as a contour integral on the
curve Σ̃1,

I1 ≃ 1

2

ǫ+
∫

ǫ−

dp̃1 = p̃1(x̃ = ǫ) , (A.2)

with ǫ = b/ρ, where ǫ± are the points above x̃ on Σ̃1. Using the explicit
formula p̃1(x̃) = cos−1(f/2) with f given as given in Eq. (35),

I1 ≃ 1

i
log

(

q̂Kρ
K

bK

)

+ . . . ,

where the dots denote subleading terms.
The second integral I2, in the period condition (A.A.1) has limiting be-

havior,

I2 =

∞
∫

b

dp̃2 = − iπJ√
λ

×
∞
∫

b

[

√

b2−1

(

1

(x−1)2
+

1

(x+1)2

)

− 1√
b2−1

(

1

(x−1)
− 1

(x+1)

)]

dx

ỹ2

with,

ỹ2
2 = x2 − b2 .

Anticipating the fact that b→ 1 as ρ→ 0, the leading piece is,

I2 ≃ 2πJi√
λ

1√
b2 − 1

+ . . . ,

where the dots denote subleading terms.
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