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We summarise the status of an intriguing new duality between planar
maximally helicity violating scattering amplitudes and light-like Wilson
loops in N = 4 super Yang–Mills. In particular, we focus on the role
played by (dual) conformal symmetry, which is made predictive by deriv-
ing anomalous conformal Ward identities for the Wilson loops. Assuming
the duality, the conformal symmetry of the dual Wilson loops becomes an
unexpected new symmetry of scattering amplitudes in N = 4 SYM.
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1. Introduction

We will discuss planar maximally helicity violating (MHV) scattering
amplitudes in the maximally supersymmetric Yang–Mills theory in four di-
mensions, N = 4 SYM. There are many reasons for being interested in
scattering amplitudes in N = 4 SYM, ranging from practical applications
like the computation of similar amplitudes in QCD to more theoretical mo-
tivations.

One motivation comes from the fact that from the infrared divergent
part of scattering amplitudes one can compute the cusp anomalous dimen-
sion Γcusp [1–3]. The latter has received considerable attention over the last
years in the study of the AdS/CFT correspondence. Its value is predicted
(in principle at any given order) from conjectured integrable models that de-
scribe the spectrum of anomalous dimensions in N = 4 SYM [4]. Therefore,
knowing Γcusp to high orders in perturbation theory is important to test and
fine-tune these models. The three- and four-loop values of Γcusp were indeed
determined from four-gluon scattering amplitudes [5–7].
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However, the scattering amplitudes themselves also reveal interesting
properties, on which I will focus in this paper. An iterative structure for
(planar) MHV scattering amplitudes in N = 4 SYM was uncovered by
Anastasiou, Bern, Dixon and Kosower (ABDK) [8] and generalised to higher
loops by Bern, Dixon and Smirnov (BDS) [5]. In particular, it turns out that
the finite part of the scattering amplitudes seems to be much simpler than
could be expected on general grounds.

We will argue that a possible explanation for this surprising simplicity is
a new symmetry of scattering amplitudes, dual conformal symmetry. This is
closely related to a conjectured duality between Wilson loops and scattering
amplitudes, which will be presented here.

2. Gluon scattering amplitudes in N = 4 SYM

2.1. Perturbative results and BDS conjecture

In order to state what the BDS conjecture implies it is useful to split
a general planar n-point colour-ordered MHV amplitude An into an infrared

divergent part Dn IR and a finite part F
(MHV)
n

ln An/Atree
n = Dn IR + F (MHV)

n (a, pi · pj) + O(εIR) . (1)

Here Dn IR contains poles in the infrared regulator εIR, and as was mentioned
in the introduction, it can be used to compute Γcusp. The ’t Hooft coupling
a is related to the Yang–Mills coupling g by a = g2N/(8π2), and pµ

i are
the n light-like momenta of the scattering process. The structure of the IR
divergent part is well-understood in gauge theory, see for example [9] and
references therein. The BDS conjecture can be formulated as a statement
about the finite part,

F (MHV)
n = F (BDS)

n ,

F (BDS)
n (a, pi · pj) = 1

2Γcusp(a)F
(MHV)
n;1 (pi · pj) . (2)

Note that the only coupling dependence on the r.h.s. of the second line of (2)
enters through the cusp anomalous dimension Γcusp(a). According to (2),

the functional dependence of F (MHV) is coupling independent, and can,
therefore, be determined for example by a one-loop computation1. For ex-

ample, the explicit functional form of F
(BDS)
n for n = 4 is

F
(BDS)
4 (a, pi · pj) =

1

4
Γcusp(a)

[

ln2 s

t
+ const.

]

, (3)

F
(BDS)
5 (a, pi · pj) =

1

4
Γcusp(a)

[

5
∑

i=1

ln
si,i+1

si+1,i+2
ln

si+2,i+3

si+3,i+4
+ const.

]

. (4)

1
F

(MHV)
n;1 stands for the one-loop contribution to F

(MHV)
n .



Duality Between Wilson Loops and Scattering Amplitudes 3119

Here s = (p1 + p2)
2 and t = (p2 + p3)

2 are the usual Mandelstam variables,
and similarly si,i+1 = (pi + pi+1)

2 are the kinematical invariants appearing
in a five-particle scattering process. The conjecture (2) has been confirmed
up to three loops for n = 4 and two loops for n = 5 gluons. It seems

very surprising that the functional form of F
(MHV)
n should be so simple,

i.e. that the loop corrections to F
(MHV)
n should take the simple form (2).

If the conjecture is true, one might expect some symmetry to be responsible
for this unexpected simplicity. We will see hints for such a symmetry by

inspecting the integrals entering the loop corrections to F
(MHV)
4 .

2.2. Hints for a new symmetry

Let us consider the one-loop corrections to F
(MHV)
4 . They are given by

the following one-loop scalar box integral,

I(1) =

∫

dDk

k2(k − p1)2(k − p1 − p2)2(k + p4)2
. (5)

In order to discover the new symmetry [10, 11], one has to change variables
to a dual coordinate space by

p1 =x1−x2≡x12 , p2 =x23 , p3 =x34 , p4 =x41 , k=x15 , (6)

such that (5) becomes

I(1) =

∫

dDx5

x2
15x

2
25x

2
35x

2
45

. (7)

For D = 4 dimensions, I(1) in (7) is an integral familiar from the study of
conformal correlation functions. Indeed, it can be easily seen to be covariant
under conformal transformations in the dual coordinate space: since trans-
lation and rotation symmetry are manifest, one only has to check covariance
under dual conformal inversions,

xµ
i → xµ

i /x2
i , x2

ij →
x2

ij

x2
i x

2
j

, dDx5 → dDx5(x
2
5)

−D . (8)

Importantly, for D = 4 the conformal weight at the integration point x5

is exactly canceled between integration measure and the four “propagators”
connecting to the integration point. Of course, we cannot set D = 4. The
reason is that for on-shell momenta the distances xµ

i,i+1 are light-like, i.e.

x2
i,i+1 = 0, and this makes the integral I(1) infrared divergent in four di-

mensions. From what was said before it is clear that if the momenta were
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off-shell, i.e. x2
i,i+1 6= 0, then I(1) would have an exact dual conformal sym-

metry in four dimensions. We take this observation as a hint that there
should be an underlying dual conformal symmetry, which is broken by in-
frared divergences. This expectation is further supported by the fact that
the integrals corresponding to the higher loop corrections to the four-gluon
amplitude also have this property, at least up to four [6] and perhaps even
to five loops [12].

The dual conformal symmetry will become much more transparent and
we will be able to make it more predictive within a new conjectured duality
between scattering amplitudes and Wilson loops, which will be described
presently. As we will see, the Wilson loops naturally have a (broken) dual
conformal symmetry. The latter implies (anomalous) dual conformal Ward
identities for the Wilson loops, which can be used to make predictions for
the scattering amplitudes.

3. Duality between Wilson loops and scattering amplitudes

A very interesting recent development in the AdS/CFT correspondence
was an AdS prescription for computing gluon scattering amplitudes at strong
coupling [13]. It is presented in much more detail in Alday’s lectures given at
this school. Interestingly, the AdS prescription of [13] suggests that a gluon
scattering amplitude at strong coupling is equivalent to the expectation value
of a particular Wilson loop. In the field theory, the relevant Wilson loop
W (Cn) was first studied in this context in [14], and it is defined by

W (Cn) =
1

N

〈

0

∣

∣

∣

∣

Tr P exp

(

ig

∮

Cn

dxµAµ

)
∣

∣

∣

∣

0

〉

. (9)

The gauge field Aµ is integrated along a closed contour Cn, which is de-
picted in Fig. 1. It is a polygon whose corners are coordinates xµ

i in a dual
coordinate space related to the gluon momenta by2

xµ
i − xµ

i+1 := pµ
i . (10)

Interestingly, this is precisely the relation between gluon momenta and dual
coordinates used to study the dual conformal properties of the scalar inte-
grals in the previous section.

The general structure of the Wilson loops is very similar to that of the
scattering amplitudes, cf. equation (1)

ln W (Cn) = Dn UV + F (WL)
n (a, x2

ij) + O(εUV) . (11)

2 Here and in the following xi+n ≡ xi is tacitly implied for the n-cusp Wilson loop.
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Fig. 1. The integration contour Cn of the Wilson loop W (Cn) dual to the n-gluon

scattering amplitude. The pµ
i are the light-like momenta of the scattering process,

related to the dual coordiantes xµ
i by xµ

i − xµ
i+1

= pµ
i .

Here Dn UV contains ultraviolet poles associated with the cusps of the Wilson
loop (for more details see [15] and references therein). According to the
conjectured duality,

F (MHV)
n = F (WL)

n + const. + O(1/N) , (12)

to all orders in the coupling constant a. More precisely, the duality relation
(12) states that, upon identification of the gluon momenta with the dual co-
ordiantes according to (10), the finite part of the MHV scattering amplitude
should coincide with the finite part of the Wilson loop, up to a constant and
up to non-planar corrections.

3.1. Tests of the duality

It was shown in [14] that the duality relation (12) holds true at one loop
and n = 4 points. This was extended to arbitrary n at one loop in [16]. At
one loop, the computation of the Wilson loop entering the duality involves
integrating a free gluon propagator along the polygonal contour Cn. It is
clear that such a computation is insensitive to the specific details of N = 4
SYM such as e.g. interaction vertices and field content. For this reason
it seems very important to investigate the validity of the duality to higher
orders in perturbation theory.

Therefore, a two-loop computation of the Wilson loop for n = 4 and
n = 5 was carried out in [17, 18]. Some representative Feynman graphs
are depicted in Fig. 2. After some remarkable cancelations, the result in-
deed reduces to the functional form of the BDS ansatz, written in the dual
coordinates, and hence the duality holds at two loops for n = 4 and n = 5.

Just as for the scattering amplitudes, it may seem surprising that the
loop corrections to Wilson loops should take the simple form (2). We will see
presently that this simplicity, at least for n = 4 and n = 5, is a consequence
of dual conformal symmetry.
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Fig. 2. Three representative diagrams contributing to the expectation value of

the four-cusp Wilson loop at two loops. The blob denotes a one-loop propagator

correction.

3.2. (Broken) conformal Ward identities for light-like Wilson loops

In contrast to the scattering amplitudes, which are defined in momen-
tum space, the Wilson loops are defined in configuration space (which is
dual from the point of view of the scattering amplitudes). Therefore, we
can directly exploit the conformal symmetry of N = 4 SYM which acts in
configuration space. A crucial observation is that the contour on which the
Wilson loop is defined is stable under conformal transformations: under the
latter, a light-like polygon is mapped into another light-like polygon. This
and the conformal invariance of the action of N = 4 SYM allow us to derive
conformal Ward identities for the Wilson loops.

A very important effect arises due to the UV divergences of the Wilson
loops. The dimensional regulator breaks the conformal symmetry, which
leads to an anomalous term in the Ward identity. We stress that in order to
be able to make quantitative predictions for the Wilson loops, it is crucial
to control this anomalous contribution. The conformal boost Ward identity,
first proposed in [17] and then proven in [18], reads

n
∑

i=1

[

2xµ
i (xi · ∂xi

) − x2
i ∂

µ
xi

]

F (WL)
n =

1

2
Γcusp(a)

n
∑

i=1

xµ
i,i+1 ln

(

x2
i,i+2

x2
i−1,i+1

)

.

(13)
Note that the anomalous term on the right-hand side of (13) is coupling-
dependent, but only through the cusp anomalous dimension Γcusp(a).

It turns out that (13) has very strong implications. For n = 4 and n = 5
points, it completely fixes the functional form of the Wilson loop, namely

F
(WL)
4 =

1

4
Γcusp(a) ln2

(

x2
13

x2
24

)

+ const. , (14)

F
(WL)
5 =

1

4
Γcusp(a)

5
∑

i=1

ln

(

x2
i,i+2

x2
i+1,i+3

)

ln

(

x2
i+2,i+4

x2
i+3,i

)

+ const . (15)
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We see that equations (14) and (15) correspond precisely to the BDS formula
for scattering amplitudes, cf. equations (3) and (4), rewritten in the dual
coordinates. This all-order result allows us to draw the following conclusions:

• For n = 4, it confirms the duality (12) to three loops, since the BDS
formula for gluon scattering amplitudes holds in this case [5]. It also
agrees with the result obtained in [13] at strong coupling using the
AdS/CFT correspondence;

• If one assumes the duality between scattering amplitudes and Wilson
loops, the conformal Ward identity for Wilson loops explains why the
BDS ansatz is true for n = 4, 5 points.

Starting from n = 6 points, a new feature appears: one can build con-
formal invariants which take the form of cross-ratios3,

K
µ

x2
ijx

2
kl

x2
ikx

2
jl

=

n
∑

m=1

[

2xµ
m(xm · ∂xm

) − x2
m∂µ

xm

] x2
ijx

2
kl

x2
ikx

2
jl

= 0 . (16)

At six points, there are three such invariants,

u1 =
x2

13x
2
46

x2
14x

2
36

, u2 =
x2

24x
2
15

x2
25x

2
14

, u3 =
x2

35x
2
26

x2
36x

2
25

. (17)

Hence for general n ≥ 6, a particular solution of (13) is still given by the
BDS ansatz, but one can always add an arbitrary function of conformal
invariants to it. For example, at six points we have

F
(WL)
6 = F

(BDS)
6 + f(a;u1, u2, u3) . (18)

Dual conformal symmetry does not restrain the function f(a;u1, u2, u3), and
therefore, it seems very interesting to ask whether the latter receives non-
trivial loop corrections, and whether the duality (12) holds for n = 6 at two
loops.

3.3. Beyond dual conformal symmetry: six-gluon amplitude

In order to shed light on these questions, a two-loop computation of
the hexagonal Wilson loop was performed in [19]. It was found that, in

perfect agreement with the Ward identity (13), F
(WL)
6 is correctly described

by (18), however with a non-trivial (non-constant) function f(a;u1, u2, u3)

3 Usually, cross-ratios can already be built at four points. Here the conditions x
2
i,i+1 = 0

postpone the appearance of conformal cross-ratios until six points.
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at two loops. Therefore, the hexagonal Wilson loop at six points is not given
by the BDS ansatz for the scattering amplitudes. Since the corresponding
six-gluon amplitude had not been computed at this point, this meant that
either the duality with scattering amplitudes or the BDS ansatz had to
fail. Indications that the BDS ansatz should break down came from [22]
and [23]. It should be stressed that a breakdown of the BDS ansatz does
not automatically mean that the duality is true, because both of them could
break down at the same time.

Very recently, these questions could be answered when the calculation of
the two-loop six-gluon MHV amplitude was completed [20]. The authors of
[20] found that the BDS ansatz needs to be corrected. Moreover, a numerical
comparison between the result for the hexagonal Wilson loop and the six-
gluon amplitude was carried out [19, 20], and it was found that within the
numerical accuracy the duality holds! Given this further evidence in favour
of the duality (12) we are confident that it should hold in general.

4. Conclusions and outlook

We presented evidence for a new duality between gluon scattering ampli-
tudes and Wilson loops in N = 4 SYM. Several two-loop calculations were
undertaken and the results agreed with the duality. Moreover, it was shown
that the Wilson loops have to obey an all-order conformal Ward identity.
If the duality is true, then the Ward identity explains why the BDS ansatz
for gluon scattering amplitudes holds for n = 4 and n = 5 gluons. For
n = 6 and two loops, the BDS ansatz is incorrect and has to be modified
by a function of dual conformal invariants, in complete agreement with the
duality and the dual conformal Ward identity.

The results described in this paper were limited to MHV scattering am-
plitudes, which correspond to the simplest possible helicity configurations.
There are many other helicity configurations, and it is natural to ask whether
the duality can be extended to these as well, and whether one can find a dual
conformal symmetry in non-MHV amplitudes.

Shortly after the talk was given at the conference, the second question
was answered positively. It was discovered [24] that the dual conformal
symmetry described in this talk can be extended to a dual superconformal
symmetry. Moreover, the dual superconformal symmetry is a property of
all amplitudes, with MHV and non-MHV helicity configurations. Hints that
scattering amplitudes should have a dual superconformal symmetry were also
found using the AdS/CFT correspondence [25, 26]. It would be extremely
interesting if one could learn from the AdS/CFT correspondence how to
extend the duality to non-MHV amplitudes. Newer references discussing
the dual superconformal symmetry include [27–29].
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