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1. The cusp and AdS/CFT correspondence

This talk is mainly based on the work [1] performed in collaboration
with B. Basso1 and G. Korchemsky1, where the method of strong coupling
expansion of the cusp anomalous dimension was found. The cusp anomalous
dimension [2], called also the cusp, is a physical observable, which appears
in many branches of particle physics. It is related to the logarithmic growth
of the anomalous dimensions of high-spin Wilson operators and to the gluon
Regge trajectory; it governs behavior of the Sudakov form factors as well as
it defines infrared singularities of on-shell scattering amplitude.

In order to define the cusp anomalous dimension in N = 4 supersymmet-
ric Yang–Mills (MSYM) theory one can consider local operators composed
of L scalar fields and S covariant derivatives, 〈Ds1XDs2X . . . DsLX〉, with

the spin S =
∑L

k=1 sk. In the high spin limit the anomalous dimensions of
these operators read as
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γ
(L=2)
S (g) = 2Γcusp(g) ln S + . . . , (1)

where the leading coefficient, Γcusp(g) is called cusp anomalous dimension.
In N = 4 SYM theory the cusp is a fundamental quantity and it depends
neither on the twist L2 nor on composed fields.

In 1998 the AdS/CFT correspondence was proposed by Maldacena,
Polyakov, Klebanov, Gubser and Witten [3]. It relates MSYM operators
to the IIB string theory observable, i.e. the cusp anomalous dimension
in MSYM theory corresponds to the energy of folded strings rotating in
AdS3 [4]. Due to dual properties of the AdS/CFT conjecture, calculations
of the strong coupling limit in the SYM theory are equivalent to the semi-
classical expansion of the string theory. Moreover, if the physical quantity
like the cusp can be calculated in N = 4 SYM theory both in the weak
as well as in the strong coupling expansion, e.g. making use of integrable
methods [5], an additional aspect of investigation arises. In this special case
one may try to test validity of the AdS/CFT correspondence.

From the string theory side the cusp anomalous dimension

Γcusp(g) = 2g − 3 ln 2

2π
+ O(1/g) , g =

√
λ

4π
, (2)

with λ = g2
YMNc being ’t Hooft coupling was calculated in the 1-loop string

perturbation calculation [4, 6] and from the string Bethe ansatz [7]. The
question is if this result can be also obtained from N = 4 SYM theory.

2. Beisert–Eden–Staudacher equation

In Ref. [8] Beisert, Eden and Staudacher derived from all-loop Bethe
ansatz [9] the equation

σ̂g(t) =
t

et − 1



Kg(2gt, 0) − 4g2

∞∫

0

dt′Kg

(
2gt, 2gt′

)
σ̂g

(
t′
)


 , (3)

with a complicated kernel, Kg(t, t
′) =

∑∞
n,m=1 znm(g)Jn(t)Jm(t′)

tt′ , defined in

Ref. [8]. The fluctuation density σ̂g(t) is related to the Fourier transform of
the Bethe roots distribution and it predicts the cusp anomalous dimension
for arbitrary values of the coupling constant Γcusp(g) = 8g2σ̂g(0). The weak
coupling expansion obtained from the BES equation is given as

2 For higher twists there are additional degrees of freedom and the cusp defines the
high spin asymptotic of the minimal anomalous dimension.
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2Γcusp(g) = 8g2 − 8
3π2g4 + 88

45π4g6 − 16
(

73
630π6 + 4ζ(3)2

)
g8

+32
(

887
14175π8 + 4

3π2ζ(3)2 + 40ζ(3)ζ(5)
)
g10

−64
(

136883
3742200π10 + 8

15π4 ζ(3)2 + 40
3 π2ζ(3)ζ(5)

+210ζ(3)ζ(7) + 102ζ(5)2
)
g12 + . . . , (4)

a sign alternating series with the convergence radius 1
4 . The three loop re-

sult was also obtained from QCD using the maximal tanscendentality princi-
ple [11] and the four loop value was checked in perturbation calculations [12].

3. Strong coupling expansion in numerical approach

In order to solve the BES equation numerically [13] one can expand
the fluctuation density over Bessel functions and truncate the Bessel series

σg(t) = t
et−1

∑M
n=1 sn(g)Jn(2gt)

2gt with sn≥M+1 = 0. The integral equation

becomes a matrix equation

s(g) =
1

1 + K(g)
· h and Γcusp(g) = 4g2s1(g) , (5)

with K(g) being a complicated g-dependent matrix (M × M) and h =
(1, 0, 0, 0, 0, . . .) is a boundary condition vector. The numerical solution to
Eq. (5) is presented in Fig. 1.
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Fig. 1. The cusp anomalous dimension as a function of coupling constant g.

The first few coefficients of the strong coupling expansion were fitted in
Ref. [13]:

2Γcusp(g) = 4.000000g − 0.661907 − 0.0232g−1 + . . . . (6)
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One can see that the first two coefficients agree with string theory, for in-
stance 0.661907 ≈ 3 ln 2

π . From the numerical results two questions arise: if
it is possible to calculate these coefficients from N = 4 SYM theory analyt-
ically and if the third coefficient is consistent with the string theory3.

4. Ordinary strong coupling expansion

One can try to perform the strong coupling expansion analytically using
the infinite Bessel series, i.e. working in infinite-dimension matrices [14]:

[1 + K(g)] · s(g) = h . (7)

Expanding the matrix K(g) and the solution s(g) in powers of 1/g gives:

sn(g) = g−1
∑

j=0

g−js(j)
n , K(g) = g

∑

j=0

g−jK(j) . (8)

The leading order solution, s(0) = [K]−1 · h + [zero modes], is defined up
to zero modes. This ambiguity is fixed in Ref. [14] by the constraint from

numerics s
(0)
2k−1 = s

(0)
2k , s

(0)
2k−1 = s

(0)
2k = (−1)k+1 Γ (k+ 1

2
)

Γ (k)Γ ( 1

2
)
. For the next-to-

leading order constraints, zero modes fixing is more complicated and cannot
by easily extracted from numerics.

5. Our main idea

Let us define the even and odd unknowns:

s±n (g) = 1
2 (s2n−1(g) ± s2n(g)) . (9)

From numerical calculations in Fig. 2 one can see that the strong coupling
expansion works well for n ∼ 1 while it fails for large n.

The approach proposed in Ref. [1] reads as follows:

1. construct the solution for s±n (g) in the region n ∼ 1 and parameterize
the contribution of (zero modes) by yet unknown coefficients c±p (g),

2. construct the asymptotic solution for s±n (g) in the region n ≫ 1,

3. sew two asymptotic expressions for s±n (g) in the intermediate region
n ∼ g1/2 and determine the infinite set of zero mode coefficients c±p (g).

One can do this without knowing the exact solution, performing the scaling
limit n, g → ∞ where x = (n − 1

4)2 = fixed.

3 Early calculations of A. Tseytlin et al. disagree with this value.
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Fig. 2. The n-dependence of the sn(g) coefficients and its comparison to first few

terms of strong coupling expansion. Both lines are plotted for large fixed g.

6. Fixing zero mode coefficients

Changing variables properly [1] one can find a solution of the BES equa-
tion:

Γcusp(g) = 2g +

∞∑

p=1

1

gp−1

[
2c−p (g)√

π
Γ

(
2p − 3

2

)
+

2c+
p (g)√
π

Γ
(
2p − 1

2

)
]

, (10)

as a function of yet unknown c±p (g) =
∑

r≥0 g−rc±p,r. The expansion coeffi-

cients s±m(g) should have corrected the scaling behavior in the scaling limit

m, g → ∞ for x = (m − 1

2
)2/g = fixed , (11)

so that

s±m(g) =
(gx)−1/4

g
√

π

[

γ
(0)
± (x) + +

γ
(1)
± (x)

gx
+ O

(
1/g2

)
]

, (12)

where the expansion of γ
(r)
± (x) runs over integer positive powers of x and

γ
(r)
± (x) should have a faster-than-power-law decrease at large x, or equiva-

lently, its Laplace transform should be an analytical function.

7. Quantization conditions

Let us consider the leading order of 1/g. Performing the Laplace trans-

form from γ
(0)
± (x) to γ̃

(0)
± (s) one can obtain the analyticity condition

∑

p≥0

sp c+
p,0Γ (p − 1

4 ) = 2
[
Γ

(
3
4

)]2 Γ
(
1 − s

2π

)

Γ
(

3
4 − s

2π

) , c+
0,0 = −1

2 , (13)
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corresponding to cancellation of roots and poles of γ̃
(0)
+ (s). A similar condi-

tion for γ̃
(0)
− (s) reads as follows

∑

p≥0

sp
[
c−p,0Γ

(
p − 3

4

)
+ 2c+

p,0

(
p − 1

4

)
Γ

(
p + 1

4

)]
=

[
Γ

(
1
4

)]2

4

Γ
(
1 − s

2π

)

Γ
(

1
4 − s

2π

) ,

(14)
where c−0,0 = 0. The expansion of Eqs. (13) and (14) in s gives

c+
1,0 = −3 ln 2

π
+

1

2
+ O(1/g) , c−1,0 =

3 ln 2

4π
− 1

4
+ O(1/g) . (15)

Substituting (15) to (10) one gets

Γcusp(g) = 2g − 3 ln 2

2π
+ O

(
g−1

)
. (16)

Using this method one can continue the calculations for higher orders of 1/g
series. Finally, one gets

Γcusp (g+c1) = 2g

[
1 − c2g

−2 − c3g
−3 −

(
c4 + 2 c2

2

)
g−4

−(c5 + 23 c2c3)g
−5 −

(
c6 + 166

7 c2c4 + 54 c2
3 + 25 c3

2

)
g−6

−
(
c7 + 1721

29 c2c5 + 1431
7 c3c4 + 457 c2

2c3

)
g−7

−
(
c8 + 6352

107 c2c6 + 12606
29 c3c5 + 7916

49 c2
4 + 6864

7 c2
2c4

+4563 c2c
2
3 + 374 c4

2

)
g−8

−
(
c9 + 30943

277 c7c2 + 72089
107 c6c3 + 216437

203 c5c4

+71712
29 c5c

2
2 + 17016c4c3c2 + 13131c3

3 + 16904c3c
3
2

)
g−9

−
(
c10 + 464314

4183 c8c2 + 308416
277 c7c3 + 154466

107 c6c4

+455267
107 c6c

2
2 + 1296500

841 c2
5 + 1818888

29 c5c3c2 + 1137597
49 c2

4c2

+756936
7 c4c

2
3 + 254648

7 c4c
3
2 + 253728c2

3c
2
2 + 10666c5

2

)
g−10

+O
(
g−11

) ]
, (17)

where the expansion coefficients are given by

c1 = 3 ln 2
4π , c2 = 1

16π2 K, c3 = 27
211π3 ζ(3), c4 = 21

210π4 β(4),

c5 = 43065
221π5 ζ(5), c6 = 1605

215π6 β(6), c7 = 101303055
230π7 ζ(7),

c8 = 1317645
222π8 β(8), c9 = 1991809466325

241π9 ζ(9), c10 = 524012895
227π10 β(10),(18)
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with the Riemann zeta function, ζ(x) =
∑

n≥1 n−x, the Dirichlet beta func-

tion, β(x) =
∑

n≥0 (−1)n(2n + 1)−x and K = β(2) the Catalan’s constant.

To simplify the formula, the cusp in Eq. (17) is shifted by c1. One has to
notice that all expansion coefficients, except the first one, are negative and
they decrease with the series order.

8. Asymptotic expansion O(g−40)

Using the above method one can evaluate numerically the strong coupling
expansion coefficients to rather high order and find that the asymptotic
expansion is not Borel summable

Γcusp(g)∼−g
∑

k

Γ
(
k − 1

2

)

(2πg)k
= g

∞∫

0

duu−1/2e−u

u − 2πg
, (19)

where the Borel transform has a pole at u = 2πg.
Ambiguity due to different prescriptions to integrate over the pole is

for large g δΓcusp(g) ∼ g1/2 exp(−2πg). Similar corrections appear in the
solution of the FRS equation [15]

γ
(L)
S (g) = 2(Γcusp(g) + ǫ(g, L)) ln S + . . . . (20)

This result agrees with the O(6) sigma model from the string theory side [16].

9. Conclusions

The above calculations of the cusp anomalous dimension of N = 4 SYM
theory shows that the integrability provides us strong methods for solving
complicated problems. Both, the weak and strong coupling expansion of the
cusp can be found to an arbitrary order4. The results agree with result from
the string theory5 confirming validity of the AdS/CFT correspondence [17].
Moreover, it seems than on MSYM theory side it is easier also to calculate
strong coupling expansion of the cusp anomalous dimension. Therefore,
confirmation of the above results from the string theory will be a challenging
task.

I would like to thank warmly G.P. Korchemsky and B. Basso for the
collaboration. This work was supported by the grant of SFB 676, Particles,
Strings and the Early Universe: the Structure of Matter and Space-Time
and the grant of the Foundation for Polish Science.

4 The calculations are limited only by ability of programs for symbolic calculations.
5 After our work A. Tseytlin et al. corrected their two loop string calculation, which

now agrees with out results.
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