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FINITE SIZE GIANT MAGNONS AND INTERACTIONS∗
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Magnon interactions give important contributions to the wrapping in-
teractions of the N = 4 spin-chain. Similar effects are expected for the
finite size corrections to the giant magnon energy in AdS5 × S5. In this
paper I review the finite gap description of giant magnons and the leading
order calculation of the finite size corrections to the giant magnon disper-
sion relation for multi-magnon states.
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1. Gauge invariant operators and spin-chains

A major test of the large N AdS/CFT correspondence [1] is the matching
of the spectrum of the scaling dimensions of single trace operators in N = 4
super Yang–Mills (SYM) and the energies of single strings propagating in
AdS5 × S5.

Many features of the spectrum of single trace operators can be under-
stood by treating it as a lattice model. This is most easily understood in the
SU(2) sector, which consists of operators built out of the scalars Z and Y .
Here the operators can then be mapped to simple spin-chains. As realized
by Minahan and Zarembo [2], the one-loop dilation operator in this sector
equals the Hamiltonian of the Heisenberg SU(2) spin-chain. If we let Z rep-
resent spin up and Y represent spin down, a ferromagnetic ground state of
a chain of length J is given by

|Ω〉 = TrZJ = | ↑ ↑ · · · ↑ ↑ 〉 . (1)

This is a BPS state with classical dimension E = J and vanishing anomalous
dimension.
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Non-BPS operators can be built out of this ground state by changing
some of the Z’s into Y ’s. In the spin-chain picture each such impurity
corresponds to a magnon, i.e. a single fundamental excitation traveling along
the chain with a certain momentum.

For an infinitely long chain, i.e. for J → ∞, the spectrum consists of
states with any number of magnons having arbitrary momenta. The contri-
bution of each magnon to the scaling dimension, i.e. the dispersion relation
of the magnons, is1 [3]

E = E − J =

√

1 + 16g2 sin2
p

2
≈ 1 + 8g2 sin2 p

2
. (2)

For finite J , we need to take into account the periodic boundary condi-
tions. In an integrable system such as the Heisenberg spin-chain, this leads
to quantization of the momenta, which now satisfy Bethe equations of the
form

eipiJ =
∏

j 6=i

S−1(pj , pi) , (3)

where S(pj , pi) is the two-body S-matrix. Hence the finite J spectrum is
highly dependent on the magnon interactions.

To get a gauge independent operator from a spin-chain state, we need to
take a trace. Taking into account the cyclicity of the trace, we will consider
only spin-chain states that are symmetric under shifts of the spin sites. This
leads to the level-matching condition

∑

pi = 2πm , m ∈ Z . (4)

The success of this Bethe ansatz for the SU(2) sector relies on the similar-
ity between the one-loop dilation operator in this sector and the integrable
Heisenberg Hamiltonian. Miraculously there are many indications that even
the all-loop dilatation operator of the full large N N = 4 SYM is integrable.
Hence it is possible to describe the full spectrum of single trace gauge in-
variant operators by the Bethe ansatz [4].

However, the Bethe ansatz is only valid for asymptotically long operators.
The range of the interaction terms in the dilatation operator grows with the
loop order. For short operators finite size corrections are expected to appear
in the form of wrapping interactions. Ambjorn et al. [5] analyzed wrapping
effects using the Thermodynamic Bethe Ansatz (TBA). They found that for
an operator of length L, wrapping effects will generically appear at L loops.

1 The coupling constant g is related to the ’t Hooft coupling λ by g2
=

λ

16π2 .
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Recently much work has been put into calculating these corrections.
The simplest operator with a non-zero anomalous dimension is the Konishi
operator. The dimension of this operator has been calculated to four loop
order directly from the gauge theory [6] as well as using TBA [7], and the
results of these calculations were found to agree perfectly.

2. The spinning point-like string and the giant magnon

By considering string states in R × S2 ⊂ AdS5 × S5 we find the duals
of operators in the SU(2) sector of the gauge theory. The R-charge J now
measures the angular momentum around the sphere. The simplest solution
describes a point-like string spinning around a great circle. This supersym-
metric state with E = J is the dual of the spin-chain ground state.

Having identified the dual of the ground state the next step is to search
for excitations. Berenstein et al. [8] considered the limit where J, g → ∞
with g/J fixed, and showed that the semi-classical fluctuations around the
ground state reproduce the leading order gauge theory spectrum in this limit.

Another possibility would be to let J → ∞ while keeping g large but
fixed. Hofman and Maldacena [9] looked for classical solutions such that the
difference E−J remains finite. They found a solution given by a world-sheet
soliton. In space-time, the solution describes a string with end-points fixed
on the equator with a constant angular separation ∆ϕ, which is interpreted
as the momentum p of the excitation. Using a conformal gauge where the
J density is constant on the world-sheet, the world-sheet is infinitely large.
The energy of the excited state is

E = E − J = 4g sin
p

2
, (5)

which agrees with the large g limit of the gauge theory result (2). The
situation is thus very similar to that of small fluctuations around an infinitely
long spin chain.

The giant magnon solution seems to describe an open string in a closed
string theory. However, a single magnon does not describe a physical config-
uration. Like in the gauge theory, physical states satisfy the level-matching
condition (4). With an infinite world-sheet we can however relax this con-
dition and consider a single magnon.

2.1. The giant magnon as a finite gap solution

One approach to deriving the giant magnon dispersion relation is by
constructing a finite gap solution [10–12]. A classical solution to the equa-
tions of motion of the string is described by a meromorphic function P (x),
called the quasi-momentum, defined on a two-sheeted Riemann surface. The
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charges of the string depend on the analytical structure of P (x). The possi-
ble singularities are square root branch cuts Ck and logarithmic branch cuts
Bk, conventionally referred to as condensates. If P (x) has a square root
branch cut along Ck it satisfies

P (x + iǫ) + P (x − iǫ) = 2πnk , x ∈ Ck , (6)

where P (x) is to be evaluated once on each side of the cut.
The quantum numbers of a particular string configuration can be read

off from the asymptotic behavior of the corresponding quasi-momentum2

P (x) =
E

4g

1

x ± 1
+ · · · , (x → ∓1) , (7)

P (x) =
J − Q

2gx
+ · · · , (x → ∞) , (8)

P (x) = p −
J + Q

2g
x + · · · , (x → 0) . (9)

Let us now consider a configuration consisting of a single condensate and
make the ansatz

P (x) =
E

2g

x

x2 − 1
+ G(x) , G(x) = −i log

x − X+

x − X−
. (10)

P (x) has a single logarithmic cut between X+ and X−. The poles at
±1 already have the correct residues. To get the right asymptotic behavior
as x → 0,∞ we have to solve the equations

E − J + Q = −2ig(X+ − X−) , (11)

E − J − Q = 2ig

(

1

X+
−

1

X−

)

, (12)

p = −i log
X+

X−
. (13)

Solving these equations for X± gives

X± =
Q +

√

Q2 + 16g2 sin2 p
2

4g
e±i

p

2 csc
p

2
. (14)

2 The finite gap solutions considered here really correspond to strings on R × S3.
The conserved charges J and Q correspond to the isometries of a three-sphere. For
solutions made up of giant magnons, Q counts the number of magnon constituents,
with Q = 1 corresponding to a fundamental magnon and larger Q corresponding to
magnon bound states.
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Plugging this back, solving for E −J and setting Q = 1 gives the dispersion
relation

E =

√

1 + 16g2 sin2
p

2
≈ 4g sin

p

2
. (15)

To better understand how we arrived at this result, we consider an alter-
native finite gap derivation due to Vicedo [12]. In this formalism a solution
to the classical equations of motion is encoded in terms of a meromorphic
differential on a Riemann surface. Consider an elliptic, or two gap, solution,
i.e. a solution with a genus one Riemann surface. This surface can be de-
scribed as a two sheeted surface with two square root branch cuts connecting
the points X+ and X−, and Y + and Y −.

Defining the periods Ai and B as in Fig. 1, the differential dp will be
subject to the following periodicity constraints

∫

Ai

dp = 0 ,

∫

B

dp = 2πn , n ∈ Z . (16)

In the singular limit where Y + → X+, the B period encircles the endpoint
X+ once. To satisfy the periodicity condition, dp has to have a simple pole
of residue −in at X+. The expressions for the global charges in terms of
dp now easily gives the giant magnon dispersion relation [13]. Thus a single
giant magnon can be seen as a singular limit of an elliptic string state.

X−

X+

Y −

Y +

A1

A2

B

Fig. 1. The periods A1, A2 and B.

Hence we have two configurations corresponding to a giant magnon —
a single condensate or two cuts sharing endpoints. As noted by Vicedo, the
two descriptions are related by SL(2,Z) transformations, which exchange
how the square root branch points are connected to form cuts. Performing
such a transformation on a general finite gap solution gives a new solution,
which corresponds to the same solution of the equations of motion for the
string, provided the A- and B-periods of dp are preserved. To ensure this
we may need to add extra condensates to the transformed solution.
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3. Finite size giant magnons

In the previous section, we considered string solutions with one spin in-
finitely large, corresponding, in conformal gauge, to an infinitely long world
sheet. For states with finite spin we expect the energy to receive finite size
corrections, analogous to the wrapping interactions in gauge theory. At
large coupling these corrections are expected to be exponentially suppressed
in the string length J [5]. This was confirmed for the magnon by Aru-
tyunov et al. [14] who derived an explicit generalization of the giant magnon
solution. They found corrections to the dispersion relation of the form

δE = −
16g

e2
sin3 p

2
exp

(

−2
J

4g sin p
2

)

+ · · · . (17)

This result was later confirmed by Janik and Łukowski [15], using the Ther-
modynamic Bethe Ansatz (TBA) and the related Lüscher formulas for finite
size corrections in two-dimensional quantum field theories.

4. Interacting magnons

We can also imagine string states consisting of several magnons. Hofman
and Maldacena [9] showed that for infinite J , magnons can scatter against
each other with a two-particle S-matrix which agrees with the SU(2|2)
S-matrix of the gauge theory. The energy of these multi-magnon states
is however simply the sum of the individual magnon energies. In the gauge
theory we saw that for finite size states, interaction between the magnons
affected both the allowed sets of momenta and the total anomalous dimen-
sion. Hence it would be interesting to see how the magnon interactions effect
the spectrum on the string side.

4.1. Interacting finite size magnons as finite gap solutions

The description of interacting string states is in general a very compli-
cated problem. From the point of view of the finite gap equations, we noted
previously that a single giant magnon is a two gap solution. A state of n
giant magnons corresponds to a solution with 2n cuts, and will hence be
given as a function on a Riemann surface of genus 2n − 1, which generally
has to be expressed in terms of hyperelliptic functions.

As noted above, the giant magnon in the infinite spin limit can be re-
garded as a finite gap solution consisting of a single condensate, resulting
in a logarithmic resolvent, instead of the expected elliptic form of a generic
two gap solution. A state of several magnons is now given by a number of
such condensates. To see how this effects the solution, we note that the only
equation that induces interactions between different cuts is Eq. (6), which
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describes the discontinuity of P (x) along a square root branch cut. But
this equation only involves square root cuts, and hence the many magnon
solution is simply a sum of the individual solutions, resulting in an additive
total energy, E − J =

∑

i Ei.
A giant magnon could also be described as a singular limit of a two-cut

solution. In this picture we expect finite size corrections to arise when we
let the endpoints of the two cuts be very close to each other. Hence we will
consider two square root branch cuts with a separation of length δ between
the endpoints. Performing an SL(2,Z) transformation on this configuration
we end up with a single condensate Bi with square root branch cuts Ci and
C̄i of length δ attached at each end [16], as depicted in Fig. 2.

→
Bi

Ci

C̄i

Fig. 2. Finite gap configurations for a finite J magnon as a two cut solution (left),

and as a condensate with cuts at the ends (right). The two configurations are

related by an SL(2,Z) transformation.

As an ansatz for the resolvent G(x) of a set of finite size magnons we
write3

G(x) =
∑

i

Gi(x) , Gi(x) = −2i log

√

x − X+

i +
√

x − Y +

i
√

x − X−
i +

√

x − Y −
i

. (18)

The square root cuts of Gi are such that the relative sign in the numerator
(denominator) changes when we cross Ci (C̄i). As a simple check of this
ansatz we can let Y ±

i → X±
i to recover the previous giant magnon resolvent.

Since we are interested in the leading order corrections, we make an ex-
pansion by setting

Y ±
i = X±

i ± iδie
±iφi + · · · , (19)

where δi ≪ 1 is real. We also need to take into account the back-reaction
of X±

i by expanding it around δi. Calculating the asymptotic behavior as
x → ∞ and x → 0 and solving the resulting equations iteratively to the

3 In [16] the density corresponding to this resolvent was derived using the integral
equations from [11]. The same resolvent has also been used to calculate finite-size
corrections to giant magnons in AdS4 × CP

3 [17].
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second order in δi by requiring that pi and Qi receive no corrections, we get
the correction4

δEi = −
gδ2

i

4
cos (p − 2φi) sin

p

2
+ · · · . (20)

So far there has been no contribution from the interactions between the
magnons. However, we still have to determine the parameters δi and φi.
We will do that by ensuring that the cuts really correspond to square root
branch cuts, requiring that they satisfy (6). Thus we need to calculate
P (x + iǫ) + P (x − iǫ) for x on a cut Ci to the leading order in δi. Solving
the resulting equation for δi, we get

iδie
iφi = 4

(

X+

i − X−
i

)

e
− iE

2g

X
+
i

(X
+
i )

2
−1

+iπm
∏

k 6=i

X+

i − X−
k

X+

i − X+

k

. (21)

Inserting this into the above expression for the correction to the dispersion
relation we get the final result

δEi = −
16g

e2
sin3 pi

2
e
−2

J
Ei

∏

k 6=i

sin2 pi+pk

4

sin2 pi−pk

4

e
−2

Ek
Ei . (22)

The exponential suppression, as well as the pre-factor, agrees with the one-
magnon result in (17). The correction is changed by the magnon interactions
by a multiplicative factor of order one, which is very similar in form to the
two magnon scattering phase in [9].

4.2. Interacting finite size magnons from sine-Gordon and TBA

Interacting magnons can also be studied using the correspondence be-
tween the equations of motions for an R × S2 sigma model and those of
the sine-Gordon model. Hofman and Maldacena used this to calculate the
magnon S-matrix. Klose and McLoughlin [19] considered periodic two-phase
solutions to the sine-Gordon equation. These solutions can be interpreted as
interacting finite two-magnon solutions. The resulting solutions turned out
to be elliptic, rather than hyperelliptic, which considerably simplified the
problem. The corrections to the dispersion relation perfectly agrees with
the one calculated in the previous sections.

The finite size corrections to the multi-magnon energy has also been
calculated using a generalization of the Lüscher rules [20]. Again the result
agrees with the finite size calculation.

4 Since we want to consider only fundamental magnons, Qi/g will be put to zero.
Dyonic magnons with Qi ∼ g were treated in the same fashion in [16]. This case
was also independently treated by Hatsuda and Suzuki [18].
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5. Conclusions

The spectrum of long operators in N = 4 SYM and for large spin states
in the dual string theory is by now well known. The next step in finding the
full spectra is the understanding of the finite size corrections to these states.

The giant magnon can be seen as a fundamental excitation on the string
world-sheet, dual to impurities propagating in the spin-chain picture. At in-
finite J the spectra of both theories consist of states with magnons with ar-
bitrary momenta (up to level-matching). The magnons may scatter against
each other, but the total energy is given as a sum of the energies of the
corresponding free magnons.

For finite J the dispersion relation of the spin-chain impurities receives
wrapping corrections due to virtual excitations travelling around the chain.
In addition the allowed momenta become quantized through a Bethe equa-
tion. The interaction between the magnons gives essential contributions to
both of these corrections.

The dispersion relation of a single giant magnon gets exponential correc-
tions at finite J [14]. Again these corrections stem from virtual excitations
wrapping the world-sheet [15]. The energy of a multi-magnon state is how-
ever not the sum of the individual energies. In this paper, the finite-gap
calculation of the leading order contribution from magnon interactions has
been reviewed. The resulting order-one factors are related to the two magnon
S-matrix.

As in the gauge theory, we expect the momenta of finite J giant magnons
to be quantized in terms of the magnon S-matrix. The exact nature of this
quantization remains an unsolved problem. The solution would deepen the
understanding of the relation between the perturbative gauge and string
theories.

I would like to thank J. Minahan and V. Giangreco Marotta Puletti for
their valuable comments and discussions.
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