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In this talk we study the hard wall AdS/QCD model, the simplest model
of bottom-up approach to AdS/QCD. We reveal the relations between fields
in the model and operators in QCD, fix parameters of the model and calcu-
late several quantities of interest. We underline the problems of the model
and propose the way to solve them.
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1. Introduction

In the last few years a great attention was paid to the so-called phe-
nomenological AdS/QCD theories. The essence of these models is to use
the AdS/CFT correspondence [2] to describe QCD in large Nc limit via its
5-dimensional dual theory. The exact structure of this 5D theory, describing
all specific features of QCD is not clear, but some simple models have been
proposed [3–8], which already give promising results.

In this talk we study the simplest of these settings, the so-called hard
wall AdS/QCD model (see for example [3,5], first proposed in [9]). Our goal
is to find proper relation between fields in the theory and QCD currents, fix
the free parameters of the model and study results, that this model gives
without any tuning. After that we propose some ways to tune up the model
in order to reproduce results of QCD. We will calculate vector, axial vector
and pseudoscalar two-point functions of QCD, that will allow us to find
values of meson masses and fπ.

This talk is mainly based on the paper by Krikun [1], so all details and
references can be found there.

∗ Seminar talk presented at the XLVIII Cracow School of Theoretical Physics, “Aspects
of Duality”, Zakopane, Poland, June 13–22, 2008.

(3153)



3154 A. Krikun

2. Description of the model

We consider the simplest holographic model of low energy QCD, pro-
posed in [3,5,7] (see also [14–16]), the so-called “Hard wall AdS/QCD model”.
In what follows we will work with conventions and notations used in [3].

In the AdS/CFT prescription, the fields in 5-dimensional space are dual
to operators in 4D, and the global flavor symmetry of the 4D field theory
corresponds to the gauge symmetry in its 5D dual. So we will study 4D
QCD with SU(2)L× SU(2)R global symmetry via the gauge theory in AdS
with SU(2)L× SU(2)R gauge group. In this model only the fields dual to
QCD operators with the lowest dimensions are considered.

We have the SU(2)L× SU(2)R gauge field theory in AdS5 space with the
metric:

ds2 =
R2

z2
(−dz2 + dxµdxµ) , (1)

where R is the AdS curvature radius, cut at z coordinate: 0 < z ≤ zm.
Later, we will denote 5-dimensional indices with A,B . . . ∈ {0, 1, 2, 3, z},

and 4D indices with µ, ν, . . . ∈ {0, 1, 2, 3}.
The theory includes left- and right-handed gauge vector fields SUL(2)×

SUR(2) (AL and AR, respectively) and bifundamental scalar Xαβ. According
to AdS/CFT 5D fields correspond to operators in QCD:

Aa
Lµ ↔ q̄LγµtaqL ,

Aa
Rµ ↔ q̄RγµtaqR ,

(

2

z

)

Xαβ ↔ q̄α
Rqβ

L , (2)

with the boundary conditions imposed at z = zm:

∂zV (zm) = 0 , ∂zA(zm) = 0 .

The action is:

S =

∫

d5x
√

g Tr

{

Λ2

(

|DX|2 +
3

R2
|X|2

)

− 1

4g2
5

(

F 2
L + F 2

R

)

}

, (3)

where

DBX = ∂BX − ıALBX + ıXARB ,

AL(R) = Aa
L(R)t

a ,

FBD = ∂BAD − ∂DAB − ı[AB , AD] ,

and we introduce the normalization constant Λ of field X.



On Two-Point Correlation Functions in AdS/QCD 3155

From the equation of motion for X we can get classical solution:

X0(z) =
1

2
Mz +

1

2
Σz3 .

According to AdS/CFT [17], we argue, that M corresponds to quark mass

matrix, i.e. the source of operator q̄α
Rqβ

L and Σ to condensates, i.e. vacuum

expectation value of q̄α
Rqβ

L. We can make M to be quark masses exactly
by appropriate definition of normalization Λ, but the relation between Σ
and condensates is to be ascertained. In further discussion we set Σ = σ1,
M = m1, assuming the equality of quark masses. Hence

X0(z) =
1

2
v(z)1 , v(z) = mz + σz3 . (4)

We will decompose X in modulus and phase:

X = X0e
ı2πa(ta) = 1

v(z)

2
eı2πata .

It is convenient to introduce vector and axial vector fields:

V = (AL + AR)/2 ,

A = (AL − AR)/2 .

We set Az = Vz = 0, use transverse gauge for Vµ and decompose Aµ on
longitudinal and transverse parts:

∂µVµ = 0 , Aµ = A⊥µ + ∂µφ . (5)

One can relate the pseudoscalar current q̄γ5q to axial vector current q̄γ5γµq
via relation:

∂µ (q̄γ5γµq) = 2m (q̄γ5q) .

So we can write out the following table of correspondence:

Vµ ↔ q̄γµq = JV ,

Aµ ↔ q̄γ5γ
µq = JA ,

Q2

2m
φ ↔ q̄γ5q = Jπ . (6)

With this table we can calculate two-point functions of QCD via our 5D
theory, using the AdS/CFT recipe. For example:

〈JV (q1)JV (q2)〉 =
δ

δV0(q1)

δ

δV0(q2)
S(Vclassic)|V0=0 ,

V0(q) = Vclassic(q, z)|z=0 . (7)
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In order to perform this calculation one needs to find classical solu-
tions, which are solutions to equations of motion, obtained by variation of
S(Vµ, Aµ, ∂µφ,Az):

[

∂z

(

1

z
∂zV

a
µ

)

+
q2

z
V a

µ

]

⊥

= 0 ,

[

∂z

(

1

z
∂zA

a
µ

)

+
q2

z
Aa

µ − R2g2
5Λ

2v2

z3
Aa

µ

]

⊥

= 0 ,

∂z

(

1

z
∂zφ

a

)

+
R2g2

5Λ
2v2

z3
(πa − φa) = 0 ,

−q2∂zφ
a +

R2g2
5Λ

2v2

z2
∂zπ

a = 0 . (8)

One can see that X does not interact with vector field in quadratic action, so
the equation for v is exactly solvable. This is in contrast to other equations,
which can be solved perturbatively in the limits of large or small momenta.

3. Parameter fixing

Let us calculate some two-point functions. We start with vector current,
associated with the field V in the model. The solution for V is:

V (Q, z) = −V0(Q)
1

I0(Qzm)
Qz[K0(Qzm)I1(Qz) − I0(Qzm)K1(Qz)] . (9)

We substitute it to the variation of metric with respect to boundary value
V0 , which can be presented in the form

δSV = −
∫

d4x
R

g2
5

[

δVµ
∂zVµ

z

]

z=ǫ

and the result for current correlator is:

〈Ja
V µ(q)Jb

V ν(q)〉 = δab(qµqν − q2gµν)ΠV (q2) ,

where

ΠV (Q2) = −R

g2
5

(

K0(Qzm) − I0(Qzm)[ln(Qǫ/2) + γ]
)

I0(Qzm)
. (10)

The poles of Euclidean correlator correspond to masses of bound states.
Consequently the first pole corresponds to the ρ-meson mass (the meson,
associated with vector current in QCD), so we can fix the value of zm:

I0(ıMρzm) = 0 =⇒ zm =
2.4

Mρ
=

1

323
MeV−1 . (11)
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The masses of higher states we will obtain automatically: each one will
correspond to the zero of Bessel function. The problem here is that this
spectrum does not demonstrate the Regge behavior. In order to solve it,
one has to change form of IR boundary. If at zm metric has a factor of
exp(−z2) instead of a simple cut, the Regge behavior will take place [15,16].

In the large Q2 limit we have

ΠV (Q2) = − R

2g2
5

ln Q2ǫ2 .

This result has the same form as in QCD and can be compared with the
QCD sum rules leading term [18]:

ΠV (Q2) = − Nc

24π2
ln Q2ǫ2 .

This fixes the 5D coupling constant g5

g2
5

R
=

12π2

Nc
. (12)

To compute correlator of pseudoscalar current Jπ we find solutions for
coupled φ and π near the boundary

φ(z) = φ0(q)QzK1(Qz) ,

π(z) = −φ0(q)
Q2

g2
5R2Λ2m2

QzK1(Qz) . (13)

The variation of action with respect to φ0(q) gives

δSπ =

∫

d4x
R

g2
5

[

δ∂µφ
∂z∂µφ

z

]

z=ǫ

− Λ2R3

[

δπ
v2

z3
∂zπ

]

z=ǫ

.

And we get for the correlator:

〈Jπ(q), Jπ(q)〉 = 2
R

g2
5

1

g2
5R2Λ2

Q2 ln
(

Q2ǫ2
)

.

One can find that this result also has the same form as in QCD and com-
parison with the sum rules leading term [18]

〈Jπ(q), Jπ(q)〉QCD =
Nc

16π2
Q2 ln

(

Q2ǫ2
)

gives the value of Λ

Λ2 =
8

3

1

g2
5R

2
=

2Nc

9π2

1

R3
. (14)
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We can also calculate the value of the chiral condensate to fix the value
of σ. As was mentioned above, it should be proportional to σ but we need
to find the coefficient. In QCD the chiral condensate is defined as:

〈q̄q〉 =
δεQCD

δmq
|mq=0 .

On the AdS side this corresponds to:

〈q̄q〉 =
δ S(X0)

δm

∣

∣

∣

∣

m=0

= 3R3Λ2σ =
2Nc

3π2
σ . (15)

We see, that 〈q̄q〉 is proportional to σ and, because chiral condensate is linear
in Nc, σ turns out to be O(N0

c ). For Nc = 3 σ = (462MeV)3.

4. Results

After we have fixed all parameters in the model, we can write out the
action in terms of QCD values:

S =
Nc

12π2

∫

d5x

{

− 1

4z

(

F 2
A+F 2

V

)

+
4

3z3
v(z)2(∂π − A)2+

4

z5
v(z)2

}

. (16)

We can calculate the axial two-point function. It is a little more difficult
than in vector case, because the equation of motion cannot be solved exactly.
We solve it in the limit of large Q2 perturbatively and corrections of the order
of 1/Qn in the classical solution give next to leading terms of OPE. We can
write out the result with corrections of the order of σ2/Q6 and (mσ)/Q4:

ΠA(Q2) = − Nc

24π2

[

ln Q2 +
128

15

σ2

Q6
− 64

9

σm

Q4

]

. (17)

One can see, that coefficients here do not coincide with sum rules calculation.
We could tune this result by adding a perturbation in the metric [13]:

ds2 = ω(z)
(

−dz2 + dxµdxµ

)

, ω(z) =
R2

z2
+ Aσ2z4 + Bσmz2 ,

which would cause additional corrections to the classical solution to appear,
and this would change coefficients as desired.

The interesting object is “left-right” correlator ΠLR = ΠA − ΠV

ΠLR = − Nc

9π2

[

16

5

σ2

Q6
− 8

3

σmq

Q4

]

. (18)
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Note here that it has not powers of R, namely it has the order λ′0 because
in AdS/CFT:

R4

4πα′2
= λ′ = Ncg

2
YM . (19)

If we denote in this formula coefficients as f and ρ, we find that at
λ′ → ∞ our calculation predicts:

f(λ′) ∼ ρ(λ′) ∼ λ′0 ,

while at weak coupling regime (sum rules):

ρ(λ′) ∼ λ′0 , f(λ′) = −4παs ∼ λ′ .

The different behavior of the results is an evidence that two approaches,
AdS/QCD and sum rules, are applicable at different regimes. AdS/QCD
works at strong coupling, whereas sum rules correspond to weak coupling
regime.

One more value that we can find using AdS/QCD is fπ. We use the
relation

ΠA(Q)|Q→0 =
f2

π

Q2
.

We can solve the equation of motion of A in the limit Q2 → 0 to obtain the
two-point function at small Q2. We find:

f2
π = −R

g5

∂za(z)

z
|z=0,Q=0

≈ R

g5
2.16σ2/3 =

Nc

12π2
2.16

(

3π2

2

〈q̄q〉
Nc

)2/3

∼ 40MeV . (20)

This value obviously does not coincide with expected 140 MeV. We see that
fπ is related to the parameters of classical solution of X. One can introduce
additional potential for X in the 5D bulk. Consequently the classical solution
will change and the value of fπ can be tuned.

5. Conclusion

The model under consideration has several free parameters but still has
some predictive power. It gives qualitatively satisfactory results but numbers
differ. Study of such simple model gives an insight to common features
of AdS/QCD and proposes modifications needed to obtain more realistic
results.
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