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We review recent applications of gauge/gravity duality to finite-tem-
perature quantum field theory. In particular we describe how the shear
viscosity can be computed from gravity duals.
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1. Introduction

Recently, there is a lot of interest in the application of AdS/CFT cor-
respondence [1–3] in hydrodynamics. The motivation for these studies are
experiments with collisions of heavy nuclei. At the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven, gold nuclei are collided with center of mass
energy of 200 GeV/nucleon. In terms of the total energy, this corresponds
to 200 × 197 GeV per collision. At the LHC heavy ion experiments will
be done with lead nuclei. The center of mass energy will be 5.5 TeV per
nucleon, almost 30 times more than the energy at RHIC.

The collision event can be visualized as follows. Accelerated to the RHIC
energy, the nuclei are Lorentz-contracted pancakes with thickness less than
0.1 fm. The two nuclei passed through each other during a very brief mo-
ment. Most of the baryons go right through each other, but particles are
created between the two receding nuclei. The “stuff” that is left between
the two receding nuclei is what will thermalize into a quark gluon plasma
(QGP). The plasma expands, cools down, and disintegrates into particles,
which fly into the detectors.

While this picture still lacks many details, we now know that the medium
created during the heavy ion collisions does behave like a medium, i.e., in
a collective manner. One piece of evidence comes from the so-called “elliptic
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flow.” In order to see this effect, one selects events where there is a non-zero
impact parameter. In this case region of the QGP is of an almond shape.
The region then expands due to the pressure gradient: the medium is hotter,
and has larger pressure at the center of the almond then at the edge. When
the region expands, it does so more quickly along the shorter axis of the
almond, where the pressure gradient is larger, compared to the longer axis,
where the pressure gradient is smaller. As the result the detector will see
an anisotropic distribution of particles: those flying along the shorter axis
of the almond are in average more energetic than those moving along the
longer axis. This anisotropy is quantitatively characterized by a parameter
called v2 (the index 2 refers to the fact that it is the coefficient of the cos 2φ
Fourier component of a function of the azimuthal angle φ).

2. Relativistic hydrodynamics

One of the simplest, but very successful, model of the heavy ion collisions
is that of a liquid drop which evolves according to the equations of relativistic
hydrodynamics. For the hydrodynamic equation to apply, it is necessary
that the characteristic length scale of the problem is much larger than the
mean free path. In other words, hydrodynamics is an effective theory which
captures the low-frequency dynamics of modes with ω, q ≪ ℓ−1

mfp. As the
size of the nucleus is about 6–7 fermi, and the mean free path is perhaps
a fraction of a fermi (see later), the hydrodynamic approximation is expected
to work reasonably well.

Let us recall the equations of hydrodynamics. For simplicity, let us
consider a plasma with no conserved charge. Only energy and momentum
are conserved, which is encoded in the equation

∂µT µν = 0 . (1)

At zeroth order in derivatives (or ω and q, which will be our expansion
parameters) we have

T µν = (ǫ + P )uµuν + Pgµν , (2)

where ǫ is the energy density. This form of the stress-energy tensor can be
obtained by taking the stress-energy tensor in the local rest frame (i.e., the
frame where uµ = (1, 0, 0, 0)), T µν = diag(ǫ, P, P, P ), and boosting it.

One can see that Eqs. (1) and (2) define a system of four equations
for four unknowns functions of space and time. The unknowns are the
three independent components of the velocity uµ(t,x) (recall the constraint
uµuµ = −1) and the temperature T (t,x). The pressure P and the energy
density ǫ depends on T through the equation of state. As a reminder, we
have the following basic equations: dP = sdT , dǫ = TdS, ǫ + P = Ts.
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To next order, we have:

T µν = (ǫ + P )uµuν + Pgµν + terms with one derivative + . . . , (3)

where the terms with one derivative give the viscous part of the stress energy
tensor Πµν . We assume an expansion in derivatives, which requires varia-
tions being smooth, ∂µ ≪ ℓ−1

mfp. We can write down the following expressions
containing one derivative

∂νuµ + ∂µuν , uµ∂νT + uν∂µT ,

gµν(∂ · u) , gµν(u · ∂T ) ,

u{µuν}(∂ · u) , u{µuν}(u · ∂T ) . (4)

It is possible to get rid of some of these terms by performing a shift:

umu → ũµ + #∂µT . (5)

We can use this freedom to impose a “gauge choice” uµΠµν = 0. In the
local rest frame where uµ = (1, 0̄), this gives us Π00 = Π0i = 0. With this
constraint, the most general form of Πµν is

Πµν = −ηPµαP νβ

(

∂αuβ + ∂βuα − 2

3
gαβ∂ · u

)

− ζPµν(∂ · u) . (6)

The first, traceless part has a numerical coefficient η which is called the shear
viscosity. The trace part is proportional to the bulk viscosity ζ. The bulk
viscosity encodes the resistance of the system to uniform expansion. Both η
and ζ are functions of the temperature T .

If the theory is conformal, then the energy-momentum tensor should be
traceless in flat space,

T µ
µ = ǫ − 3P + ζ(∂ · u) . (7)

Since this identity should be satisfied for all solutions, we find ǫ = 3P and
ζ = 0.

3. Hydrodynamic modes

Now, let us consider small fluctuations around the thermal equilibrium,
corresponding to a fluid with uniform temperature and at rest,

T (x) = T0 , uµ = (1,~0) . (8)
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We deal with small, linearized perturbations (the perturbations do not in-
teract with each other).

ui ≪ 1 ,

u0 = 1 + O(ū2) ,

T = T0 + δT ,

ǫ = ǫ0 + δǫ ,

p = p0 + δp .

Plugging this back into the first order expression for the energy momentum
tensor, we have:

T 00 = ǫ0 + δǫ + . . . ,

T 0i = (ǫ0 + P0)u
i ,

T ij = (P0 + δP )δij − η

(

∂iuj + ∂jui −
2

3
δij∂kuk

)

− ζ(∂kuk)δ
ij . (9)

We now insert these expressions into the conservation laws

0 = ∂0T
00 + ∂iT

0i ,

0 = ∂0T
0i + ∂jT

ij . (10)

We can perform Fourier transforms of the temperature and the velocity
vector. Let us look at the component proportional to exp(−iωt + i~q · ~x).
We split the velocity vectors into a transverse part and a longitudinal part,
~u = ~uT + ~uL, where ~q · ~uT = 0, ~uL ‖ ~q. For the transverse mode we get

[

(ǫ0 + P0)ω + iη~q 2
]

~uT = 0 , (11)

and for the longitudinal mode, there is a coupling between the fluctuations
in the energy density and the longitudinal velocity component,

(

ω −(ǫ0 + p0)

−q
(

∂p
∂ǫ

)

(ǫ0 + p0)ω + i
(

ζ + 4
3
η
)

q2

)

(

δǫ
up

)

= 0 . (12)

For the transverse mode, we find the dispersion relation ω = −iDq2, which
corresponds to an overdamped mode. The dispersion relation of the longi-
tudinal modes is obtained by diagonalizing the matrix and we find that:

ω = ±csq − i
Γ

2
q2 , (13)
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where cs is the speed of sound,

cs =

√

∂P

∂ǫ
, (14)

and

Γ =
1

ǫ0 + p0

(

ζ +
4

3
η

)

. (15)

The imaginary part of (13) is much smaller than the real part in the limit
q → 0.

3.1. Linear response theory and Kubo’s formula

The hydrodynamic equations can be viewed as a low-energy effective
theory. As such, it is capable of making prediction for the low-momentum
behavior of correlation functions. We shall extract one prediction, namely,
the Kubo formula that relate the shear viscosity with a thermal correlation
function of stress-energy tensor.

Let us remind ourselves the linear response theory. Consider a theory
with an action S. We perturb the theory by introducing a source J coupled
to some operator O:

S → S +

∫

dxJ(x)O(x) . (16)

Let us assume that the expectation value of O is zero in the absence of the
source. If the source is small, then the average of O is

〈O(x)〉 = −
∫

dyGR(x − y)J(y) , (17)

where GR is the retarded Green’s function of O,

iGR(x − y) = θ
(

x0 − y0
)

〈[O(x), O(y)]〉 . (18)

We are interested in the two point function of the stress energy tensor,
〈

T µν(x)Tαβ(y)
〉

. Since the source of the stress-energy tensor in the metric,
we therefore need to consider small perturbations of the metric:

gµν = ηµν + hµν , (19)

where hµν ≪ 1. We can therefore write that:

〈T µν(x)〉 ∼
∫

dy
〈

T µν(x)Tαβ(y)
〉

R
hαβ(y) . (20)
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If hµν varies over slowly in space and time, its influence on the fluid
can be captured within hydrodynamics. To quantify this effect, we need to
generalize the hydrodynamic equations to curved space. That can be done
easily by replacing derivatives by covariant derivatives. The conservation
law becomes

∇µT µν = 0 , (21)

and the constitutive equation becomes

T µν = (ǫ+P )uµuν +Pgµν − ηPµαP νβ

(

∇αuβ + ∇βuα − 2

3
gαβ∇ · u

)

(22)

(we set the bulk viscosity ζ = 0). Now, let us consider a perturbation with
only one component:

hxy = hxy(t) (23)

with every other hµν = 0. Recall that hµν is an external source and as such
does not need to satisfy the Einstein equations. With respect to the spatial
O(3) group, (23) is a spin-two perturbation and hence, to linear order, cannot
excite any fluctuation of the velocity (which is a vector) or the temperature
(a scalar). Therefore ux = uy = uz = 0 and T = T0 to linear order. Now let
us look in more detail at the xy component of the stress-energy tensor,

Txy =Pgxy−η (∇xuy+∇yux)=Phxy+η∂0hxy =−
∫

dyGR(x−y)hxy(y) , (24)

where we have used that:

∇µuν = ∂µuν − Γ λ
µνuλ (25)

but because all but u0 are zero, we are left with:

∇xuy = −Γ 0
xy = 1

2
∂0hxy , (26)

and so for the two point function in the zero spatial momentum limit, we
obtain:

〈T xyT xy〉 (ω; q̄ → 0) = P − iηω + O
(

ω2
)

(27)

and all other two point functions involving T µν vanish. Note that the first
term in the series is a contact term. We are then left with Kubo’s formula
relating the viscosity with limiting behavior of the Green’s function.

η = − lim
ω→0

1

ω
Gxy.xy

R (ω, 0̄) . (28)
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4. AdS/CFT calculation of the viscosity

We are now interested in calculating the retarded Greens function which
is related to the two point function of the stress energy tensor. Using the
AdS/CFT correspondence, this calculation is very simple. We know that the
supergravity field which couples to the stress energy tensor is the metric,
so we will be interested in looking at the propagation of gravitons in the
supergravity background. We start by showing how to calculate this at
T = 0 and then go to the finite temperature case which is of relevance for
the calculation of the shear viscosity from the Kubo relation.

We write the T = 0 AdS metric as:

ds2 =
R2

z2

(

−dt2 + dx̄2 + dz2
)

. (29)

We then wish to calculate the equation of motion for fluctuations on top of
the metric. We are only interested fluctuations of a single component of the
metric. In order to extract the Txy two point function we will define φ = hx

y

and obtain the equation of motion for φ:

∂µ

(√−ggµν∂νφ
)

= 0 (30)

which, for the AdS metric, reduces to a simple equation:

φ′′ − 3

2
φ′ − q2φ = 0 , (31)

where we have made the plane wave ansatz φ = φ(z)eiq.x. The solution to
this can be written (after Fourier transforming) as:

φ(q, z) = fq(z)φ0(q) = 1
2
(qz)2K2(qz)φ0(q) , (32)

where φ0(q) is the Fourier transform of φ0(x) = φ(x, z)|z=0 and K2 is the
modified Bessel function which diverges in the IR (z → 0) and goes to zero in
the UV (z → ∞). Taking the solution and putting it back into the classical
action yields only a surface term:

Sd[φ] =

∫

dzd4x
√−ggµν∂µφ∂νφ =

∫

d4x
√−ggzzφ∂zφ|z=∞

z=0

=

∫

d4q
f−q(z)∂zfq(z)

z3
φ0(−q)φ(q) . (33)

In order to calculate the correlator of two elements of the stress energy
tensor we simply need to take two derivatives of the generating function
with respect to the source of the stress energy tensor, which is the boundary
value of φ. This gives us:
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〈T xyT xy〉 ∼ δ2Scl

δφ0δφ0

=
f−q(z)∂zfq(z)

z3
|z=ǫ = #

q2

ǫ2
+ #q4 ln q2 . (34)

There is a contact term proportional to ǫ−2. To treat this term one needs
to know more about the procedure of holographic renormalization. In our
case, we will just be interested in the imaginary part of the above object,
which is ∼ q4.

Now we can perform the same calculation on the AdS black hole metric

ds2 =
r2

R2

(

−f(r)dt2 + dx̄2
)

+
R2

r2f(r)
dr2 , (35)

where f(r) = r4
0/r

4 and T = r0/πR2. Performing a change of coordinates
u = (r/r0)

2, we can again derive the equation of motion for the xy compo-
nent of the metric fluctuation, φ:

φ′′ − 1 + u2

uf
φ′ +

ω2 − q2f

uf2
φ = 0 , (36)

where we have rescaled ω and q of 2πT to make them dimensionless. Close
to the horizon the equation is:

φ′′ − φ′

1 − u
+

ω2

4(1 − u2)
φ = 0 (37)

which has two solutions φ = (1 − u)iω/2. The appropriate boundary condi-
tion at the horizon for the retarded Greens function is the incoming wave
boundary conditions, which picks up the asymptotics φ = (1−u)−iω/2. The
solution to the mode equation can be written as

Fq(u) = (1 − u)
−iω

2 G(u) , (38)

where G is regular at the horizon and tends to 1 at the boundary. The
equation for G(u) can be easily obtained by substituting (38) into Eq. (36),
but we will not write it down. The solution can be found as a series in ω
and q. Just as in the case of the zero temperature calculation we are now
asked to take:

〈T xyT xy〉 = #
F−q(u)F ′

q(u)

u

∣

∣

∣

∣

u→0

. (39)

Again, the imaginary part of the correlator is finite, and it is what needed for
the Kubo formula for the shear viscosity. The result for η can be presented
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in a simple form by dividing it to the volume entropy density s, which can
be found from black hole thermodynamics. Using thermodynamics it is then
very easy to calculate the entropy density and we can take the ratio of these
two quantities to get:

η

s
=

1

4π
. (40)

We recall that this result was obtained for the N = 4 supersymmetric Yang–
Mills theory.

More surprisingly, the result (40) holds for all theories with Einstein
gravity duals. These include theories with different dimensions, including in
the presence of finite chemical potential, with broken conformal symmetry,
with fundamental matter etc. There are now several proofs of the univer-
sality of η/s in theories with gravity duals. The most intuitive argument is
based on the identification of the shear viscosity with the cross-section of
graviton absorption on a black hole in the zero frequency limit [4],

η ∼ lim
ω→0

σabs(ω) . (41)

Within Einstein gravity, one can show that σabs approaches the geometric
area of the horizon in the limit ω → 0. On the other hand, the entropy is
also proportional to the area of the horizon. When one takes the ratio η/s,
the factors of the horizon area cancel out and one is left with the universal
value ~/4π.

Within kinetic theory, the ratio η/s proportional to the ratio of the mean
free path and the de Broglie wavelength of quasiparticles. Thus in theories
with gravity duals the mean free path is of the same order as the de Broglie
wavelength, which is consistent with the fact that they are strongly coupled.
From the field-theoretical point of view it is completely mysterious why η/s
is constant in all theories of this class.

4.1. Second-order hydrodynamics

It is possible to go one order beyond the first-order hydrodynamics and
take into account second-order corrections in the stress-energy tensor. Con-
formal symmetry imposes strong restriction on the possible form of the
second-order terms. It was found that there are five additional indepen-
dent kinetic coefficients at this level. All coefficients have been found for the
N = 4 supersymmetric Yang–Mills theory [5, 6].
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5. Conclusion

We have seen that gauge/gravity duality can be generalized to finite tem-
perature and used for the computation of real time quantities, like the kinetic
coefficients including the shear viscosity. Such applications of gauge/gravity
duality have revealed deep connections between thermal field theory, hydro-
dynamics, and black hole physics.
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