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The contribution presents a summary of the Gauge/Gravity approach
to the study of hydrodynamic flow of the quark–gluon plasma formed in
heavy-ion collisions. Considering the ideal case of a supersymmetric Yang–
Mills theory for which the AdS/CFT correspondence gives a precise form
of the Gauge/Gravity duality, the properties of the strongly coupled ex-
panding plasma are put in one-to-one correspondence with the metric of
a 5-dimensional black hole moving away in the 5th dimension and its defor-
mations consistent with the relevant Einstein equations. Several recently
studied aspects of this framework are recalled and put in perspective. This
paper is a written version of the four lectures given by the authors on that
subject.

PACS numbers: 11.25.Tq, 12.38.Mh, 25.75.–q, 52.27.Gr

1. Hydrodynamics are relevant for heavy-ion collisions

One of the most striking lessons one may draw [1, 2] from experiments
on heavy-ion collisions at high energy (e.g. at the RHIC accelerator, Brook-
haven) is that fluid hydrodynamics seems to be relevant for understanding
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the dynamics of the reaction. Indeed, the elliptic flow [3] describing the
anisotropy of the low-pT particles produced in a collision at non zero impact
parameter implies the existence of a collective flow of the particles following
a hydrodynamical pressure gradient due to the initial eccentricity in the
collision. Moreover, most hydrodynamical simulations which are successful
to describe this elliptic flow are consistent with an almost “perfect fluid”
behaviour, i.e. a small “viscosity over entropy” ratio η/s (see, for instance,
the reviews [2]).

The validity of a hydrodynamical description assuming a quasi-perfect
fluid behaviour has been nicely anticipated in Ref. [4]. The so-called Bjorken

flow is based on the hypothesis of an intermediate stage of the reaction pro-
cess, namely a boost-invariant1 quark–gluon plasma phase as a relativistic
expanding fluid. It is formed after a (quite rapid) thermalization period
and finally decays into hadrons, see Fig. 1. The boost-invariance can be
justified in the central region of the collision since the observed distribu-
tion of particles is flat, in agreement with the prediction of hydrodynamical
boost-invariance, where (space-time) fluid and (energy-momentum) particle
rapidities are proved to be equal [4], see Sec. 3.

pre-equilibrium stage

QGP

mixed phase

hadronic gas
described
by hydrodynamics

Fig. 1. Description of QGP formation in heavy ion collisions. The kinematic land-

scape is defined by τ =
√

x2
0 − x2

1; η = 1

2
log x0+x1

x0−x1

; xT = {x2, x3}, where the

coordinates along the light-cone are x0±x1, the transverse ones are {x2, x3} and τ

is the proper time, η the “space-time rapidity”.

The Bjorken flow was instrumental for deriving many qualitative and
even quantitative features of the quark–gluon plasma formation in heavy-
ion reactions. However, as inherent to the hydrodynamic approach, it says
only little on the relation with the microscopic gauge field theory, i.e. Quan-
tum Chromodynamics (QCD). Some important questions remain unsolved,
such as the reason why the fluid behaves like a perfect fluid, what is the

1 The introduction of hydrodynamics in the description of high-energy hadronic col-
lisions has been proposed by Landau [5], assuming “full stopping” initial conditions
which result in a non boost-invariant solution or Landau flow (see [6] for a unified
description of Bjorken and Landau flows). We will comment later on the relevance
of the Landau flow for AdS/CFT.



Hydrodynamic Flow of the Quark–Gluon Plasma and Gauge/Gravity . . . 3185

small amount of viscosity it may require, why and how fast thermalization
proceeds, etc. The problem is made even more difficult by the strong cou-
pling regime of QCD which is very probably required, since a perturbative
description leads in general to a high η/s. Indeed, the mean free path in-
duced by the gauge theory should be small (hence the coupling strong) in
order to damp the near-by force transversal to the flow, measuring the shear
viscosity.

It is thus interesting to use our modern (but still largely in progress)
knowledge of non perturbative methods in quantum field theory to fill the
gap between the macroscopic and microscopic descriptions of the quark–
gluon plasma produced in heavy-ion collisions. Lattice gauge theory meth-
ods are very useful to analyze the static properties of the quark–gluon
plasma, but there are still powerless to describe the plasma in collision.
Hence we are led to rely upon the new tools offered by the Gauge/Gravity
correspondence and in particular the one which is the most studied and well-
known namely the AdS/CFT duality [7] between the N = 4 supersymmetric
Yang–Mills theory and the type IIB superstring in the large Nc approxima-
tion. The features of the gauge theory on the (physical) Minkowski space
in 3 + 1 dimensions at strong coupling are in one-to-one relation with cor-
responding ones in the bulk of the target space of the 10-dimensional string
and in particular in the 5-dimensional metric of the AdS space, the boundary
of which can be identified with the 4-dimensional Minkowski space.

One should be aware when using the AdS/CFT tools that there does
not yet exist a gravity dual construction for QCD. However, the nice fea-
ture of the quark–gluon plasma problems is that it is a deconfined phase
of QCD, characterized by collective degrees of freedom and thus one may
expect to get useful information from AdS/CFT duality. This has been al-
ready proved when describing static geometries by an evaluation of η/s [8].
The subject of the present lectures is the investigation of the Gauge/Gravity
correspondence, in particular the AdS/CFT duality, in a dynamical setting
corresponding to a collision.

2. Relativistic hydrodynamics and Bjorken flow

On theoretical grounds, there are quite appealing features for applying
hydrodynamic concepts to high-energy heavy-ion reactions. Such concepts
have been already introduced some time ago [4,5] and find a plausible realiza-
tion nowadays. The fact that a rather dense interacting medium is created
in the first stage of the collision allows one to admit that the individual
partonic or hadronic degrees of freedom are not relevant during the early
evolution of the medium and justifies its treatment as a fluid. For the same
reason local equilibrium is a plausible assumption. Moreover, the high quan-
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tum occupation numbers allow one to use a classical picture and to assume
that the “pieces of fluid” may follow quasi-classical trajectories in space-time,
expressed as an in-out cascade [9] with the straight-line trajectories starting
at the origin (see Fig. 2), with

y = η , (1)

where

y =
1

2
log

(

E + p

E − p

)

, η =
1

2
log

(

x0 + x1

x0 − x1

)

(2)

are, respectively, the rapidity and “space-time rapidity” of the piece of the
fluid2.

Fig. 2. In–Out cascade. The “piece of fluid” with space-time rapidity η gives rise

to hadrons at rapidity y ≡ η, after crossing the “freeze-out” hyperbola at fixed

proper-time τ.

Note that (1) can be rewritten in the form

2y = log u+ − log u− = log x+ − log x− , (3)

where u± = e±y are the light-cone components of the fluid (four-)velocity
and x± = x0 ± x1 are the light-cone kinematical variables.

Taking (1) as the starting point and using the perfect fluid hydrody-
namics, Bjorken developed in his seminal paper [4] a suggestive (and very
useful in many applications) physical picture of the central rapidity region of

2 We keep the conventional notation η, not to be confused with viscosity. The difference
is clear enough to avoid mistakes.
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highly relativistic collisions of heavy ions. In this picture the condition (1)
leads to a boost-invariant geometry of the expanding fluid and thus to the
central plateau in the distribution of particles.

Let us introduce the relativistic hydrodynamic equations in light-cone
variables. We consider the “perfect fluid” approximation for which the
energy-momentum tensor is

T µν = (ǫ + p)uµuν − pηµν , (4)

where ǫ is the energy density, p is the pressure and uµ is the 4-velocity. We
assume that the energy density and pressure are related by the equation of
state:

ǫ = gp , (5)

where 1/
√

g is the sound velocity in the liquid. For the “conformal case”
T µµ = 0 and thus g ≡ 3.

Using
u± ≡ u0 ± u1 = e±y , (6)

and introducing

x± = x0 ± x1 = τe±η →
(

∂

∂x0
± ∂

∂x1

)

=
1

2

∂

∂x± ≡ 1

2
∂± , (7)

where τ =
√

x+x− is the proper time and η is the spatial rapidity of the
fluid, the hydrodynamic equations

∂µT µν = 0 (8)

take the form

∂±T 01 +
1

2
∂+(T 11 ± T 00) − 1

2
∂−(T 11 ∓ T 00) = 0 . (9)

Using now (4) and the equation of state (5) we deduce from this

g∂+[log p] = −(1 + g)2

2
∂+y − g2 − 1

2
e−2y∂−y ,

g∂−[log p] =
(1 + g)2

2
∂−y +

g2 − 1

2
e2y∂+y . (10)

These are two equations for two unknowns which describe the state of the
liquid: the pressure p and the rapidity y. They should be expressed in terms
of the positions x+, x− in the liquid. Other thermodynamic quantities can be
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obtained from the equation of state (5) and the standard thermodynamical
identities:

p + ǫ = Ts , dǫ = Tds , (11)

where we have assumed for simplicity vanishing chemical potential.
The result is

ǫ = gp = ǫ0T
g+1 , s = s0T

g → s ∼ ǫg/(g+1) . (12)

The simplest possibility to describe the expansion of the fluid was sug-
gested by Bjorken [4] who proposed to use the Ansatz (1) in the hydrody-
namical context. Introducing (1) into (10) we obtain

g∂+[log p] = −1 + g

2x+
, g∂−[log p] = −g + 1

2x− (13)

from which we deduce

p = ǫ g−1 = p0 (x+x−)−(g+1)/2g = p0 τ−(g+1)/g , (14)

where p0 is a constant, and thus specifically

p =
ǫ

3
= p0 (x+x−)−2/3 = p0 τ−4/3 ∝ T 4 (15)

for the conformal case.
Thus the system is boost-invariant: the pressure does not depend neither

on η nor on y. So are ǫ, s and T , given by (12). It is interesting to note that
the Landau flow corresponds asymptotically only to a logarithmic correction
of relation 1, namely

u± ∼ x±√log x± , (16)

which gives finally rise (as already noticed in [5], and for instance recently
discussed in [10]) to a gaussian shape in the y distribution of the entropy,
revealing a non boost-invariant picture, at least at some distance from central
rapidity.

3. Interest of AdS/QCD duality

In the previous sections we mentioned the ubiquity of hydrodynamic
methods in the description of QGP produced at RHIC. Yet, despite their
success in describing data, we have to keep in mind that they are used
as a phenomenological model without a real derivation from gauge theory.
This is quite understandable since almost perfect fluid hydrodynamics is
intrinsically a strong coupling phenomenon — for which one lacks a purely
gauge theoretical method3.

3 Lattice QCD methods do not work well here as this would require analytical contin-
uation to Minkowski signature which is nontrivial in this context.
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On the other hand, there exists a wide class of gauge theories, which
can be studied analytically at strong coupling. These are superconformal
field theories with gravity duals. String theory methods (namely AdS/CFT
correspondence) maps gauge theory dynamics (CFT) at strong coupling and
large number of colors into solving Einstein equations in asymptotically anti-
de Sitter space (AdS). The theories with gravity duals can differ substantially
from real world QCD at zero temperature. The best known example of
such theory — N = 4 super Yang–Mills (SYM) — is a superconformal field
theory with matter in the adjoint representation of the gauge group SU(Nc).
Because of the conformal symmetry at the quantum level this theory does
not exhibit confinement. On the other hand differences between N = 4 SYM
and QCD are less significant above QCD’s critical temperature, when quarks
and gluons are in the deconfined phase. Moreover, it was observed on the
lattice that QCD exhibits a quasi-conformal window in the certain range of
temperatures, where the equation of state is well-approximated by ǫ = 3p.
The above observations together with experimental results suggesting that
quark–gluon plasma is a strongly coupled medium is an incentive to use the
AdS/CFT correspondence as a tool to get insight into the non-perturbative
dynamics.

4. AdS/CFT setup

We will now describe how to set up an AdS/CFT computation for deter-
mining the spacetime behaviour of the energy-momentum tensor [11]. This
method does not make any underlying assumptions about local equilibrium
or hydrodynamical behavior. We will obtain hydrodynamic expansion as
a generic late time behaviour of the expanding strongly coupled plasma.

Suppose that we consider some macroscopic state of the plasma charac-
terized by a spacetime profile of the energy-momentum tensor

Tµν(xρ) . (17)

Then, since the AdS/CFT correspondence asserts the exact equivalence of
gauge and string theory, such a state should have its counterpart on the
string side of the correspondence. Typically it will be given by a modifica-
tion of the geometry of the original AdS5×S5 metric. This comes from the
fact that operators in gauge theory correspond to fields in supergravity (or
string theory). When we consider a state with a nonzero expectation value
of an operator, the dual gravity background will have the corresponding
field modified from its “vacuum” AdS5×S5 value. In the case of the energy
momentum tensor the corresponding field is just the 5-dimensional metric.
One then has to assume that the geometry is well defined i.e. it does not
have a naked singularity — a singularity not hidden by an event horizon.
This principle will select the allowed physical spacetime profiles of gauge



3190 M.P. Heller, R.A. Janik, R. Peschanski

theory energy-momentum tensor. Thus together with the Einstein equa-
tions this becomes the main dynamical mechanism for the strongly coupled
gauge theory.

The simplest way to formulate the precise correspondence between the
expectation value of the energy-momentum tensor and bulk geometry is to
use the Fefferman–Graham system of coordinates [12] for the latter:

ds2 =
gµν(xρ, z)dxµdxν + dz2

z2
. (18)

This metric has to be a solution of 5-dimensional Einstein’s equation with
negative cosmological constant4:

Rµν − 1

2
gµνR − 6 gµν = 0 . (19)

The expectation value of the energy momentum tensor may be easily re-
covered by expanding the metric near the boundary z = 0, following the
“holographic renormalization” procedure [13],

gµν(xρ, z) = ηµν + z4g(4)
µν (xρ) + . . . . (20)

Then

〈Tµν(xρ)〉 =
N2

c

2π2
g(4)
µν (xρ) . (21)

This relation can be used in two ways. Firstly, given a solution of Ein-
stein equations we may read off the corresponding gauge theoretical energy-
momentum tensor. Secondly, given a traceless and conserved energy-mo-
mentum profile one may integrate Einstein equations into the bulk in order
to obtain the dual geometry5. Then the criterion of nonsingularity of the ge-
ometry obtained in this way will determine the allowed spacetime evolution
of the plasma. Let us note that this formulation is in fact quite far away
from a conventional initial value problem.

Before we move to the case of expanding plasma, it is convenient to
consider the simple situation of a static uniform plasma with a constant
energy momentum tensor. Then the Einstein’s equations can be solved
analytically and we find [11] that the exact dual geometry of such a system is

ds2 = − (1 − z4/z4
0)2

(1 + z4/z4
0)z2

dt2 + (1 + z4/z4
0)

dx2

z2
+

dz2

z2
. (22)

4 One can show that such solutions lift to 10-dimensional solutions of ten dimensional
type IIB supergravity. The effective 5-dimensional negative cosmological constant
comes from the 5-form field in 10-dimensional supergravity.

5 This can be done order by order in z2, which is a near-boundary expansion. However,
potential singularities are hidden deep in the bulk, thus this power series needs to be
resummed.
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This metric may look at first glance unfamiliar, but a change of coordinates

z̃ =
z

√

1 + z4

z4

0

(23)

transforms it to the standard AdS Schwarzschild static black hole

ds2 = −1 − z̃4/z̃4
0

z̃2
dt2 +

dx2

z̃2
+

1

1 − z̃4/z̃4
0

dz̃2

z̃2
(24)

with z̃0 = z0/
√

2 being the location of the horizon. Before we proceed
further, let us note here one crucial thing: the fact, that the dual geometry
of a gauge theory system with constant energy density is a black hole was
not an assumption, but rather an outcome of a computation.

The Hawking temperature

T =
1

πz̃0
≡

√
2

πz0
(25)

is then identified with the gauge theory temperature, and the entropy with
the Bekenstein–Hawking black hole entropy

S =
N2

c

2πz̃3
0

=
π2

2
N2

c T 3 (26)

which is 3/4 of the entropy at zero coupling. To finish our discussion of
the static black hole, we note that the Fefferman–Graham coordinates cover
only the part of spacetime lying outside the horizon.

5. Boost invariant flow

Let us now apply the above procedure to a generic boost-invariant flow,
in view of making contact with the hydrodynamical Bjorken flow described
in Sec. 2. However, we do not want to make any preassumptions on the
dynamics, since we would like to recover the hydrodynamic behaviour as an
outcome of an AdS/CFT computation. To this end let us consider the most
general gauge theory energy-momentum tensor which is boost-invariant and
does not depend on transverse coordinates (see Fig. 1). Then conservation
of energy-momentum ∂µT µν = 0 and tracelessness T µ

µ = 0 allow to express
all nonvanishing components of Tµν in terms of a single function ε(τ) — the
energy density at mid rapidity:

Tµν =









ε(τ) 0 0 0

0 −τ3 d
dτ ε(τ)−τ2ε(τ) 0 0

0 0 ε(τ)+ 1
2τ d

dτ ε(τ) 0

0 0 0 ε(τ)+ 1
2τ d

dτ ε(τ)









. (27)
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Let us concentrate, following [11] on the late time asymptotics of this
function i.e.

ε(τ) ∼ 1

τ s
+ . . . (28)

for τ → ∞. Energy positivity requires that 0 ≤ s ≤ 4. We will consider
sharp inequalities here6. The most general metric consistent with the sym-
metry assumptions is

ds2 =
−ea(τ,z)dτ2 + τ2eb(τ,z)dy2 + ec(τ,z)dx2

⊥
z2

+
dz2

z2
. (29)

In order to find the late time form of the solution corresponding to ε(τ) =
1/τ s we may solve the Einstein equations in a power series for the metric
coefficients

a(τ, z) =

N
∑

n=0

an(τ)z4+2n , (30)

where a0(τ) = −ε(τ) = −1/τ s. Then from each coefficient an(τ) we may
extract the leading large τ behaviour and neglect the subleading terms. It
turns out that this procedure is exactly equivalent to introducing a scaling
variable

v =
z

τ s/4
, (31)

and assuming the metric coefficients to be just functions of v e.g. a(z, τ) =
a(v) in the large proper time limit (namely τ → ∞, z → ∞ with v kept
fixed). In this limit Einstein’s equations become just ordinary differential
equations and may be solved analytically. The singularity of these geome-
tries can then be tested by computing the scalar curvature invariant

R
2 = RµναβRµναβ . (32)

Since our solutions are defined only in the large proper time limit τ → ∞
with the scaling variable v kept fixed, we have to evaluate R

2 in the same
manner7.

6 Recently the case s = 4 has been considered in [14].
7 It should be stressed, however, that this condition is really a condition of regularity

of the expansion of the curvature invariant. It is safe to do as long as each term in the
large proper-time expansion is regular. On the other hand any singularity present in
this expansion might be either a genuine curvature singularity or a singularity of the
expansion, see a detailed discussion in Sec. 8.
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This procedure is described in detail in [11]. The result is that

• for generic s the resulting solution is singular,

• the only nonsingular solution corresponds to s = 4/3 which is just the
hydrodynamic Bjorken expansion (see 15, Sec. 2),

• the resulting metric takes the form

ds2 =
1

z2






−

(

1 − e0

3
z4

τ4/3

)2

1 + e0

3
z4

τ4/3

dτ2+
(

1 + e0

3
z4

τ4/3

)

(τ2dy2 + dx2
⊥)






+

dz2

z2
, (33)

where we reinstated the dimensionful parameter e0 so that

ε(τ) = e0/τ
4/3 . (34)

Let us note some salient features of this result. The geometry (33) bears
striking resemblance to the AdS black hole geometry (22) but with the po-
sition of the “effective horizon” being time dependent

z0 = 4

√

3

e0
τ1/3 . (35)

Then assuming similar relations as for the black hole case one gets the
Bjorken scaling of the temperature and entropy

T =

√
2

πz0
=

21/2e
1/4
0

π31/4
τ−1/3 ,

S ∝ τ

z3
0

= const . (36)

We see that the “movement” of the horizon into the bulk of AdS corresponds
physically to cooling of the expanding gauge theory plasma system.

A significant fact that has to be kept in mind is that the geometry (33),
in contrast to (22), is not an exact solution of Einstein’s equation. It is valid
only for large times. For smaller times it has to be modified. We will now
discuss this issue in more detail as it reflects important physical properties
of the gauge theory plasma.
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6. Beyond perfect fluid

The geometry (33) is only a solution of Einstein equations in the scal-
ing limit. However, with some effort, one can get also the first subleading
corrections to the metric i.e.

a(z, τ) = a0(v) +
1

τ4/3
a2(v) + . . . . (37)

Then after evaluating R
2, keeping track of subleading terms we find

R
2 = R0(v) +

1

τ4/3
R2(v) + . . . , (38)

where R0(v) is finite, but R2(v) develops a 4th order pole singularity. The
physical meaning of this behaviour is indeed quite clear. The geometry (37)
is dual to a state in gauge theory which undergoes expansion according to
exact perfect fluid hydrodynamics. Yet we know that gauge theory plasma
has nonzero viscosity and hence the perfect fluid behaviour

ε(τ) =
1

τ4/3
(39)

is not exact but, if it would be described by viscous Bjorken expansion
(viscous hydrodynamics), it would be modified to

ε(τ) =
1

τ4/3

(

1 − 2η0

τ2/3
+ . . .

)

(40)

where η0 is related to the shear viscosity through η = η0/τ (which follows
from the scaling η ∝ T 3).

Let us show how this arises using the AdS/CFT methods. We will not
presuppose a specific form of subleading correction but will start from

ε(τ) =
1

τ4/3

(

1 − 2η0

τ r
+ . . .

)

(41)

with a generic r. In order to verify that plasma expansion follows viscous
hydrodynamics we will have to first show that r = 2/3. The metric coeffi-
cients will now have an additional piece scaling as 1

τr ar(v). It turns out that

the curvature scalar R
2 is always nonsingular at that order8. Hence we have

to go one order further i.e. find all coefficients appearing in the following
expansion

a(z, τ) = a0(v) +
1

τ r
ar(v) +

1

τ2r
a2r(v) +

1

τ4/3
a2(v) + . . . , (42)

8 This was first observed for r = 2/3 in [15].
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Then the curvature scalar has the form

R
2 = R0(v) +

1

τ r
Rr(v) +

1

τ2r
R2r(v) +

1

τ4/3
R2(v) + . . . (43)

with R0(v) and Rr(v) being nonsingular, while both R2r(v) and R2(v) turn
out to have 4th order pole singularities. In order for them to have a chance
to cancel we have to have

r =
2

3
(44)

which is exactly the scaling of a viscosity correction to Bjorken flow. More-
over, cancellation occurs only when the shear viscosity coefficient has the
value9

η0 = 2−1/23−3/4 (45)

which is equivalent to η/s = 1/4π (for details see [16]). In a similar man-
ner one can go one order higher and determine a coefficient of second order
hydrodynamics. However at that order, it turns out that there remains a left-
over logarithmic singularity. We will show, in Sec. 8, that the logarithmic
singularity arises due to a pathology of the Fefferman–Graham expansion
and can be avoided when one makes a different late time expansion.

Finally let us comment on why it is interesting to verify the viscous
hydrodynamic behaviour with the specific viscosity coefficient for the ex-
panding plasma. Already before, there have been studies of linearized per-
turbations around the uniform plasma which demonstrated that hydrody-
namic behaviour appears for small fluctuations and the value of viscosity was
obtained from the Kubo formula [8]. It was interesting to verify whether hy-
drodynamics also applies in its fully nonlinear regime. The agreement of
the resulting value of the viscosity coefficient is thus a nontrivial consistency
check.

Another motivation for developing an AdS/CFT framework for studying
such time-dependent phenomena is the fact that some of the most interesting
and puzzling phenomena in heavy ion collisions are definitely very far from
equilibrium. We will mention some examples in Sec. 9.

7. Beyond boost-invariance

The calculations presented in the previous sections were performed for
systems with boost invariance symmetry and full translational and rotational
symmetry in the transverse plane. This allowed us to perform explicit com-
putations as the symmetry assumptions effectively reduced the calculation
to systems of ordinary differential equations. In this manner we obtained

9 We set here e0 = 1.
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directly the solution for gauge theory energy density ε(τ). Then, in order to
find the link with hydrodynamics, we found that this solution is a solution of
hydrodynamic equations with specific values for the transport coefficients.

This approach has both an advantage and a drawback. The advantage is
that one does not presuppose any kind of dynamics and one may try to ap-
ply it in contexts very far from equilibrium, where hydrodynamic description
does not apply. The drawback is that the appearance of hydrodynamic equa-
tions is not transparent and it is difficult to relax the symmetry assumptions
due to the complexity of solving nonlinear Einstein’s equations.

Recently the latter drawback was addressed and it was shown in general
how the equations of hydrodynamics arise from the gravity side [17]. Here
we will briefly review this approach.

Let us start from the static black hole (22) and (24) but written in yet
another coordinate system — the incoming Eddington–Finkelstein coordi-
nates:

ds2 = −2dtdr − r2

(

1 − T 4

π4r4

)

dt2 + r2ηijdxidxj . (46)

Here T is the temperature, r = ∞ corresponds to the boundary. xµ = const
are null curves going from the boundary into the black hole. The advantage
of this coordinate system is that it is well defined on the horizon and extends
all the way from the boundary to the singularity at the center of the black
hole.

The geometry given above corresponds to a uniform plasma at rest
(i.e. with the 4-velocity uµ = (1, 0, 0, 0)) and given temperature T . We may
now perform a boost (and perform a dilatation) to obtain the dual geometry
to a moving plasma system with uniform 4-velocity uµ and temperature T :

ds2 =−2uµdxµdr−r2

(

1− T 4

π4r4

)

uµuνdxµdxν +r2(ηµν +uµuν)dxµdxν . (47)

The idea of Ref. [17] is to allow uµ and T to be (slowly-varying) functions
of the spacetime coordinates. Once this is done the geometry (47) ceases to
be an exact solution of Einstein equation because of nonvanishing gradients
of the parameters uµ and T . This suggests to perform an expansion of
the solution in terms of gradients which has been carried out in [17] up
to second order in derivatives. The integration constants arising at each
order are again fixed by requiring regularity of the metric at the horizon.
The resulting metric is expressed in terms of 4-velocities and temperatures
and their derivatives, so when one extracts the energy-momentum tensor
it will be given directly in terms of those quantities. Up to first order the
expression is

T µν =
N2

c

8π2

{

(πT )4(ηµν + 4uµuν) − 2(πT )3σµν
shear

}

. (48)
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The first term is just the perfect fluid energy momentum tensor, while the
second term involves the shear viscosity. This result essentially demon-
strates how general hydrodynamic equations arise from gravity in AdS/CFT.
Indeed, once it is shown that the general form of the gauge theory energy-
momentum tensor has the form (48), then conservation of energy momentum
∂µT µν = 0 is equivalent, by definition, to conformal relativistic Navier–
Stokes equations. As a byproduct, the above construction also gives a map
from solutions of (viscous) hydrodynamics to gravity solutions. However,
this setup requires that the starting point is not far off from equilibrium.
For processes which do not admit a hydrodynamic description (like the early
stage of a heavy-ion collision) one has to resort to different methods.

8. Reduction of singularities

The leftover logarithmic singularity found in the third order of the square
of the Riemann tensor [18] (as well as in the higher curvature invariants [19])
might be the signal of either genuine curvature singularity or the singularity
of the chosen expansion scheme10. If the first is true, this means that the
whole framework is inconsistent and either one needs to include additional
degrees of freedom to cure it or the boost-invariant flow is unphysical11. The
results presented in [19] show that no supergravity field can fix the problem,
which led to conjectures, that boost-invariant flow cannot be realized within
the supergravity framework [20]. On the other hand, the gravity dual of
general fluid flow up to the second order in derivatives was shown to be reg-
ular and it was hard to imagine how possible singularities could form in the
third order [17, 21]. The resolution of this puzzle was presented in [22] (see
also [23]). It turns out that there exists a singular coordinate transformation
from Fefferman–Graham coordinates to Eddington–Finkelstein ones, which
yields a completely regular and smooth metric from the boundary up to
the standard black-brane singularity. This leads to regular (apart from the
standard black-brane singularity) large proper-time expansion of curvature
invariants. The metric Ansatz in Eddington–Finkelstein coordinates takes
the form

ds2 = 2dτ̃ dr − Ã (τ̃ , r) dτ̃2 + (1 + r τ̃)2 eb̃(τ̃ ,r)dy2 + ec̃(τ̃ ,r)dx2
⊥ (49)

and was motivated by the boosted black-brane metric (47) with a boost

and dilatation parameters u = 1 ∂τ̃ and T ∼ τ̃−4/3. The functions Ã (τ̃ , r),

10 As it was stressed before, the large-proper time expansion of curvature invariants is
not diffeomorphism-invariant. The encountered singularities are physical only if there
is no coordinate transformation which removes them.

11 Since it corresponds to the naked singularity on the gravity side.
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b̃ (τ̃ , r) and c̃ (τ̃ , r) are expanded in a large-proper time expansion analo-
gously as it was in the Fefferman–Graham case, i.e.

Ã (τ̃ , r) = Ã0

(

r τ̃1/3
)

+
1

τ̃2/3
Ã1

(

r τ̃1/3
)

+
1

τ̃4/3
Ã2

(

r τ̃1/3
)

+ . . . . (50)

This form of expansion can also be justified by [24]. The terms damped by
inverse power of proper time come from the gradient expansion. The bound-
ary metric in proper-time-rapidity coordinates has non-vanishing Christoffel
symbols Γ ∼ τ̃−1, thus the four velocity gradient ∇u (which is constant in
these coordinates) gives a factor of τ̃−1. On the other hand the expansion
parameter multiplying each term in gradient expansion is the inverse power
of the temperature T (see [17]). Because T ∼ τ̃−1/3, the overall damping is
indeed τ̃−2/3 — a fact derived in [18] from the non-singularity argument.

The non-perturbative12 piece in the metric at dy2 introduced in [23] is
responsible for a correct limit energy density → 0. It also becomes impor-
tant if one wants to solve the problem of early-time dynamics [27] using
Eddington–Finkelstein coordinates.

The integration constants13 are fixed by requiring the regularity of the
metric functions Ãi (ṽ), b̃i (ṽ) and c̃i (ṽ) at each order i. This is justified since
the Eddington–Finkelstein are valid for τ̃ > 0 and 0 < ṽ = r τ̃ < ∞. The
singular coordinate transformation which takes the metric from Eddington–
Finkelstein coordinates to Fefferman–Graham ones is given order by order
in the gradient expansion by

τ̃ (τ, z) = τ

{

T0

(

z τ−1/3
)

+
1

τ2/3
T1

(

z τ−1/3
)

+ . . .

}

, (51)

r (τ, z) =
1

z

{

R0

(

z τ−1/3
)

+
1

τ2/3
R1

(

z τ−1/3
)

+ . . .

}

. (52)

The leading-order solutions (corresponding to the perfect fluid on the gauge
theory side) are related by

τ̃ → τ

{

1 − 1

τ2/3

[

31/4π

4
√

2
+

31/4

2
√

2
tan−1

(

31/4

√
2

r τ1/3

)

+
31/4

4
√

2
log

(

r τ1/3 −
√

2
31/4

r τ1/3 +
√

2
31/4

)]}

,

r → 1

z

√

1 +
z4

3 τ4/3
. (53)

12 In the sense of large-proper time expansion.
13 Not all of them — there is a remaining gauge freedom (coordinate transformation),

which leaves the metric Ansatz unchanged: r → r + f (τ̃ ), where f (τ̃ ) is an arbitrary
function.
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The transformation is singular at z = 31/4τ1/3, which is precisely the locus
of the logarithmic singularity encountered in [18]. Formulas for higher order
transformation coefficients are too long to be presented here and can be
found in [28]. The energy-momentum tensor extracted from the solution in
Eddington–Finkelstein coordinates reproduces the energy momentum tensor
obtained in [18].

9. Beyond hydrodynamics

Gauge-gravity duality has already proven to be an invaluable tool in
describing properties of static or near-equilibrium (hydrodynamics) strongly
coupled gauge theory systems. Noticeable achievements in that direction
are the viscosity evaluation bound [8] and the consistent formulation of the
second order conformal hydrodynamics [17, 29]. These successes came from
the holographic understanding of hydrodynamics. On the other hand there
is much more interesting and nontrivial dynamics than hydro. Far from
equilibrium behavior of gauge theories is a fascinating and pretty much open
problem of experimental importance, like the early universe or initial stages
of heavy ion collisions14. The AdS/CFT correspondence is surely capable to
shed new light on these problems, or even be understood as a formulation
of far from equilibrium gauge theory.

In the context of heavy-ion collisions the most important and probably
the most difficult questions concern the issues of early time dynamics [27]
and the transition to an isotropic [34] and thermalized medium. One of the
puzzles here is the short time in which nuclear matter approach local equi-
librium. Experimental data fitting well with hydrodynamical simulations
with small viscosity justified applications of the AdS/CFT correspondence
at strong coupling for the late stages of heavy-ion collisions. It is not clear to
what extent early time dynamics is driven by non-perturbative effects and
whether the lessons learned from AdS/CFT might be directly applied to the
nuclear matter in the early stages of the evolution. Approaching equilibrium
is also of an interest from the General Relativity point of view. Isotropic
and thermalized matter on the gauge theory side corresponds to a black hole
in AdS, whereas thermalization and approach to local equilibrium should be
governed by the dynamics of gravitational collapse.

Perhaps some of these questions might be answered by studying collisions
of shock-waves in AdS. The geometry corresponding to a projectile in 3 + 1

14 In the late stages of heavy ion collision, strongly coupled quark–gluon plasma forms
and holographic technics at strong gauge coupling are better justified then just after
the collision (running of the coupling). Nevertheless, applying AdS/CFT correspon-
dence to describe far from equilibrium processes in gauge theories is an interesting
problem even from a purely theoretical point of view.
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dimensions was constructed in [11] using holographic renormalization. The
metric

ds2 =
1

z2

{

−2dx+dx− + f
(

x−) z4
(

dx−)2 + dx2
⊥ + dz2

}

(54)

with an arbitrary function f (x−) corresponds to the situation when

• the dynamics is one-dimensional (i.e. no dependence on transverse
coordinates),

• the energy-momentum tensor depends only on a single light-cone vari-
able (here chosen to be x− = x0 − x1).

Traceless and conserved energy momentum tensor satisfying the above
assumptions takes a particularly simple form — its only non-zero compo-
nent is T−− = f (x−). Choosing f (x−) = Mδ (x−) leads to a shock-wave —
infinitely thin plane of matter moving at the speed of light, which is a toy-
model for highly boosted nucleus. The idea is to collide two such projec-
tiles and single out the physical behavior of the plasma from the regularity
of the dual geometry. This is a difficult problem, because of the broken
boost-invariance, which leads to solving Einstein equations in 3 variables
(x+, x− and z or equivalently τ , y and z). The geometry before the collision
(x+ + x− < 0) is known — it is simply the superposition of two incoming
shock-waves

ds2 =
1

z2

{

−2dx+dx−+Mδ
(

x−) z4
(

dx−)2+Mδ
(

x+
)

z4
(

dx+
)2

+dx2
⊥+dz2

}

.

(55)

Shock-waves collide at x+ = x− = 0 and from now on the dynamics of
the system must be deduced from Einstein equations. The first attempt to
address this issue in [31] focused on the simpler setup than presented so far —
a shock-waves collision in 1+1 dimensions. The energy-momentum tensor for
such a system before the collision is given by T++ = f (x−) and T−− = g (x+)
with vanishing off-diagonal components. This is at the same time the most
general form of the energy-momentum tensor for a 1 + 1 dimensional CFT.
A nice feature is that the dual geometry for the whole collision process can
be constructed here exactly. However, in this low dimensional context, the
projectiles pass each other unaffected (or propelled back-to-back [31]), so
the physics of plasma production and thermalization is absent here. On the
other hand the problem of genuine interest — collision of shock-waves in
3 + 1 dimensions — requires some approximation scheme in which Einstein
equations become tractable. Up to now, two proposals have been made.
The first one [32] treats proper time as a small parameter but suffers from
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a negative energy density in some regions due to the conditions imposed at
the light-cone. The second one [33] solves Einstein equations perturbatively
in M leading to the prediction that shock-waves stop almost immediately
after the collision (reminding of the full stopping condition of the Landau
flow, see Sec. 2.). This problems surely deserve further studies.

There are also other studies of dynamical processes in an evolving plasma
system which go beyond hydrodynamics. One example is the problem of
thermalization of small perturbations around the expanding plasma (some
first investigations has been performed in [11]). Another use of the evolving
geometries is to study other physical processes in the presence of the evolving
plasma system like e.g. the physics of mesons and flavours studied through
embedding D7 branes in the time-dependent geometries [35]. Finally one
may study isotropization of anisotropic plasma. The first investigations
have been performed in [34], see also [36].

10. Summary

The Gauge/Gravity approach to the formation and evolution of a quark–
gluon plasma in heavy-ion collisions described above has the interest of cast-
ing an exploratory bridge between the rigorous results of string theory and
some pending questions raised by the experiments on quark–gluon plasma.
These questions cannot yet be raised in the framework of strongly coupled
QCD, for which we do not possess the adequate tools, but they can be
addressed for the first time in a quantitative and rigorous way in the su-
persymmetric case of the AdS/CFT correspondence. It is thus a novel and
valuable approach and can serve as a model for further studies.

Let us summarize some aspects of this approach, being aware (and with
apologies for those not quoted or mentioned) that this subject is in constant
development which will force us to mention only a few of them.

Starting with the experimental evidence that hydrodynamics is relevant
in the formation and evolution of a quark–gluon plasma in heavy-ion col-
lisions and in particular of the “Bjorken flow” description, we present the
AdS/CFT setup allowing to describe the dynamics of the plasma (in the
AdS/CFT case). We show that it is possible to derive the geometry dual to
the asymptotic evolution of the plasma in terms of an expansion in a scal-
ing variable. the nonsingularity requirement on the Gravity side gives a set
of “selection rules” on the Gauge side: the perfect fluid at first order, the
η/s = 1/4π property and other transport coefficients at higher orders . . .

Beyond the boost-invariant Bjorken flow, there exists an intriguing but
rigorous one-to-one correspondence between the complete (and even com-
pleted using AdS/CFT!) hydrodynamic equations and the solutions of the
Einstein equations in the bulk of the 5-dimensional space. Some apparent
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obstacles, such as the appearance of logarithmic singularities in the asymp-
totic expansion of the 5-dimensional metric, have been shown to be a mere
artefact of the choice of the expansion parameter and have been cured.

Beyond the hydrodynamical description of the transient plasma, one goal
is now to explore the dynamical aspects far from equilibrium. We describe
some very recent attempts, which even though not conclusive yet, show the
interest of the extension of Gauge/Gravity correspondence to attack some
down-to-earth problems, such as the short thermalization time, probably
observed by the heavy-ion phenomenology and more generally the effect of
the initial conditions on the whole process.

It is quite interesting to see that some complex aspects of Gauge field
theory dynamics can find unexpected answers from Gravity. It would be
intriguing that some nontrivial aspects of Gravity (such as the dynamics of
moving black holes) also could gain some new insight from the correspon-
dence with some aspects of heavy-ion collisions.
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