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We give a pedagogical review of recent progress towards understanding
the response of a strongly coupled plasma at finite temperature to a hard
probe. The plasma is that of the N = 4 supersymmetric Yang–Mills theory
and the hard probe is a virtual photon, or, more precisely, an R-current.
Via the gauge/gravity duality, the problem of the current interacting with
the plasma is mapped onto the gravitational interaction between a Maxwell
field and a black hole embedded in the AdS5 × S5 geometry. The physical
interpretation of the AdS/CFT results can be then reconstructed with the
help of the ultraviolet/infrared correspondence. We thus deduce that, for
sufficiently high energy, the photon (or any other hard probe: a quark,
a gluon, or a meson) disappears into the plasma via a universal mecha-
nism, which is medium-induced quasi-democratic parton branching: the
current develops a parton cascade such that, at any step in the branching
process, the energy is almost equally divided among the daughter partons.
The branching rate is controlled by the plasma which acts on the coloured
partons with a constant force ∼ T 2. When reinterpreted in the plasma
infinite momentum frame, the same AdS/CFT results suggest a parton
picture for the plasma structure functions, in which all the partons have
fallen at very small values of Bjorken’s x. For a time-like current in the
vacuum, quasi-democratic branching implies that there should be no jets
in electron–positron annihilation at strong coupling, but only a spatially
isotropic distribution of hadronic matter.
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1. Introduction: From RHIC physics and lattice QCD
to AdS/CFT

One of the most interesting suggestions emerging from the heavy ion
program at RHIC is the fact that the deconfined, ‘quark–gluon’ matter pro-
duced in the early stages of an ultrarelativistic nucleus–nucleus collision
might be strongly interacting (see the summary of the experimental results
in the “white papers” of the four experiments at RHIC [1–4] and the review
articles [5–9] for discussions of their theoretical interpretations). This rep-
resents an important paradigm shift, since the prevalent opinion for quite
some time was that this form of hadronic matter should be weakly cou-
pled, because of its high density and of the asymptotic freedom of QCD.
This shift of paradigm intervened only a few years after the recognition of
the AdS/CFT correspondence [10–13] — a theoretical revolution which of-
fered a whole new framework, based on string theory, to address problems
in strongly coupled gauge theories. The advent of the RHIC data has moti-
vated an intense theoretical activity over the last few years, aiming at using
the AdS/CFT correspondence to understand properties of QCD-like mat-
ter at finite temperature and/or high energy (see, e.g., the recent review
paper [14] and Refs. therein).

One should emphasise here that the experimental evidence in favour of
strong-coupling dynamics at RHIC is rather indirect — its physical inter-
pretation also involves theoretical assumptions which are generally model-
dependent — but some of the data seem quite robust and compelling. This
is especially the case for those which reflect the long-range, collective prop-
erties of the hadronic matter. For instance, the RHIC data exhibit a form
of collective motion called ‘elliptic flow’ [15], which demonstrates that the
partonic matter produced in the early stages of a Au+Au collision behaves
like a fluid. Remarkably, these data can be well accommodated within the-
oretical analyses using hydrodynamics, which assume early thermalization
and nearly zero viscosity — or, more precisely, a very small viscosity to
entropy–density ratio η/s. These features are hallmarks of a system with
very strong interactions: indeed, at weak coupling g ≪ 1, the equilibration
time and the ratio η/s are both parametrically large, since proportional to
the mean free path ∼ 1/g4. On the other hand, AdS/CFT calculations
for gauge theories with a gravity dual [16] suggest that, in the limit of an
infinitely strong coupling, the ratio η/s should approach a universal lower
bound which is ~/4π [17]. (The existence of such a bound is also required
by the uncertainty principle.) Interestingly, it appears that, within the error
bars, the ratio η/s extracted from the RHIC data [18, 19] is roughly consis-
tent with this lower bound, thus supporting the new paradigm of a strongly
coupled Quark–Gluon Plasma (sQGP).
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But experimental indications in favour of strong interactions have also
emerged from different type of data — those associated with hard probes.
A ‘hard process’ in QCD is a scattering involving a large momentum ex-
change, Q ≫ ΛQCD ∼ 200 MeV. In the context of heavy ion collisions, the
‘hard probes’ are highly energetic ‘jets’ (partons, virtual photons, dileptons,
heavy-quark mesons), which are produced by the hard scattering of the in-
coming quarks and gluons, and which on their way towards the detectors
measure the properties of the surrounding matter with a high resolution,
meaning on very short space-time scales. One would expect such hard in-
teractions to lie within the realm of perturbative QCD, yet some of the
experimental results at RHIC seem difficult to explain by perturbative cal-
culations at weak coupling. One of these results is the ratio RAA between the
particle yield in Au+Au collisions and the respective yield in proton–proton
collisions rescaled by the number of participating nucleons. This ratio would
be one if a nucleus–nucleus collision was the incoherent superposition of col-
lisions between the constituents nucleons (protons and neutrons) of the two
incoming nuclei. But the RHIC measurements show that RAA is close to
one only for direct photon production, whereas for hadron production it is
strongly suppressed (roughly, by a factor of 5; see Fig. 1). This suggests
that, after being produced through a hard scattering, the partonic jets are
somehow absorbed by the surrounding medium.

Fig. 1. The ratio RAA of measured versus expected yield of various particles

(π0, η, γ) in Au+Au collisions at
√
sNN = 200 GeV as function of the transverse

momentum pT (RHIC, PHENIX collaboration). Unlike the direct photons, the

mesons shows a strong amount of suppression at high pT, which is moreover the

same for pions and η-mesons. This suggests that the suppression is an effect related

to the absorption (energy loss) of energetic partons in the medium.
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Additional evidence in that sense comes from studies of jets and, more
precisely, of the angular correlation of the radiation associated with a trigger
particle with high transverse momentum (the ‘near side jet’). A high-energy
proton–proton (or electron–positron) collision generally produces a pair of
partons whose subsequent evolution (through fragmentation and hadronisa-
tion) leaves two jets of hadrons which propagate back-to-back in the centre
of mass frame (see Fig. 2 (left)). Hence, if one uses a hard particle in one
of these jets to trigger the detector, then the distribution of radiation in
the azimuthal angle ∆Φ shows two well pronounced peaks, at ∆Φ = 0 and
∆Φ = π, as shown in Fig. 3 (the curve denoted there as ‘p+ p min. bias’).
A similar distribution is seen in deuteron–gold collisions (the points d+Au
in Fig. 3), but not in central Au+Au collisions, where the peak at ∆Φ = π
(the ‘away side jet’) has disappeared, as shown by the respective RHIC data
in Fig. 3. It is then natural to imagine that the hard scattering producing
the jets has occurred near the edge of the interaction region, so that the
near side jet has escaped to the detector, while the away side jet has been
absorbed while crossing through the medium (see Fig. 2 (right)).

jet

jet

.

Fig. 2. Jet production in high-energy scattering. Left: the typical situation in

a proton–proton collision: the leading partons fragment into two back-to-back

hadronic jets, which are both observed by the detector. Right: a nucleus–nucleus

collision: one of the leading partons escapes the interaction region and yields a jet

in the detector, but the other one is absorbed by the surrounding matter.

The Au+Au results in Figs. 1 and 3 show that the matter produced right
after a heavy ion collision is opaque, which may well mean that this matter
is dense, or strongly-coupled, or both. The theoretical way to describe the
disappearance of a parton in this matter is by computing the rate for energy
loss dE/dt, which is proportional to a specific transport coefficient — the ‘jet
quenching parameter’ q̂ — which characterises the parton interactions in the
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medium (see, e.g., [8] and Refs. therein). This extraction of this parameter
from the RHIC data is accompanied by large uncertainties, so the obtained
values lie within a wide window: q̂ ≃ 0.5 ÷ 15 GeV2/fm (see, e.g., [20,21]).
It is often stated that this value is too large to be accommodated by weak
coupling calculations, but this is still under debate [22]. What is clear,
however, is that a complimentary analysis of these phenomena in the non-
perturbative regime at strong coupling would be highly valuable, and this is
where the AdS/CFT correspondence comes into the play.
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Fig. 3. Azimuthal correlations for jet measurements at RHIC (STAR Collaboration)

in p + p, d+Au, and Au+Au collisions. The selected events are such that the

trigger particle has transverse momentum 4 GeV < pT < 6 GeV and the associated

radiation has pT > 2 GeV.

The standard non-perturbative technique in QCD, which is lattice gauge
theory, is not applicable (at least, in its current formulation) for dynamical
observables, so like real-time evolution, transport coefficients, or interac-
tion rates. On the other hand, such problems can be addressed via the
AdS/CFT correspondence, but the applicability of the latter is restricted
to the limit where the ‘t Hooft coupling is strong λ ≡ g2Nc ≫ 1 (which in
practice means a large number of colours: Nc ≫ 1), and to special gauge
theories which are more symmetric than QCD and for which a ‘gravity dual’
(i.e., an alternative representation as a string theory living in a curved space-
time geometry in D = 1 + 9 dimensions) has been identified. The original,
and so far best established, such duality is that between the N = 4 super-
symmetric Yang–Mills (SYM) theory and the type IIB superstring theory
living in background geometry which is AdS5 × S5 [10–12] (see also Sect. 3
below). The N = 4 theory is a priori quite different from her QCD ‘cousin’:
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it is maximally supersymmetric, it has conformal symmetry at quantum level
(meaning that the coupling is fixed), it has no confinement (and hence no
hadronic asymptotic states), and the fields in the Lagrangian are all in the
adjoint representation of the ‘colour’ gauge group SU(Nc) (unlike in QCD,
where the fermions lie in the fundamental representation). So the relevance
of the AdS/CFT results for our real world is generally far from being clear.
Yet, the particular context of ultrarelativistic heavy ion collisions, as ex-
plored at RHIC and in the near future at LHC, is quite exceptional in that
respect, because many of the limitations of the AdS/CFT correspondence
become less important in this context.
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Fig. 4. Lattice results for the trace anomaly, T µ
µ = ǫ− 3p, in units of T 4 (left) [23]

and for the pressure of the SU(3) gauge theory (right) [24]. In the right figure, dif-

ferent lines correspond to different gauge actions, whereas the upper band denoted

as ‘HTL’ (for ‘Hard Thermal Loop’) represents the results of a parameter-free re-

summation of perturbation theory [25]. The small arrow in the upper right corner

indicated the pressure of an ideal gas, i.e., the zero-coupling limit g → 0.

Indeed, the QCD matter of interest is anyway in a deconfined, quark–
gluon plasma, phase, for which the ‘conformal anomaly’ — the breaking
of the conformal symmetry of the QCD Lagrangian by the running of the
coupling — appears to be relatively small. This is confirmed by lattice sim-
ulations for the QCD thermodynamics within the temperature range corre-
sponding to the energy density produced at RHIC and (in perspective) LHC:
the relevant range for T is 2Tc ≤ T ≤ 5Tc, where Tc ≃ ΛQCD ≃ 200 MeV
is the critical temperature for the deconfinement phase transition. The run-
ning of the QCD coupling1 g(µ) is negligible within such a restricted range
and, besides, the relevant value turns out to be quite large: g & 1.5, meaning
λ & 6, which leaves the hope for a strong-coupling behaviour. Moreover, the

1 It is meaningful to choose the renormalisation scale µ as the ‘first Matsubara fre-
quency’ µ = 2πT , since this is the value which minimises the logarithms of µ in
perturbation theory.
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lattice calculation of the ‘trace anomaly’ 〈T µ
µ 〉, which is proportional to the

QCD β-function,

〈T µ
µ 〉 = ǫ− 3p = β(g)

dp

dg
, (1.1)

(ǫ is the energy density and p is the pressure) yields a relatively small result
— less than 10% of the total energy density — for all temperatures above
2Tc ≃ 400 MeV (see Fig. 4 (left)).

But lattice QCD at finite temperature also illustrates the difficulty to de-
cide whether the quark–gluon plasma is strongly-coupled, or not, within the
relevant range of temperatures. To explain this, consider the lattice results
for the pressure, as shown in Fig. 4 (right): after a sharp increases around
Tc, the QCD pressure is slowly approaching, for temperatures T & 1.5Tc,
towards the corresponding value p0 for an ideal gas, which in Fig. 4 (right)
is indicated by the small arrow in the upper right corner. As visible in this
figure, the deviation (p − p0)/p0 is quite small, less than 20%, for all tem-
peratures T & 2Tc. One may thus conclude that the QGP is weakly coupled
at these temperatures. And, indeed, a weak-coupling calculation [25], based
on a resummation of the perturbation theory and whose results are indi-
cated by the upper, ‘HTL’, band in Fig. 4 (right), provides a rather good
description of the lattice results for T & 2.5Tc. However, this conclusion is
challenged by the AdS/CFT calculation of the pressure in the N = 4 SYM
plasma in the strong coupling limit λ → ∞ [26], which yields a remarkable
result: the pressure at infinite coupling is exactly 3/4 of the corresponding
ideal-gas value p0:

p(λ→ ∞) =
π2

8
N2

c T
4 =

3

4
p0 . (1.2)

This ratio p/p0 = 0.75 is close to the value p/p0 ≈ 0.85 found in lattice
QCD at T = 2.5Tc (see Fig. 4 (right)), so the latter might be consistent
with strong coupling as well!

Since the lattice QCD results cannot be unambiguously interpreted, it
is interesting to have a closer look at the N = 4 SYM theory at large Nc,
for which both weak-coupling and strong-coupling calculations are possible.
The corresponding expansions are known to next-to-leading order, i.e., to
O(λ3/2) at weak coupling [27] and, respectively, O(λ−3/2) at strong cou-
pling [26], and can be summarised as follows (for the entropy density s, for
convenience): writing s = f(λ)s0 with s0 = (2π2/3)N2

c T
3 (the ideal gas

value), one finds
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f(λ) = 1 − 3

2π2
λ +

√
2 + 3

π3
λ3/2 + . . . for small λ , (1.3)

f(λ) =
3

4

(

1 +
15ζ(3)

8
λ−3/2 + . . .

)

for large λ . (1.4)

These expansions are illustrated in Fig. 5 [28], together with an interpola-
tion between them which is nicely monotonic and can be viewed as the ‘true’
non-perturbative result (by lack of better approximations for intermediate
values of the coupling). Also shown in Fig. 5 (the band2 denoted as ‘2PI’
there) is the result of a resummation of perturbation theory obtained via
the same method as the ‘HTL’ band in Fig. 4 (right). The resummation is
necessary since, as also manifest in Fig. 5, the usual expansion in powers of g
(or λ) is poorly convergent and has no predictive power except at extremely
small values of the coupling. This problem is generic to field theories at
finite temperature, and is associated with collective phenomena which pro-
vide screening effects and thermal masses proportional to powers of g; the
‘resummations’ consist in keeping such medium effects within dressed prop-
agators and vertices, instead of expanding them out in perturbation theory.
(See the review papers [29] for more details and references.) As also visi-
ble in Fig. 5, the resummed perturbation theory yields a monotonic curve
which matches with the ‘true’ result up to λ ≃ 4, where s/s0 ≃ 0.85. By
comparison, the strong coupling expansion in Eq. (1.4) approaches the ‘true’
result only for λ & 8. This suggests that a value p/p0 ≈ 0.85 as found by
lattice QCD around 2.5Tc truly corresponds to an intermediate value of the
coupling (neither weak, nor strong), which is at least marginally within the
reach of (properly organised) perturbation theory.

To summarise, the lattice results for QCD thermodynamics at T & 2Tc

do not provide strong evidence in favour of a strong-coupling dynamics, but
they do not exclude it either. Moreover, the N = 4 SYM theory together
with the AdS/CFT correspondence offers an unique opportunity to perform
explicit calculations at both weak and strong coupling, with conclusions
which may guide our interpretation of the corresponding results from lattice
QCD. The purpose of these lectures is to present a similar guidance, but for
a different physical problem: that of a ‘hard probe’ (a high-energy parton)
propagating through a strongly-coupled N = 4 SYM plasma at finite tem-
perature. There are clearly many differences between this idealised problem
and the corresponding one in the phenomenology of heavy-ion collisions (like
the replacement of QCD by the N = 4 SYM theory, or the assumption that

2 The width of this band reflects the uncertainty associated with the separation between
‘hard’ and ‘soft’ scales [28].
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Fig. 5. Weak and strong coupling results for the entropy density of N = 4 SYM

theory together with the result of the resummed perturbation theory (the band

denoted as ‘2PI’). The dashed and full heavy gray lines represent the Padé approx-

imants R[1,1] and R[4,4] which interpolate between weak and strong coupling results

to leading and next-to-leading orders, respectively.

the deconfined matter is at thermal equilibrium), but the crucial assumption
in our opinion is that the coupling is strong. Thus, by comparing the con-
clusions of this AdS/CFT analysis with the respective data at RHIC (and
in perspective LHC), and may hope to answer the following, fundamental
question: is this particular regime of QCD mostly on the strong-coupling
side, or on the weak-coupling one?

In the recent literature, the problem of a hard probe propagating through
a strongly coupled plasma has been addressed from different perspectives and
within different approaches, depending upon the nature of the hard probe
and of its string theory ‘dual’. The results of these various approaches appear
to be consistent with each other at a fundamental level, and they point
towards a universal mechanism for parton energy loss at strong coupling.
Our main purpose in what follows will be to explain how this mechanism
emerges from the results of the AdS/CFT calculations. To that aim we shall
focus on the case where the ‘hard probe’ is a virtual photon (more precisely,
an R-current; see below) [30, 31]. This choice is motivated by simplicity:
from the experience with QCD one knows that an electromagnetic current
is the simplest device to produce and study hadronic jets. In deep inelastic
scattering (DIS), the exchange of a highly virtual space-like photon between
a lepton and a hadron acts as a probe of the hadron parton structure on the
resolution scales set by the process kinematics. Also, the partonic fluctuation
of a space-like current can mimic a quark–antiquark ‘meson’, which is nearly
on-shell in a frame in which the current has a high energy. Furthermore, the
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decay of the time-like photon produced in electron–positron annihilation
is the simplest device to produce and study hadronic jets in QCD. Thus,
the propagation of an energetic current through the plasma gives access to
quantities like the plasma parton distributions, the meson screening length,
or the jet energy loss. The relation between our results for the virtual photon
and the corresponding ones for other ‘hard probes’ — a heavy quark [32–38],
a quark–antiquark meson (built with heavy quarks) [39–46], or a massless
gluon [47–49] — will be described at appropriate places.

Within the N = 4 SYM theory, the role of the electromagnetic current
is played by the ‘R-current’ — a conserved Abelian current whose charge is
carried by fermion and scalar fields in the adjoint representation of the colour
group (see Sect. 3 for more details). Thus, DIS at strong coupling can be
formulated as the scattering between this R-current and some appropriate
‘hadronic’ target. The first such studies [50, 51] have addressed the zero-
temperature problem, where the target was a ‘dilaton’ — a massless string
state ‘dual’ to a gauge-theory ‘hadron’, whose existence requires the intro-
duction of an infrared cutoff Λ to break down conformal symmetry. These
studies led to an interesting picture for the partonic structure at strong cou-
pling: through successive branchings, all partons end up ‘falling’ below the
‘saturation line’, i.e., they occupy — with occupation numbers of order one
— the phase-space at transverse momenta below the saturation scale Qs(x).
This scale rises with 1/x as Q2

s (x) ∼ 1/x which is much faster than for the
corresponding scale in perturbative QCD [52]. This comes about because
the high-energy scattering at strong coupling is governed by a spin j ≃ 2
singularity (corresponding to graviton exchange in the dual string theory),
rather than the usual j ≃ 1 singularity associated with gluon exchange at
weak coupling.

In Refs. [30,31] these studies and the corresponding partonic picture have
been extended to a finite-temperature N = 4 SYM plasma and also to the
case of a time-like current (the strong-coupling analog of e+e− annihilation).
Note that this finite-T case is conceptually clearer than the zero-temperature
one, in that it does not require any ‘deformation’ of the gauge theory, like
an IR cutoff. It is also technically simpler, in that the calculations can be
performed in the strong ’t Hooft coupling limit λ ≡ g2Nc → ∞ at fixed
g2 ≪ 1 (meaning Nc → ∞). This is so since the large number of degrees
of freedom in the plasma, of order N2

c per unit volume, compensates for the
1/N2

c suppression of the individual scattering amplitudes; hence, a strong-
scattering situation can be achieved even in the strict large-Nc limit.

The results of Refs. [30, 31] will be described in Sects. 4 and 5 below,
together with their physical interpretations. But before that, in Sect. 2,
we shall briefly remind the perturbative QCD viewpoint on the simplest
processes mediated by a virtual photon — e+e− annihilation and DIS —
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which will serve as a level of comparison for the corresponding discussion
at strong coupling. Then, in Sect. 3, we shall give a succinct introduction
to the AdS/CFT correspondence, whose purpose is not to be exhaustive —
more details can be found in the review papers and textbooks listed in the
references [13, 14, 53, 54] — but merely to present in a minimal but self-
contained way that part of the formalism which is needed for our present
purposes.

But more than describing the formalism, our main objective in these lec-
tures is to present a physical picture for the dynamics at strong coupling, as
originally proposed in Refs. [30,31]. Building such a picture is generally dif-
ficult and in any case ambiguous, because of the lack of a direct connection
between the AdS/CFT approach and the standard tools of quantum field
theory, like Feynman diagrams. For the problem at hand, we shall rely on
the intuition coming from perturbative QCD in order to propose a physical
interpretation for the AdS/CFT results. But the most important tool in that
sense will be the ultraviolet-infrared correspondence [31,50,55,56], which re-
lates the radial distance in AdS5 to the virtuality of the partonic fluctuation
created by the R-current in the gauge theory. We feel that a more system-
atic use of this duality could provide more physical insight into other related
calculations in the literature. For the same purpose, it turns out to be useful
to have a space-time representation for the dual processes in AdS/CFT, in
addition to the more standard momentum-space picture which is used to
compute correlations.

2. Partons and jets in QCD at weak coupling

Before we turn to our main goal, which is a study of hard probes prop-
agating through a strongly-coupled plasma, let us briefly discuss the situa-
tion in QCD, where hard scattering is rather associated with weak coupling.
(More details on these pQCD topics can be found in textbooks like [57,58].)
By “hard scattering” we mean that the momentum transfer Q in the col-
lision (the scale which determines the relevant value of the QCD running
coupling) is much larger than ΛQCD ∼ 200 MeV, so that αs(Q

2) is reason-
ably small. (In practice, Q2 ∼ 4 GeV2 is already a ‘hard scale’, in which
case αs ≃ 0.25.) We shall focus on processes which are mediated by a hard,
virtual, electromagnetic current, since these are the processes that we shall
later be interested in at strong coupling. At weak coupling at least, these
are the processes in which the partonic picture of QCD is most directly re-
vealed. In our subsequent discussion, we shall briefly review this picture and
in particular emphasise those aspects which transcend a purely perturbative
point of view, and hence may be expected to survive at strong coupling.
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2.1. Electron–positron annihilation

q

q
_

e−

e+
*

2Q  = s

Fig. 6. Electron–positron annihilation to lowest order in perturbative QCD.

The simplest process in perturbative QCD is electron–positron (e+e−)
annihilation into hadrons. To lowest order in the electromagnetic (αem) and
strong (αs) coupling constants, this process proceeds as depicted in Fig. 6:
the electron and positron annihilate with each other into a time-like virtual
photon, with positive virtuality3 Q2 ≡ −qµqµ = s (with s = (Ee+ + Ee−)2

the total energy squared in the center-of-mass (COM) frame and qµ the
4-momentum of the photon), which then decays into a quark–antiquark (qq̄)
pair. This process is ‘hard’ provided the energy is high enough:

√
s≫ ΛQCD.

In a confining theory like QCD, quarks cannot appear in the final state,
which must involve only hadrons. Hence, the structure of the final state,
as seen by a detector, will be determined by the subsequent evolution of
the quark and the antiquark via parton branching (see Fig. 7), with the
emerging partons eventually combining into hadrons. Since hadronisation is
a non-perturbative process, one may wonder whether it makes any sense at
all to use a partonic picture (which is rooted in perturbation theory), even
for the early and the intermediate stages of the collision. This is however
justified by the separation of time scales in the problem: quantum processes
are not instantaneous, rather it takes some time to emit a parton — the
more so the softer the parton. Hard processes occur very fast and deter-
mine the probability for a scattering to happen, i.e., the total cross-section
for e+e− annihilation, which is therefore computable in perturbation the-
ory. The processes responsible for hadronisation involve ‘soft’ quanta with
momenta k ∼ ΛQCD, hence they occur relatively late and affect only the
precise structure of the final state in terms of hadrons, but not the total
cross-section.

Let us be more specific about these lifetime arguments, as they will play
an important role in what follows. One can estimate the duration of a process
from the uncertainty principle. The fastest process is the one depicted in

3 Throughout this lectures, we shall use the 4-dimensional Minkowski metric with sig-
nature ηµν = (−1, 1, 1, 1) (since this is the usual convention in the context of grav-
ity and string theory). Accordingly, the scalar product of two vectors aµ and bµ,
with aµ = (a0, a) etc., reads a · b ≡ ηµνaµbν = aµbµ = −a0b0 + a · b, and hence
q2 ≡ qµqµ = −q2

0 + q2.
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e−

e+
*

Fig. 7. Parton evolution in the final state of e+e− annihilation.

Fig. 6 — the e+e− annihilation into a qq̄ pair — which in the COM frame
lasts for a time ∆t0 ∼ 1/Q = 1/

√
s. The emitted quark and antiquark are

themselves off-shell — each of them carries roughly half of the energy of the
virtual photon and half of its virtuality — so they will decay by radiating
softer gluons (cf. Fig. 7). The lifetime of a time-like quark (more generally,
parton) with 4-momentum pµ = (ω,p) is estimated as

∆t ∼ 1

P
γ =

ω

P 2
, (2.1)

where the first factor 1/P (with P 2 = ω2 − p2 and p = |p|) is the parton

lifetime in its own rest frame and the second factor γ = 1/
√

1 − v2 = ω/P ,
with v = p/ω, is the Lorentz factor for the relativistic time dilation. This
∆t can be also interpreted as the formation time of the radiated gluon, and
can be alternatively expressed in terms of the kinematics of the latter (see
Fig. 7). A simple calculation yields (we assume here that k‖ ≪ p)

∆t ∼
k‖

k2
⊥

, (2.2)

where k‖ and k⊥ are the components of the gluon spatial momentum which
are parallel and, respectively, perpendicular to the 3-momentum p of the
parent quark. As anticipated, it takes longer time to emit softer gluons, i.e.,
gluons with lower transverse momenta k⊥. In particular, the hadronisation
time is estimated as thadr ∼ k‖/Λ

2
QCD with k‖ .

√
s. This means that, at

high energy, there exists a parametrically wide interval, namely,

1√
s
< t <

√
s

Λ2
QCD

, (2.3)

during which the effects of confinement can be safely neglected and a parton
description applies. Note that the value of the coupling constant did not
play any role in this argument, which is rather controlled by the kinematics
via the uncertainty principle. On the other hand, the details of the partonic
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Fig. 8. Gluon bremsstrahlung out of a parent quark to lowest order in pQCD.

pictures are very different at weak and, respectively, strong coupling, as we
shall later discover.

Sticking to weak coupling for the time being, parton branching is con-
trolled by bremsstrahlung, which to lowest order in pQCD yields the following
rate for emitting a gluon out of a parent quark or gluon (see also Fig. 8 and,
e.g., [57] for details):

dPBrem ≃ αsCR

π2

d2k⊥
k2
⊥

dx

x
, (2.4)

where k⊥ is the gluon transverse momentum and x = k‖/p is the fraction
of the parent parton longitudinal momentum which is taken away by the
gluon. CR is the Casimir for the SU(Nc) representation pertinent to the
parent parton: CF = (N2

c − 1)/Nc for a quark, or CA = Nc for a gluon.
In writing Eq. (2.4) we have specialised to x ≪ 1 since this is the most
interesting regime at high energy and weak coupling: as manifest on this
equation, the bremsstrahlung favours the emission of relatively soft gluons,
with small longitudinal fractions x≪ 1 and transverse momenta logarithmi-
cally distributed within the range ΛQCD < k⊥ < k‖, since the corresponding

phase-space is large and compensates for the smallness of the coupling4:

ΛQCD ≪ k⊥ ≪ k‖ = xp ≪ √
s =⇒ Psoft ∼ αs(Q

2) ln2

√
s

ΛQCD
. (2.5)

(The softest among these gluons are responsible for hadronisation.) How-
ever, such soft gluons are quasi-collinear with their parents partons, so their
emission does not significantly alter the topology of the final state: instead of
a pair of bare quarks, the detector will see a pair of well collimated hadronic
jets (see Fig. 9 (left)). Harder emissions leading to multi-jets events (see
Fig. 9 (right)) are possible as well, and actually seen in the experiments,
but they are comparatively rare since they occur with a small probability
Phard ∼ αs(Q

2) ≪ 1 with Q2 = s. The total cross-section for e+e− anni-
hilation can be computed in pQCD as a series in powers of αs(s), with the

4 The fact that the running coupling is to be evaluated at the hard scale Q2 = s follows
via an analysis of virtual, loop, corrections to the tree diagram in Fig. 6.
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different terms in this series roughly corresponding to different numbers of
jets in the final state:

σ(s) = σQED ×
(

3
∑

f

e2f
)

(

1 +
αs(s)

π
+ O(α2

s (s))

)

, (2.6)

where σQED = 4πα2
em/3s is the QED cross-section for e+e− → µ+µ−, the

factor of Nc = 3 is the number of colour degrees of freedom for quarks in
SU(3), and ef is the electric charge of the quarks with flavour f (in units of
the electron charge e). The experimental verification of Eq. (2.6) represents
one of the most solidly established tests of pQCD so far.

e−

e+
*

e−

e+
*

Fig. 9. Jet structure in the final state for e+e− annihilation.

To conclude this discussion of e+e− annihilation, let us describe a recipe
for computing the corresponding cross-section which goes beyond perturba-
tion theory, and thus also applies in the strong-coupling regime to be con-
sidered later on. By the optical theorem, this cross-section can be related to
the imaginary part of the forward scattering amplitude e+e− → e+e−. For
instance, to lowest order in αs, the cross-section for the process e+e− → qq̄
illustrated in Fig. 6 can be expressed as a cut through the one-quark-loop
contribution to the forward amplitude, cf. Fig. 10 (left). More generally,
the following formula holds to leading order in αem but to all orders in αs:

σ(e+e−) =
1

2s
ℓµν ImΠµν(q) , (2.7)

where ℓµν is a leptonic tensor associated with the external electron and
positron lines and Πµν(q) is the (retarded) vacuum polarisation tensor for
the virtual photon, and can in turn be computed as the following current–

e−

e+

e−

e+

Fig. 10. Total cross-section for e+e− annihilation as given by the optical theorem.
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current correlator in the vacuum (or ‘vacuum polarisation tensor’)

Πµν(q) ≡
∫

d4x e−iq·x iθ(x0) 〈0 | [Jµ(x), Jν(0)] | 0〉 , (2.8)

where Jµ is the electromagnetic current density of the quarks:

Jµ =
∑

f

ef q̄f γ
µ qf , (2.9)

that is, the operator which couples to the photon: Lint = eAµJ
µ. Current

conservation qµΠµν = 0 together with Lorentz symmetry imply that Πµν

has only one independent scalar component (recall that Q2 ≡ −qµqµ > 0
and ηµν = (−1, 1, 1, 1))

Πµν(q) =

(

ηµν +
qµqν
Q2

)

Π (Q2) . (2.10)

2.2. Deep inelastic scattering

Another important hadronic process which is mediated by a virtual pho-
ton is the deep inelastic scattering (DIS) between a lepton (say, electron)
and a hadron (say, the proton), as illustrated in Fig. 11. In DIS, the ex-
changed photon is space-like: −qµqµ < 0, and then it is convenient to use
the notation Q2 for the positive quantity Q2 ≡ qµqµ > 0 (i.e., minus the
photon virtuality). The photon couples to the electromagnetic current of
the quarks inside the proton. By the optical theorem, the total cross-section
σ(ep → eX) can be written similarly to Eq. (2.6), but with the current-
current correlator now computed as an expectation value over the proton
wavefunction:

Πµν(q, P ) ≡
∫

d4x e−iq·x iθ(x0) 〈P | [Jµ(x), Jν(0)] |P 〉 , (2.11)

γ∗

k
k’

electron

P

proton

p
p+q

q=k-k’

X

Fig. 11. Deep inelastic electron–proton scattering: general kinematics.
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where the proton state |P 〉 is denoted by its 4-momentum Pµ. The latter
introduces a privileged direction in space, so the tensorial structure of Πµν is
more complicated than in the vacuum: it now involves two scalar functions,
which both depend upon two kinematical invariants. It is customary to write

Πµν(q, P ) =

(

ηµν − qµqν
Q2

)

Π1(x,Q
2)

+

(

Pµ − qµ
P · q
Q2

)(

Pν − qν
P · q
Q2

)

Π2(x,Q
2) , (2.12)

and express the cross-section in terms of the following structure functions

F1(x,Q
2) =

1

2π
ImΠ1, F2(x,Q

2) =
−(P · q)

2π
ImΠ2 , (2.13)

which are dimensionless5. We have here used the following kinematic invari-
ants

Q2 ≡ qµqµ = −q20 + q2 ≥ 0 , x ≡ Q2

−2(P · q) =
Q2

s+Q2 −M2
, (2.14)

where M is the mass of the proton (hence, P 2 = −M2), and s ≡ −(P+q)2 is
the invariant energy squared of the photon+proton system, and is the same
as the invariant mass squared M2

X of the hadronic system X produced by
the collision, cf. Fig. 11. Note that M2

X ≥M2 and hence x ≤ 1. The ‘deep
inelastic’ regime corresponds to large virtuality Q2 ≫ M2 (‘hard photon’),
and the ‘high energy’ one to small x: s≫ Q2 =⇒ x ≃ Q2/s ≪ 1.

The kinematical variables in Eq. (2.14) are particularly convenient as
they have a direct physical interpretation: they measure the resolution of
the virtual photon as a probe of the internal structure of the proton. More
precisely, in a frame in which the proton has a large longitudinal momentum
P ≫ M (‘infinite momentum frame’, or IMF), the scattering consists in
the absorption of the virtual photon by a quark excitation which has a
longitudinal momentum fraction kz/P equal to x and occupies an area ∼
1/Q2 in the transverse plane (x, y) (the plane normal to the collision axis,
chosen here to be z). This can be understood with reference to Figs. 8, 12,
and Eq. (2.2): a partonic excitation with longitudinal momentum kz and
transverse momentum k⊥ has a lifetime

∆tpart ∼ kz

k2
⊥

=
xP

k2
⊥

. (2.15)

5 Note that the polarisation tensor carries a different dimension in the case of the
vacuum, where Πµν(q) has mass dimension 2 (as clear from its definition (2.8)), and
in the case of DIS off a hadron, where Πµν(q) is dimensionless. This difference arises
from the normalisation of the proton wavefunction in Eq. (2.11).
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For this parton to be ‘seen’ in DIS, it must live longer than the interaction
time with the virtual photon, in turn estimated as (q0 is the energy of γ∗ in
the IMF)

∆tcol ∼ 1

q0
∼ xP

Q2
. (2.16)

This condition requires k2
⊥ . Q2, which via the uncertainty principle implies

that the parton is localised within an area & 1/Q2. Furthermore, in the
IMF, partons are quasi-free and hence nearly on-shell, and their longitudinal
momenta are much larger than the transverse ones (they are nearly collinear
with the proton). With reference to Fig. 12, these conditions imply

k2 ≈ 0 & (k + q)2 ≈ 0 =⇒ Q2 + 2ξP · q ≈ 0

=⇒ ξ =
Q2

−2(P · q) = x .

Note that the choice of the IMF is crucial for the validity of this interpreta-
tion: it is only in this frame that the virtual excitations of the proton (quarks
and gluons) live long enough — by Lorentz time dilation — to be unam-
biguously distinguished from vacuum fluctuations with the same quantum
numbers and momenta, and to be treated as quasi-free during the compar-
atively short duration of the scattering with the external probe (here, the
virtual photon).

Fig. 12. The virtual photon absorption by a nearly on-shell quark with longitudinal

momentum fraction ξ.

Then the DIS cross-section can be factorised as the elementary cross-
section for the photon absorption by a quark times a ‘parton distribution
function’ which describes the probability to find a quark with longitudinal
momentum fraction equal to x and transverse area 1/Q2. This correspon-
dence is such that the structure function F2(x,Q

2) introduced in Eq. (2.13)
is a direct measure of the quark and antiquark distribution functions:

F2(x,Q
2) =

∑

f

e2f
[

xqf(x,Q
2) + xq̄f(x,Q

2)
]

, (2.17)
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where qf(x,Q
2) is the number of quarks of flavour f with longitudinal mo-

mentum fraction x and transverse size 1/Q. Thus, the experimental mea-
surement of F2(x,Q

2) gives us a direct access to the phase-space distribution
of quarks within the proton wavefunction and in the infinite momentum
frame. This gives us furthermore access to the gluon distribution, albeit
indirectly, modulo our theoretical understanding of parton evolution.

Namely, quark and gluons can transform into each other via parton
branching, so in general the quark struck by the virtual photon in DIS
is a ‘sea’ quark, i.e., a quark from a partonic cascade initiated by one of
the valence quarks, as illustrated in Fig. 13. At weak coupling, this branch-
ing proceeds through bremsstrahlung and favours an evolution in which the
virtuality is strongly increasing when moving up (from the target proton
towards the projectile photon) along the cascade. That is, after each indi-
vidual splitting, the daughter parton emitted in the t-channel has either a
much larger transverse momentum than its parent parton, or a much smaller
longitudinal-momentum fraction (and then it is generally a gluon), or both.
This is so since, according to Eq. (2.4), such emissions are favoured by the
large available phase space, which equals ln(Q2/Λ2

QCD) for the emission of

a parton (quark or gluon) with transverse momentum k⊥ ≪ Q and, respec-
tively, ln(1/x) for that of a gluon with longitudinal momentum fraction ξ
within the range x ≪ ξ ≪ 1. Depending upon the relevant values of Q2

q

P

q

P

(a) (b)

Fig. 13. Parton evolution in perturbative QCD. The parton cascade on the right

involves only gluons and is a part of the BFKL resummation at small x.



3232 E. Iancu

and x, one can write down evolution equations which resum either powers
of αs lnQ2, or of αs ln(1/x), to all orders; the coefficients in these equations,
which represent the elementary splitting probability can be computed as
power series in αs starting with the leading-order result in Eq. (2.4). As
obvious from the previous considerations, the Q2-evolution (as encoded in
the DGLAP equation [59]) mixes the quark and gluon distribution functions
(see Fig. 13(a)), and this allows us to reconstruct the gluon distribution
from the Q2-dependence of the experimental results for F2. The small-x
evolution, on the other hand, which is described by the BFKL equation [60]
and its non-linear generalisations [52] (see below), involves only gluons and
corresponds to resumming ladder diagrams like those in Fig. 13(b) in which
successive gluons are strongly ordered in x.

Here, we shall not discuss the perturbative evolution in more detail, but
merely emphasise some features which are interesting for comparison with
the situation at strong coupling, to be described later on. First note that
the parton lifetime, cf. Eq. (2.15), is strongly decreasing when moving up
along the cascade (for both the Q2 and the small-x evolutions), so that the
cascade is frozen — the parton distribution is fixed within it — during the
relatively short duration of the collision with γ∗, cf. Eq. (2.16), which is the
same as the lifetime of the struck quark. Second, after each splitting, the
energy of the parent parton gets divided among the two daughter ones, so we
expect the evolution to increase the number of partons at small values of x
and decrease that at larger values. Moreover, the gluon distribution should
rise faster with decreasing x, so the small-x partons should be predominantly
gluons. These expectations are indeed confirmed by the experimental results
at HERA displayed in Figs. 14 and 15 [61] (and Refs. therein).

But although they are less numerous, the few partons remaining at larger
values of x do still carry most of the total energy of the proton, and that
even for very large Q2. This is so since the dominant evolution is such
that the daughter gluon takes away only a small fraction of the longitudi-
nal momentum of its parent parton, so the latter ‘survives’ (as one of the
s-channel partons in the cascades in Fig. 13) with a relatively large mo-
mentum. To see this more quantitatively, consider the following ‘energy
sum-rule’, which is the condition that the ensemble of partons (quarks, an-
tiquarks, and gluons) which exist on a given resolution scale Q2 carry the
totality of the proton longitudinal momentum:

1
∫

0

dxx
[

q(x,Q2) + q̄(x,Q2) + g(x,Q2)
]

= 1 . (2.18)

The HERA data show that the ‘gluon distribution’ xg(x,Q2) rises with 1/x
roughly like xg(x,Q2) ∼ 1/xω for x ≤ 0.01, but the exponent ω is small
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Fig. 14. HERA results for F2 (combined results from ZEUS and H1) which illustrate

the effects of the evolution with increasing Q2 for different values of x: F2 is

increasing with Q2 at all the values of x except the very large ones x & 0.2, where

F2 is decreasing.

enough, namely ω = 0.2 ÷ 0.3 (it slowly varies with Q2), for the integral in
Eq. (2.18) to be dominated by large values x ∼ 1. This value ω = 0.2 ÷ 0.3
is indeed consistent with predictions of the QCD evolution equations at
next-to-leading-order (NLO) accuracy.

However, such a power increase with 1/x cannot continue forever, i.e.,
not up to arbitrarily high energies, since this would enter in conflict with
the unitarity constraint for DIS and other hadronic processes. For instance,
the cross-section for the virtual photon absorption by the proton in DIS is
related to F2:

σγ∗p(x,Q
2) =

4π2αem

Q2
F2(x,Q

2) . (2.19)

In the high-energy limit x→ 0 we expect this cross-section to grow, at most,
like a power of ln(1/x); this is Froissart bound and is a consequence of the
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Fig. 15. Parton distributions extracted from combined fits to the H1 and ZEUS

data at HERA, which illustrate the evolution with decreasing x at fixed Q2. Left:

the rise in the gluon distribution. Right: the 1/x-evolution of the gluon, sea quark,

and valence quark distributions for Q2 = 10 GeV2 (note that the gluon and sea

quark distributions have been reduced by a factor of 20 to fit inside the figure).

unitarity of the S-matrix. (A similar bound holds for the pp collisions to
be studied at LHC.) There are also physical arguments which are supported
by explicit calculations within pQCD and which are telling us what should
be the physical mechanism responsible for taming this growth: this is gluon
saturation. With increasing energy, the gluon density increases as well and
eventually it becomes so high that the gluon start interacting with each
other — meaning that the evolution starts to be non-linear — and these
interactions limit the further growth of the gluon occupation number.

To understand the relevance of the occupation number — a concept that
will be important at strong coupling as well — notice that, in order to inter-
act with each other, the gluons must overlap, meaning that not only their
number, but also their (longitudinal and transverse) sizes, should be large
enough. At high-energy, the proton is Lorentz contracted — it looks to the
virtual photon like a pancake — so all the partons within a longitudinal
tube at a given impact parameter can interact with the photon and also
with each other. This argument must be corrected for the uncertainty prin-
ciple, but it is essentially correct: the small-x partons, with longitudinal
momenta kz ≃ xP , are delocalised in z over a distance ∆z ∼ 1/xP , which
is of the same order as the longitudinal wavelength of the virtual photon6.

6 The last statement is strictly true in the Breit frame to be introduced in Sect. 5.4.
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Incidentally, this argument also shows that the longitudinal phase-space for
DIS at high energy is measured by the rapidity Y ≡ ln(1/x) ≃ ln(s/Q2):

∆kz ∆z ∼ ∆(xP )

xP
∼ ∆x

x
∼ ∆Y . (2.20)

Indeed, the parton distributions are defined as the number of partons per
unit rapidity ; e.g.,

xg(x,Q2) ≡ x
dNg

dx
(Q2) =

∫

d2b⊥

Q
∫

d2k⊥
dNg

dY d2b⊥d2k⊥
, (2.21)

where the first integral runs over all impact parameters within the proton
transverse area and the second one over all the transverse momenta up to Q
(cf. the discussion after Eq. (2.16)).

Consider now the gluon overlap in the two-dimensional transverse space.
As illustrated in Fig. 16, when Q2 is high, the gluons form a dilute system
(although they are relatively numerous) because each of them occupies only
a small area ∼ 1/Q2. But when decreasing x at fixed Q2, one emits more and
more gluons having (almost) the same area, so these gluons will eventually
start overlapping. We see that, what controls the gluon interactions with
each other, is not their number density xg(x,Q2)/πR2 (R is the proton
radius), but rather their occupation number

ng(Y, b⊥, k⊥) ≡ (2π)3

2(N2
c − 1)

dNg

dY d2b⊥d2k⊥
∼ 1

Q2
× xg(x,Q2)

πR2(N2
c − 1)

.(2.22)

ln Λ

Y = ln 1/x

2
QCD

Saturation

DGLAP

ln Q  (Y)
2
s

BFKL

ln Q2

Dilute system

= ω  Ys

Fig. 16. The phase-space for parton evolution in the kinematical variables appro-

priate for DIS (lnQ2 and Y = ln 1/x), which illustrates the distribution of partons

(shown as coloured blobs with area ∼ 1/Q2) within the proton disk, and the satu-

ration line lnQ2
s (Y ) = ωsY .
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As shown by the last estimate, ng measures the ‘fraction’ of the proton
area which is covered with gluons of a given colour. This ‘fraction’ can
be bigger than one since the gluons can overlap with each other. In fact,
at weak coupling, the gluon interactions become an effect of O(1) when
ng ∼ 1/(αsNc) ∼ 1/λ, since in that case the overlap is strong enough to
compensate for the smallness of the coupling. This condition defines a crit-
ical line in the kinematical plane (x,Q2) — the saturation line — which
separates between a dilute region where ng ≪ 1/λ and a dense region where
the occupation number saturates at a value ng ∼ O(1/λ) (see Fig. 16). One
can solve this condition for Q2 and thus deduce the saturation momentum

Q2
s (x) ∼ λ

xg(x,Q2
s )

R2(N2
c − 1)

∼ 1

xω
, (2.23)

which is the value of the transverse momentum around which non-linear
effects become important for a given value of x. Alternatively, this is the
photon virtuality at which unitarity corrections become important in DIS. As
shown in Eq. (2.23), Q2

s (x) rises with 1/x roughly like the gluon distribution,
i.e., as a power 1/xω with ω ≃ 0.2 ÷ 0.3 from fits to the HERA data.
(In logarithmic coordinates (Y, lnQ2), this yields a saturation line which
is a straight line, as shown in Fig. 16.) Thus, with increasing energy, the
saturation region extends to higher and higher values of Q2, i.e., to smaller
and smaller gluons.

These conclusions are supported by more refined analyses within pQCD,
which succeeded in resumming the non-linear effects associated with gluon
saturation within the evolution equations at high energy. This led to non-
linear generalisations of the BFKL equation — the functional JIMWLK
equation and its mean-field (or large-Nc) approximation known as BK —
which describe the transition towards saturation with increasing energy and
thus permit the calculation of the saturation line (see the review papers [52]
and references therein). So far, the full non-linear equations are known
only to leading-order accuracy at weak coupling, but the asymptotic form
of the saturation line at high energy is also known to NLO accuracy [62].
Interestingly, such analyses confirm the power-law behaviour Q2

s (x) ∼ 1/xωs

(at least, as an approximation valid in a limited range in Y ), but the value
of the saturation exponent ωs is strongly reduced by NLO corrections: one
finds ωs ≃ 4.88(αsNc/π) ≃ 0.12λ at LO (which would yield ωs ∼ 1 for
αs = 0.2 and Nc = 3), but ωs ≃ 0.3 at NLO. Note that this NLO value is
roughly consistent with the experimental results at HERA, thus suggesting
that the (unknown) corrections of higher order should be rather small. In
fact, a substantial fraction of the NLO corrections comes from the running
of the coupling [62].
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3. Current–current correlator from AdS/CFT: General formalism

With this section, we begin the study of the main problem of interest to
us here, which is the propagation of a high-energy Abelian current through
a strongly coupled plasma at temperature T . As mentioned in the Intro-
duction, our plasma will not be that of QCD, but rather the one described
by the maximally supersymmetric N = 4 Yang–Mills theory, which is con-
formally invariant (so, in particular, the coupling is fixed), and for which
the AdS/CFT correspondence is most firmly established. Since we shall not
perform calculations directly in the gauge theory (but only in the ‘dual’ su-
perstring theory), there is no need to exhibit the Lagrangian of N = 4 SYM.
(This can be found in the textbooks listed in the References [53, 54].) For
our purposes, it suffices to recall that this Lagrangian involves 3 types of
massless fields — gluons, 4 Majorana fermions, and 6 real scalars — which
all transform under the adjoint representation of the colour group SU(Nc).
Besides the Lagrangian has a global SU(4) R-symmetry (that is, a symmetry
which does not commute with the supersymmetry generators), under which
the gluons are neutral, the four fermions transform as a 4 or 4̄ (depend-
ing upon their chirality), and the six scalars transform as a 6. This global
symmetry is interesting for our purposes as it allows one to introduce an
analog of the electromagnetism: to that aim, we shall pick one of the U(1)
subgroups of SU(4) and gauge it, that is, replace the ordinary derivatives by
covariant derivatives: ∂µ → ∂µ− ieta0

R A
a0
µ where a0 is the SU(4)-index of the

chosen U(1) subgroup, ta0

R is the respective generator in the appropriate rep-
resentation, and Aa0

µ is an Abelian gauge field endowed with the standard,
Maxwell-like, kinetic term in the action. Furthermore, e is the analog of the
electric charge, that we shall take to be arbitrarily small. In the subsequent
formulae, the charge e and the index a0 will be always omitted. Associated
to Aa0

µ ≡ Aµ there is a conserved ‘electric current’ Jµ, obtained by rewriting

the interaction terms in the action as7 AµJ
µ. This current is built with se-

lected fermionic and scalar fields (see e.g. [76] for an explicit construction).
We shall refer to it as the ‘R-current’.

The problem that we shall consider will be the scattering between this
R-current and the N = 4 SYM plasma in the high-energy regime (the
kinematics will be shortly specified) and in the strong ’t Hooft coupling
limit taken as

Nc → ∞ and λ ≡ g2Nc → ∞ with g2 ≪ 1. (3.1)

7 Strictly speaking, there is also a interaction piece in the action which is quadratic in
Aµ, as coming from the scalar sector; this will be neglected in what follows since Aµ

can be taken to be arbitrarily small.
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That is, Nc is taken to be arbitrarily large whereas the gauge coupling g is
fixed and small. This limit is convenient for applications of the AdS/CFT
correspondence, as we now explain.

The AdS/CFT conjecture establishes a correspondence, or ‘duality’, be-
tween the N = 4 SYM theory (the ‘Conformal Field Theory’) with arbitrary
values for the parameters g and Nc and the type IIB superstring theory liv-
ing in a D = 10 curved space-time which is AdS5 × S5 (hence, the ‘AdS’).
This duality means that the background geometry for the string theory
corresponds to the vacuum of the gauge theory, and that all the observ-
ables (like gauge-covariant correlation functions) in one description can be
equivalently calculated — after appropriate identifications — in the other
description. The duality extends to finite temperature by adding a ‘black
hole’ to AdS5. One thus obtains the AdS5 × S5-Schwarzschild metric, for
which a common parametrisation reads

ds2 =
r2

R2
(−f(r)dt2 + dx2) +

R2

r2f(r)
dr2 +R2dΩ2

5 , (3.2)

where t and x = (x, y, z) are the time and spatial coordinates of the physical
Minkowski world, r (with 0 ≤ r < ∞) is the radial coordinate on AdS5 (or
‘5th dimension’), and dΩ2

5 is the angular measure on S5. Furthermore, R is
the common radius of AdS5 and S5, and

f(r) = 1 − r40
r4

= 1 − u2 = 1 − χ4

χ4
0

, (3.3)

where r0 is the Black Hole (BH) horizon and is related to its temperature
T (the same as for the N = 4 SYM plasma) via r0 = πR2T . (Note that
this BH is homogeneous in the four physical dimensions but has an horizon
in the fifth dimension which encloses the real singularity at r = 0.) When
r → ∞, f(r) → 1 and ds2 ∝ (−dt2 +dx2) is conformal to the flat Minkowski
metric. Hence, the boundary of AdS5 at r → ∞ will be referred to as the
‘Minkowski boundary’. In fact, we have f(r) ≈ 1 whenever r ≫ r0, so far
away from the horizon the geometry is AdS5 × S5. As shown in Eq. (3.3),
some other radial coordinates will be also used in what follows: these are
defined as u ≡ (r0/r)

2 and χ ≡ R2/r =
√
u/(πT ), and in terms of them the

Minkowski boundary lies at u = χ = 0 and the BH horizon at u0 = 1 and,
respectively, χ0 = 1/πT .

Besides R, the superstring theory involves two more parameters, the (di-
mensionless) string coupling constant gs and the string length ℓs, which is the
characteristic scale on which the string structure (as opposed to a point-like
particle) can be resolved, and is related to the Planck length in ten dimen-

sions by ℓP = g
1/4
s ℓs. The AdS/CFT correspondence makes the following
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identification between the free parameters of the two dual descriptions:

4πgs = g2 , (R/ℓs)
4 = g2Nc ≡ λ . (3.4)

The first relation tells us that when the Yang–Mills coupling g2 is small, so is
also the string coupling, hence one can neglect quantum corrections (string
loops) on the string theory side. The second relation shows that when λ
is large, the geometry of the string theory is weakly curved, so that the
massive string excitations (with mass m ∼ R/ℓ2s ) can be reliably decoupled
from the low-energies ones, and then the superstring theory reduces to type
IIB supergravity. Hence, when we have both g2 ≪ 1 and λ → ∞ — this
corresponds to the strong coupling limit of the N = 4 SYM theory in the
sense of Eq. (3.1) — the dual superstring theory reduces to classical super-
gravity in ten dimensions. After also performing a Kaluza–Klein reduction
around S5 and keeping only the lowest harmonics, one finally obtains a clas-
sical theory in five dimensions which involves massless fields, among which
the (5-dimensional) graviton, the dilaton, and a SO(6) ≃ SU(4) non-Abelian
gauge field. The quantum correlation functions in the strongly coupled CFT
can now be computed from solutions to the classical equations of motion for
these massless fields with appropriate boundary conditions.

In what follows, we shall describe this calculation for the problem of
interest here, namely the correlation functions of the R-current Jµ. Let
Z4D[Aµ] denote the respective generating functional in the 4-dimensional
gauge theory (Aµ(x) is a ‘dummy’ source field for Jµ). Within AdS/CFT,
the current Jµ is viewed as a perturbation of the supergravity fields acting at
the Minkowski boundary (r → ∞, or u = 0). Recall that Jµ carries a hidden
SU(4)-group index a0, in addition to the manifest 4D vector index µ. Thus,
by covariance, it is natural that this current induces a non-zero expectation
value for the respective component Aa0

m ≡ Am of the SO(6) vector field
in 5D supergravity. (We use m, n, p, ... to denote vector indices on AdS5:
m = 0, 1, 2, 3, u.) For more clarity, let us temporarily denote by Am

cl the
solution to the supergravity equations of motion obeying the appropriate
boundary conditions, that will be shortly specified. In the strong coupling
limit of Eq. (3.1), Z4D[Aµ] can be computed as

Z4D[Aµ] ≡
〈

ei
R

d4xJµAµ〉

= eiSSUGRA[Acl] , (3.5)

where SSUGRA[Acl] is the supergravity action evaluated with the classical
solution Am

cl which in turn obeys the boundary condition (BC)

Acl
µ (x, u = 0) = Aµ(x), Acl

u (x, u = 0) = 0 , (3.6)

and hence it is a functional of the 4D ‘source’ field Aµ(x). The classical
EOM being second order differential equations, a second boundary condi-
tion is needed to uniquely specify their solutions. As a general rule, we shall
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require the solution to be regular everywhere in the ‘bulk’ (i.e., away from
the Minkowsky boundary) of AdS5. As we shall see, however, this condition
is not always sufficient, especially at finite temperature. Whenever the solu-
tion involves modes which are propagating in the radial direction, and which
in general can either approach towards the boundary (‘incoming’), or move
away from it (‘outgoing’), we shall require the physical solution to involve
outgoing modes alone. In the finite T case, this can be physically under-
stood as the condition that the modes be fully absorbed by the BH, without
reflecting wave. More generally, at both zero and non-zero T , this ‘outgo-
ing wave’ prescription generates the retarded current–current correlator [63],
which at finite T is defined as

Πµν(q) ≡ i

∫

d4x e−iq·x θ(x0) 〈[Jµ(x), Jν(0)]〉T , (3.7)

with the brackets denoting the thermal expectation value. Note that, in or-
der to compute Πµν , it is sufficient to know the classical action to quadratic
order in the source field Aµ, meaning that we can take the latter (and hence
the field Am

cl induced in the bulk) to be arbitrarily weak. Accordingly, we
need the supergravity action only to quadratic order in Am; not surpris-
ingly, this is the same as the Maxwell action in the AdS5 ×S5-Schwarzschild
background geometry:

S = − N2
c

64π2R

∫

d4xdu
√−g gmpgnq FmnFpq , (3.8)

where Fmn = ∂mAn−∂nAm, ∂m = ∂/∂xm with xm = (t,x, u), g = det(gmn)
is the determinant of the matrix made with the covariant components of the
metric on AdS5, cf. Eq. (3.2), and gmn are the respective contravariant
components, as obtained by inverting the matrix (gmn). The classical EOM
generated by (3.8) are Maxwell equations in a curved space-time:

∂m

(√−ggmpgnqFpq) = 0 . (3.9)

We shall work in the gauge Au = 0 (which is consistent with the BC in
Eq. (3.6)) and choose the incoming perturbation as a plane wave propagating
in the z direction, with longitudinal momentum k and energy ω in the plasma

rest frame: that is, our source field reads Aµ(x) = A
(0)
µ e−iωt+ikz. Eq. (3.9)

being linear, the solution Acl
µ (that we shall simply denote as Aµ from now

on, and refer to as the “Maxwell wave”) preserves this plane-wave structure
in the Minkowski directions

Aµ(t,x, u) = e−iωt+ikz Aµ(u) , (3.10)



Partons and Jets in a Strongly-Coupled Plasma from AdS/CFT 3241

so the only non-trivial dependence is that upon u. This is determined by
the following equations, as obtained from Eq. (3.9) (below, i = 1, 2):

̟A′
0 + κfA′

3 = 0 , (3.11)

A′′
i +

f ′

f
A′

i +
̟2 − κ2f

uf2
Ai = 0 , (3.12)

A′′
0 − 1

uf
(κ2A0 +̟kA3) = 0 , (3.13)

where a prime on a field indicates a u-derivative and we have introduced
dimensionless, energy and longitudinal momentum, variables, defined as

̟ ≡ ω

2πT
, κ ≡ k

2πT
. (3.14)

Denoting a(u) ≡ A′
0(u), Eqs. (3.11) and (3.13) can be combined to give

a′′ +
(uf)′

uf
a′ +

̟2 − κ2f

uf2
a = 0 . (3.15)

The boundary conditions (3.6) together with Eq. (3.13) imply

Aµ(u = 0) = A(0)
µ =⇒ lim

u→0

[

ua′(u)
]

= κ2A
(0)
0 +̟κA

(0)
3 . (3.16)

The field a describes a longitudinal wave, while A1 and A2 are transverse
waves.

Because of the assumed plane wave structure, the action density in
Eq. (3.8) is homogeneous in the physical Minkowski directions, so the cor-
responding integrations simply yield the volume of the 4D space-time: S =
∫

d4xS = ∆V ∆tS. When evaluated on the classical solution, the action

density S is quadratic in the boundary values A
(0)
µ and yields the retarded

polarisation tensor via differentiation (with qµ = (ω, 0, 0, k)):

Πµν(q) =
∂2S

∂A
(0)
µ ∂A

(0)
ν

. (3.17)

To that aim, it is useful to notice that the classical action density can be fully
expressed in terms of the values of the field Ãµ(u) and of its first derivative
at u = 0:

S =
N2

c T
2

16

[

−A0∂uA
∗
0 + fA3∂uA

∗
3 + fAi∂uA

∗
i

]

u=0
. (3.18)
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(The appearance of the factor T 2 in front of S is merely a consequence
of our definition of the variable u, which scales like T 2, so ∂u ∼ 1/T 2.)
Eq. (3.18) follows from (3.8) after using the EOM (3.9) to perform an inte-
gration by parts over u and dropping the contribution from the upper limit
u = 1 (i.e., from the BH horizon), in accordance with the prescription in
Ref. [63, 65]. A star on a field denotes complex conjugation: the classical
solutions develop an imaginary part (in spite of obeying equations of motion
with real coefficients) because of the outgoing-wave condition at large u.
Via Eq. (3.17), this introduces an imaginary part in Πµν(q) which physically
describes the dissipation of the current in the original gauge theory. In fact,
the imaginary part of the expression within the square brackets in Eq. (3.18)
is independent of u and hence it can be evaluated at any u [63].

Eqs. (3.11)–(3.18) encode various physical phenomena depending upon
the kinematics: When ω and k are relatively small, ω, k ≪ T , with more-
over ω ≪ k, these equations describe the diffusion of the R-charge in the
strongly-coupled plasma and can be used to compute the respective trans-
port coefficient; this has been studied at length in Refs. [14, 63–66]. When
ω = k, they describe the photon emission from the plasma (for R-photons, of
course); this has been studied in Ref. [76] for the case ω, k ∼ T . When ω and
k are large compared to T , the equations describe the high-energy scattering
between the R-current (or the virtual R-photon) and the plasma. This is the
problem addressed in Refs. [30, 31] and to which we shall devote our atten-
tion in what follows. More precisely, we are interested in ‘hard probes’, so we
shall choose a current with relatively high virtuality: Q2 ≡ |ω2 − k2| ≫ T 2,
which probes the structure of the plasma on distances much shorter than
the thermal wavelength 1/T . For a space-like current (ω < k), this set-up
describes DIS, whereas for a time-like current (ω > k), it describes the cur-
rent decay into partons and their subsequent evolution in the plasma. We
shall return to these physical interpretations later on.

To conclude this section, let us present a different form of the equations
of motion, obtained after some change of variables, which will be useful later
on. For definiteness, we concentrate on the longitudinal mode, and denote

a(u) ≡ 1

(2πT )2
ψ(χ)√
χ
. (3.19)

(Recall that χ ≡ R2/r =
√
u/πT .) Then Eq. (3.15) becomes

ψ′′ +
1

4χ2
ψ +

ω2 − k2f

f2
ψ +

f ′

f

(

ψ′ − 1

χ
ψ

)

= 0 , (3.20)

where the prime now denotes differentiation w.r.t. χ. This form of the equa-
tion is interesting since the last term, proportional to f ′, can be neglected in
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all cases of interest, as we shall later argue. If so, then the above equation
becomes formally identical to the Schrödinger equation for a non-relativistic
particle with mass k which is in a stationary state with zero energy:

− 1

2k

∂2ψ

∂χ2
+ V (χ)ψ = Eψ , with V (χ) = − 1

8kχ2
− ω2 − k2f

2kf2

and E = 0 . (3.21)

This representation will allow us to use the intuition developed with the
Schrödinger equation for studies of the Maxwell wave propagating in the
AdS5 geometry.

4. The vacuum case as a warm up

Let us first consider the zero-temperature case, i.e. the propagation of
the R-current through the vacuum of the N = 4 SYM theory at infinite
’t Hooft coupling (cf. Eq. (3.1)). Although the corresponding result for Πµν

is a priori known, for reasons to be later explained, it is nevertheless inter-
esting to go through the calculations and explicitly deduce this result, in
order to get acquainted with the AdS/CFT formalism in a relatively simple
set-up. Moreover, as explained in Sect. 2, this result covers an interesting
physical problem: via Eq. (2.6), it provides the total cross-section for the
analog of electron–positron annihilation at strong coupling. The most in-
teresting conclusion which will emerge from the present discussion is that
the AdS/CFT calculation is not merely a ‘black box’: by using its results
together with physical intuition and general arguments (like the uncertainty
principle), one can develop some physical understanding of the underlying
process and of the structure of the final state. That is, one get some physical
insight into the ‘blob’ on the photon line in the right-hand figure in Fig. 10.

In the dual, supergravity, calculation the Maxwell wave propagates
through pure AdS5 (no black hole), according to equations which are ob-
tained by letting f → 1 in the equations in the previous section8. With
f = 1, Eqs. (3.11)–(3.15), or (3.20), depend upon ω and k only via the
Lorentz-invariant combination ω2 − k2, which defines the virtuality of the
R-current: qµqµ = k2 − ω2. This is as it should, since there is no privileged
frame at T = 0. Then current conservation implies that Πµν(q) has the
transverse structure displayed in Eq. (2.10), i.e.

Πµν(q) =

(

ηµν − qµqν
q2

)

Π (q2) (vacuum) . (4.1)

8 In this zero-temperature context, it is understood that the reference scale T which
enters the definition of dimensionless variables like u, ̟, and κ, is some arbitrary
mass scale, which drops out from the final results.
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The scalar function Π (q2) can be computed from a study of the longitudinal
sector alone, that is, by solving the vacuum version of Eq. (3.20), which reads

− 1

2k
ψ′′ +

(

− 1

8kχ2
± Q2

2k

)

ψ = 0 , (4.2)

where Q2 ≡ |k2−ω2| and the plus (minus) sign in front of Q2/2k corresponds
to a space-like (time-like) current. As anticipated, this is of the Schrödinger
type, with the potential exhibited in Fig. 17. Already this figure is telling
us a lot about the dynamics: (i) in the space-like case, there is a potential
barrier with height ∼ Q2/k, so the wave can penetrate only in the ‘classically
allowed region’ on the left of the barrier, at χ . 1/Q; (ii) in the time-like
case, there is no such barrier, so the wave can penetrate up to arbitrarily
large values of χ, where it moves freely (since the potential becomes flat
for χ ≫ 1/Q). These general features will be substantiated by the explicit
solutions that we now construct. To that aim, it is useful to notice that
Eq. (4.2) is tantamount to a Bessel equation for the function ψ/

√
χ.

K1

χ

)(χV

kK
2

B
V

A
V

K1
χ

)(χV

kK
2

−

B
V

A
V

Fig. 17. The potential V (χ) in Eq. (4.2) describing a Maxwell wave propagating in

the AdS5 geometry. Left: the space-like case (ω < k). Right: the time-like case

(ω > k). In these figures, we denoted K ≡ |k2 − ω2|1/2 (i.e. K is the same as the

variable Q in the main text).

4.1. Space-like current

For a space-like current (q2 > 0), one needs to take the upper sign in
front of Q2 in Eq. (4.2). The general solution is a linear combination of the
modified Bessel functions K0 and I0:

ψ(χ) =
√
χ

(

c1K0(Qχ) + c2I0(Qχ)
)

. (4.3)
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For large x ≡ Qχ≫ 1,

K0(x) ≈
√

π

2x
e−x , I0(x) ≈ 1√

2πx
ex , (4.4)

so the requirement that the solution remain regular as χ→ ∞ selects c2 = 0.
The other coefficient c1 is then fixed by the boundary condition at χ = 0,
cf. Eq. (3.16), which becomes

χ
∂

∂χ

ψ√
χ

∣

∣

∣

∣

∣

χ→0

= 2k
(

kA
(0)
0 + ωA

(0)
3

)

. (4.5)

By also using the expansion K0(x) ≈ − ln(x/2) − γ when x≪ 1, one easily

finds c1 = −2k
(

kA
(0)
0 +ωA

(0)
3

)

. Via Eq. (3.19), the solution ψ(χ) determines
the longitudinal piece of the classical action density, i.e., the pieces involving
A0 and A3 in Eq. (3.18). A direct calculation yields

SL = − N2
c

64π2

(

qA
(0)
0 + ωA

(0)
3

)2 [

lnQ2 + 2 lnχ+ const.
]

χ=0
, (4.6)

which however exhibits a logarithmic divergence as χ = 0. This might look
disturbing at a first sight, but it has a natural resolution, that we shall now
explain:

Field theories are well known to develop divergences in the limit where
the ultraviolet cutoff (the upper cutoff on the momenta of the virtual cor-
rections) is sent to infinity. These divergences can generally be eliminated
via ultraviolet renormalisation, i.e., by adding local ‘counterterms’ to the
action, which amounts to (infinite) renormalisations of what we mean by
the fields in the action, their masses, and their charges. In particular, the
perturbative calculation of the polarisation tensor within N = 4 SYM meets
with logarithmic divergences of this type, which are then reabsorbed in the
normalisation of the R-charge (or of the wavefunction of the R-photon). But
ultraviolet divergences and the need for renormalisation are not restricted
to perturbation theory, as shown by the example of lattice gauge theory. So,
they are expected to appear also in the supergravity calculation, which must
somehow encode the effects of all the quantum fluctuations of the dual gauge
theory, including those with very high momenta. This discussion makes it
plausible to interpret the logarithmic singularity in Eq. (4.6) as χ → 0 as
the ‘dual counterpart’ of the respective ultraviolet divergence in the gauge
theory. This is the content of the holographic renormalisation [67,68], which
further instructs us to simply drop out this divergent term, possibly together
with additional finite terms. Here we shall renormalise Eq. (4.6) by replacing

lnQ2 + 2 lnχ+ const. −→ ln
Q2

µ2
, (4.7)
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which features the subtraction scale µ. Via Eq. (3.17), this finally yields
the function Π (q2) displayed in Eq. (4.10) below (for q2 > 0), and which
is real, as expected: a space-like current cannot decay in the vacuum, by
energy-momentum conservation. Interestingly, the holographic renormalisa-
tion shows that there is a connection between the large momentum (more
properly, large virtuality) limit in the original gauge theory and the limit
χ → 0 (or r → ∞) in the dual supergravity theory. This is a manifestation
of the ultraviolet-infrared correspondence, that we shall later discuss in more
detail.

4.2. Time-like current

The corresponding equation is obtained by taking the lower sign in front
of Q2 in Eq. (4.2). Then the general solution involves the oscillating Bessel
functions J0 and N0:

ψ(χ) =
√
χ

(

c1J0(Qχ) + c2N0(Qχ)
)

. (4.8)

The condition of regularity as χ → ∞ is automatically satisfied by this
general solution, so it brings no additional constraint. To fix the solution,
we shall rather require ψ(t, χ) = e−iωtψ(χ) to be an outgoing wave at large χ,
as explained in the previous section. This requires c1 = −ic2 which together
with the boundary condition (4.5) completely fixes the solution as

ψ(χ) = −iπk
(

kA
(0)
0 + ωA

(0)
3

)√
χH

(1)
0 (Qχ) , (4.9)

where H
(1)
0 = J0 + iN0 is a Hankel function encoding the desired outgoing-

wave behaviour at large χ: ψ(t, χ) ∝ e−i(ωt−Qχ) when χ ≫ 1/Q. The
remarkable feature of this solution is that it is complex, and thus it encodes
dissipation. Specifically, the longitudinal piece of the action is obtained in
the same form as in Eq. (4.6) except for an additional imaginary part. The
would-be singular term at the boundary, which is real, is again removed as
in Eq. (4.7), and the remaining, finite, part is finally used to compute the
function Π (q2).

One can combine together the results for both space-like and time-like
currents in the following expression (recall that Q2 = |q2|):

Π (q2) =
N2

cQ
2

32π2

(

ln
Q2

µ2
− iπΘ(−q2)sgn(ω)

)

, (4.10)

where the imaginary part for the time-like case (q2 < 0) is manifest. The
sign of this imaginary part depends upon the sign of the energy, and is such
as to correspond to retarded boundary conditions. Hence, as anticipated,
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Eqs. (4.1) and (4.10) present the exact result for the retarded, vacuum, po-
larisation tensor of the R-current in the N = 4 SYM theory at infinite
’t Hooft coupling. This has been obtained here via a classical calculation in
the dual supergravity theory, but it also corresponds to an infinite resum-
mation of (planar) Feynman diagrams of the original gauge theory. Can we
say anything about the physics encoded in these diagrams?

The first remarkable observation is that this all-order result in Eq. (4.10)
is formally identical to the respective result at zero order in the Yang–Mills
coupling g, i.e., the one-loop polarisation tensor (see, e.g., the left figure in
Fig. 10; recall that, in N = 4 SYM, this loop involves both adjoint quarks
and adjoint scalars). This ‘coincidence’ is a consequence of supersymmetry
which protects the conserved R-current [69]; it means that all the higher
loop corrections cancel each other, but it does not tell us much about the
physical interpretation of the final result at strong-coupling. To gain more
physical insight, we shall rely on the ultraviolet-infrared correspondence, that
we shall first motivate, in the next subsection, on the basis of our previous
results.

4.3. The UV/IR correspondence

For a space-like current, we found that the Maxwell wave can penetrate
into AdS5 only up to a distance χ ∼ 1/Q away from the boundary. This
should be put in relation with the fact that, by energy–momentum conser-
vation, a space-like current cannot decay in the vacuum, but it generally
develops virtual, partonic, fluctuations (see Fig. 18 (left)), with transverse
size L ∼ 1/Q and lifetime ∆tcoh which can be estimated from the uncertainty
principle as

L ∼ 1

Q
, ∆tcoh ∼ 1

Q
× k

Q
∼ k

Q2
. (4.11)

As suggested by the above writing, ∆tcoh is obtained as the product between
the lifetime ∼ 1/Q of the fluctuation in the frame in which the current has
zero energy (its ‘rest frame’) and the Lorentz gamma factor γ = k/Q. We
refer to this lifetime as a ‘coherence time’ since this is the interval during

q=(ω,0,0,k)

~ t1/2
L ~ 1/Q ~ t1/2

~ v t

Fig. 18. Space-time picture for the “one-loop” (one parton pair) fluctuation of a

space-like current (left) and, respectively, time-like current (right).
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which the current acts as a colour dipole, and hence it can interact via
colour gauge interactions. Quantum dynamics also provides us with a space–
time picture for the fluctuation [58, 70]: if the photon dissociates at t = 0
into a point-like pair of fermions, or scalars, then with increasing time the
transverse size of this pair increases diffusively,

L ∼
√

t

k
, (4.12)

until it reaches its maximal size L ∼ 1/Q at a time t ∼ k/Q2 ∼ ∆tcoh.
Remarkably, it turns out that the very same space-time picture applies

for the penetration of the Maxwell wave inside AdS5 [31]. If instead of
a plane-wave we consider a wave-packet in energy (centred around ω) which
at t = 0 was localised near the boundary, ψ(t = 0, χ) ∝ δ(χ), then at early
times t . k/Q2 this wave-packet propagates diffusively inside the bulk: the
position of the centre of the wave-packet after a time t is

χdiff(t) ∼
√

t

k
, (4.13)

until it reaches a maximal penetration χ ∼ 1/Q at time t ∼ k/Q2 (see
Fig. 19 (left)).
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Fig. 19. Graphical illustrations of the progression of the Maxwell wave in the radial

dimension χ (the curly curve represents the trajectory of the wave-packet) and of

the dual partonic fluctuation on the Minkowski boundary (which can be viewed as

the ‘shadow’ of the Maxwell wave). Left: space-like case. Right: time-like case.

This precise analogy suggests an identification, or ‘duality’, between the
penetration χ = R2/r of the Maxwell wave inside AdS5 and the transverse
size L, or inverse virtuality 1/Q, of the partonic fluctuation of the current in
the gauge theory. This identification holds in the sense of a proportionality,
so like the uncertainty principle:

Radial penetration χ=R2/r in AdS5 ∼Transverse size L∼1/Q on the boundary
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This is a specific form of the ultraviolet–infrared correspondence of
AdS/CFT [50, 55] within the context of the high-energy problem. This is
often formulated as a correspondence between the 5th dimension and the ‘en-
ergy’ in the gauge theory. As such, this is correct at low energy, but in general
the ‘energy’ should be replaced by the (boost-invariant) virtuality [31, 56].
As we shall see, this correspondence is very helpful in reconstructing the
physical interpretation of the AdS/CFT results.

4.4. Parton branching at strong coupling

As a first application, consider the case of a time-like current. If at t = 0
we start again with a wave-packet localized near χ = 0, then at early times
t . ω/Q2 the dynamics will be the same as for a space-like current — the
wave-packet slowly diffuses into the bulk up to a distance χ ∼ 1/L — but
then the situation changes: instead of a potential barrier, the time-like wave
meets with a flat potential, so it can freely propagates towards larger values
of χ (cf. Figs. 17 and Fig 19 (right)). This is manifest from our previous
solution (4.9): by using the asymptotic form of the Hankel function valid at
χQ≫ 1 and restoring the exponential dependencies upon t and z, one finds
that the late-time solution behaves like

e−iωt+ikz ψ√
χ

∝ exp {−iωt+ ikz + iQχ} . (4.14)

This describes a wave-packet9 propagating in AdS5 with constant radial
velocity vχ = Q/ω :

∂

∂ω

(

ωt−
√

ω2 − k2 χ
)

= 0 =⇒ χ(t) =
Q

ω
t ≡ vχt . (4.15)

Via the UV/IR correspondence, these results predict the following be-
haviour on the gauge theory side (see also Fig. 19 (right)): For times t >
ω/Q2, the partonic system produced via the dissociation of the time-like
current expands in transverse directions at a constant speed v⊥ = vχ:

L(t) ∼ v⊥t with v⊥ =
Q

ω
=

√

1 − v2
z , where vz =

k

ω
. (4.16)

Here, vz is the longitudinal velocity of the time-like current, as related to the
respective boost factor γ = ω/Q via the standard relation γ = 1/

√

1 − v2
z .

9 More precisely a wave-packet would involve an integration over different values of ω
around a central value; but in the saddle point approximation, the group velocity
would be indeed given by Eq. (4.15).
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This behaviour, Eq. (4.16), admits two different physical interpretations,
but as we shall argue below only the second one is acceptable at strong
coupling:

(i) The decay of the current into a pair of partons.
The time-like current decays into a pair of on-shell, massless partons (adjoint
fermions or scalars) of N = 4 SYM theory, which then move together along
the z direction with a longitudinal velocity vz = k/ω inherited from the
current, while separating from each other in transverse directions at velocity
v⊥ =

√

1 − v2
z .

This is, of course, the space-time picture of the one-loop approximation
to Πµν and as such it must be consistent with the AdS/CFT calculation,
since the result of the latter turns out to be formally the same as the respec-
tive one-loop result. But being ‘consistent’ it not necessarily the same as
being correct. At strong coupling there is no reason why parton branching
should stop at 2-parton level: it takes some time before the original pair
of partons can get on-shell, and during this time they will further radiate,
as the emission time is shorter than the time necessary to evacuate their
virtuality. At weak coupling, such additional emissions are suppressed by
powers of g, so they appear as higher-order corrections (cf. the discussion
in Sect. 2). But at strong coupling, there is no such a suppression, and
hence nothing can slow down the branching process, which is required by
the uncertainty principle. Following the same idea, there is no reason why, at
strong coupling, parton branching should favor special corners of the phase-
space, like soft or collinear partons: phase–space enhancement is not needed
when the coupling is strong. Such considerations suggest a space–time pic-
ture for parton evolution at strong coupling which is quite different from the
corresponding one at weak coupling, and that we now present:

(ii) Quasi-democratic parton branching at strong coupling [31].
The virtuality of the current, or of any virtual parton which is time-like,
is evacuated via successive parton branchings which are ‘quasi-democratic’:
at each step in this branching process, the energy and virtuality are almost
equally divided among the daughter partons. This picture, which is more ac-
ceptable at strong coupling, is indeed consistent with the previous AdS/CFT
results, as we now show:

Let n = 0, 1, 2, . . . be the generation index, with Q0 = Q and ω0 = ω
(see Fig. 20). Then we can write

ωn ∼ ωn−1

2
∼ ω

2n
, Qn ∼ Qn−1

2
∼ Q

2n
, ∆tn ∼ ωn

Q2
n

, (4.17)
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1 n0 2

Fig. 20. Qualitative picture of the parton cascade generated through ‘quasi-

democratic’ branching at strong coupling. A line (‘branch’) with an arrow denotes

any of the massless partons (quark, gluon, or scalar) of the N = 4 SYM Lagrangian,

except possibly for the first parton, which initiates the cascade, which can also be

a virtual R-photon.

where the lifetime ∆tn of the nth parton generation has been estimated via
the uncertainty principle. This implies

Qn −Qn−1

∆tn
∼ − Q

ω
Q2

n =⇒ dQ(t)

dt
≃ − Q2(t)

γ
, (4.18)

where γ ≡ ω/Q = 1/
√

1 − v2
z is the Lorentz factor for both the incom-

ing, time-like, current and any of the virtual partons produced via its de-
cay: indeed, the ratio ωn/Qn ≈ ω/Q is approximately constant during the
branching process, hence γn ≈ γ. This means that each parton generation
progresses along the longitudinal direction at the same speed vz as the orig-
inal current would do. But at the same time the virtuality decreases from
one generation to another, hence the partonic system expands in transverse
directions. Specifically, Eq. (4.18) together with the uncertainty principle
L(t) ∼ 1/Q(t) implies that the transverse size of the partonic system in-

creases like L(t) ∼
√

1 − v2
z t, in qualitative agreement with the AdS/CFT

result in Eq. (4.16).
By integrating Eq. (4.18), one can deduce the virtuality Q(t) and the

energy ω(t) = γQ(t) that a typical parton in the cascade will have after a
time t ≥ ∆t0 ∼ ω/Q2. One thus finds

Q(t) ≃ γ

t
, ω(t) ≃ γ2

t
. (4.19)

(For t = ω/Q2, these equations yield Q(t) = Q and ω(t) = ω, as they
should.) Of course, the total energy of the partonic system is conserved and
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Fig. 21. Final state produced in e+e− annihilation. Left: weak coupling. Right:

strong coupling.

equal to ω (the energy of the incoming photon), but with increasing time this
energy gets spread among more and more partons. One can indeed check
that the number of partons within the cascade increases like Npart(t) ≃
t/∆t0.

For how long will this branching process last? Within the conformal
N = 4 SYM theory, the partons will keep branching for ever, thus pro-
ducing more and more partons, with lower and lower energies. But if one
introduced a infrared cutoff Λ in the theory, as a crude model to mimic
confinement and ensure the existence of hadron-like states, then the branch-
ing will continue until the parton virtualities degrade down to values of
order Λ; then hadrons will form and the particle distribution will get frozen.
The total duration of the branching process is essentially the same as the
lifetime ∆tN of the last generation, the one with QN ∼ Λ. (Indeed the par-
ton lifetime increases down the cascade: ∆tn ≃ 2∆tn−1 ≃ 2n∆t0.) This
yields ∆tN ∼ 2N (ω/Q2) ∼ γ/Λ, where we have used 2N = Q/Λ and
ω/Q = γ. The final partons produced in this process are relatively nu-
merous (Npart ∼ 2N = Q/Λ ≫ 1) and have small transverse momenta
k⊥ ∼ QN ∼ Λ, so they will be isotropically distributed in transverse space,
within a disk with area ∼ 1/Λ2 around the longitudinal axis.

This picture of ‘quasi-democratic branching’ — that one should think off
as a kind of mean field approximation to the actual dynamics in the gauge
theory at strong coupling — has intriguing consequences for processes like
e+e− annihilation at high energy (

√
s ≫ Λ). Consider the respective final

state as seen in the center of mass frame. Unlike what happens in QCD
at weak coupling, where this state involves only a few, well collimated, jets
(cf. Sect. 2 and Fig. 21(left)), at strong coupling there will be no jets at all!
Rather, the final hadrons will be relatively soft — they all carry energies
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and momenta of order Λ — numerous and isotropically distributed in space,
as illustrated in the r.h.s. of Fig. 21. (See also Refs. [71–74] for different
arguments leading to similar conclusions.) Such a structure for the final
state is clearly inconsistent with what is actually seen in the high-energy
experiments, and this should not come as a surprise: as argued in Sect. 2
(see, e.g., Eq. (2.6)), the decay of a highly-energetic time-like current in QCD
is rather controlled by weak coupling, because of asymptotic freedom. One
may nevertheless hope that strong-coupling techniques like AdS/CFT could
be more useful when the current propagates through a finite-temperature
plasma, where the relevant coupling is believed to be stronger. This is the
topics that we shall discuss in the next section.

5. R-current in the N = 4 SYM plasma at strong coupling

We are now prepared to address the problem which is our main physi-
cal interest, namely the propagation of the R-current through the strongly
coupled N = 4 SYM plasma. As we shall see, the corresponding AdS/CFT
results are again suggestive of a ‘quasi-democratic branching’ picture, which
is now generalized to accommodate the effects of the plasma.

We focus on a current with large virtuality, Q ≫ T (‘hard probe’),
which therefore explores the structure of the plasma on distances short as
compared to the thermal wavelength 1/T . We shall perform our calculations
in the plasma rest frame, but then interpret the results in the plasma infinite
momentum frame, in order to unveil the partonic structure of the plasma.
It is moreover interesting to choose this current to have a relatively high
longitudinal momentum in the plasma rest frame, such that k ≫ Q ≫ T
(which in turn implies a high energy: ω ∼ k; recall that Q2 ≡ |k2 − ω2|).
Indeed, below Eq. (4.11) we have argued that the interactions of the current
with an external target extend over a time ∆tcoh ∼ k/Q2, i.e., the lifetime
of its partonic fluctuation. For the current to explore medium properties in
the plasma, we would like this time to be much larger than 1/T — so that
the current explores a relatively large longitudinal slice ∆z ∼ ∆tcoh ≫ 1/T .
This implies k ≫ Q2/T (and hence k ≃ ω ≫ Q), which is tantamount to
the condition that the associated Bjorken-x variable be very small: x ≪ 1.
(This variable will be introduced in Eq. (5.3) below.) In fact, as we shall later
discover, for a space-like current to significantly interact with the plasma we
need an even higher energy ω & Q3/T 2 [30].

For an ordinary plasma at weak coupling, this physical set-up would
probe the parton evolution of the individual thermal quasiparticles, so the
plasma structure functions would be simply the sum of the structure func-
tions for those quasiparticles weighted by the respective densities in thermal
equilibrium. For instance, the gluon distribution per unit volume in the
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weakly-coupled quark–gluon plasma is given by

xg(x,Q2) ≈ nq(T )xgq(x,Q
2) + ng(T )xgg(x,Q

2) , (5.1)

where nq(T ) ∼ NcT
3 and ng(T ) ∼ N2

c T
3 are the thermal densities for

(anti)quarks and gluons, and xgq(x,Q
2) and xgg(x,Q

2) are gluon distri-
bution functions generated by the evolution of a single quark, or gluon,
respectively. However, at strong coupling, the quasiparticle structure of the
plasma is not known (if any!) and, moreover, we expect the evolution of
the plasma as whole to be different from that of its individual constituents
taken separately (once again, assuming that such individual constituents ex-
ist in the first place, which may not be true!). It then becomes interesting
and meaningful to compute directly the plasma structure functions. This
calculation refers to a space-like current, but a time-like current is interest-
ing too, since this decays into jets, which then interact with the plasma. In
what follows we shall consider both space-like and time-like currents, but we
shall skip most technical details and focus on the results and their physical
interpretation.

5.1. Space-like current: DIS off the strongly coupled plasma

Let us start with some kinematics. The polarization tensor in the plasma,
as defined in Eq. (3.7), involves two independent scalar functions, Π1 and
Π2, and admits the following decomposition in a generic frame:

Πµν(q, T ) =

(

ηµν − qµqν
Q2

)

Π1(x,Q
2)

+

(

nµ − qµ
n · q
Q2

)(

nν − qν
n · q
Q2

)

Π2(x,Q
2) . (5.2)

Here nµ is the four-velocity of the plasma, with nµ = (1, 0, 0, 0) correspond-
ing to the plasma at rest. Also, the Bjorken-x variable for the current-plasma
scattering is defined as

x ≡ Q2

−2(q · n)T
=

Q2

2ωT
, (5.3)

with the second expression valid in the plasma rest frame, where qµ =
(ω, 0, 0, k). The plasma structure functions are obtained as

F1(x,Q
2) =

1

2π
ImΠ1 , F2(x,Q

2) =
−(n · q)

2πT
ImΠ2 . (5.4)

This tensorial structure is similar to that introduced in Sect. 2 for DIS off
a hadron, and the above formulae correspond indeed to Eqs. (2.12) and (2.13)
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up to the replacement Pµ → nµ. But unlike the hadronic polarisation tensor,
or structure functions, which are dimensionless, their plasma counterparts
in Eqs. (5.2)–(5.4) have dimensions of momentum squared. This difference
is related to their physical interpretation that we shall later discuss.

In order to compute Π1 and Π2 from classical supergravity, we need
to solve the equations for both the transverse and longitudinal Maxwell
waves, that is, Eqs. (3.12) and (3.15), respectively. There is an important
simplification which simplifies this analysis: the most important dynamics
takes plays relatively far away from the BH horizon, at χ ≪ χ0, where
f(χ) ≈ 1 (cf. Eq. (3.3)). Of course, the absorption of the wave by the
BH takes place around the horizon, but the effects of the interactions with
the BH makes themselves felt already well above χ0, because of the long
range nature of the gravitational interactions (see below); in turn, these
long-range interactions uniquely determine the classical solution near the
Minkowsky boundary (χ → 0), which is all that we need in order to com-
pute the polarisation tensor (cf. Eq. (3.18)). Because of that, we can replace
f → 1 (i.e., ignore the effects of the BH) everywhere except in the terms
where the difference 1 − f = (χ/χ0)

4 is amplified by the large longitudinal
momentum of the current. To be more specific, let us consider the longitu-
dinal sector and use the form (3.20) of the respective EOM. The third term
in this equation involves

ω2 − k2f(χ) = ω2 − k2 + k2 χ
4

χ4
0

= ∓Q2 +
(

π2kT 2χ2
)2
, (5.5)

(as usual, the upper/lower sign in front of Q2 corresponds to a space-
like/time-like current, respectively), where the last term ∝ k2T 4 becomes

comparable with Q2 for any χ greater than a ‘critical’ value χcr = χ0

√

Q/k.
Note that, in the high-energy of interest here (k ≫ Q), this value χcr is
much smaller than χ0 and in fact it can be arbitrarily small. Hence this
piece of the gravitational interactions — which describes the Newton poten-
tial created by the BH (or one graviton exchange) — can be important even
far away from the horizon, including in the vicinity of the boundary. This is
the piece of the interaction that we must keep. But all the other factors of
f appearing in Eq. (3.20) can be safely replaced by 1 so long as we restrict
ourselves to χ ≪ χ0, which we shall do indeed in what follows. Then the
respective equation of motion (including time-dependence) takes indeed the
form of a Schrödinger equation, as anticipated at the end of Sect. 4:

− 1

2k

∂2ψ

∂χ2
+ V (χ)ψ = 0 , V (χ) = − 1

8kχ2
± Q2

2k
− k

2

χ4

χ4
0

. (5.6)

The respective roles of the three pieces in the potential should be clear by
now: (a) the first piece (VA), which is independent of both the virtuality and
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the temperature, describes the diffusive penetration of the wave at early
times (or, in the dual gauge theory, the diffusive growth of the partonic
fluctuation of the current in transverse directions); (b) the second one (VB),
which is flat and proportional to Q2, is the potential barrier which prevents
a space-like current to decay into the vacuum, and (c) the third piece (VC) is
the one-graviton exchange interaction between the current and the BH. We
shall latter attempt to provide a physical interpretation for this last piece
on the gauge theory side. The balance between these three pieces depends
upon the energy ω ≃ k and the virtuality Q2 of the current, and upon
the temperature. There are two important physical regimes, a low energy
one and a high energy one, which for the space-like current are illustrated
in Fig. 22. The transition between these two regimes occurs at an energy
ω ∼ Q3/T 2, as we now explain:

kK
311 kK1 χ

diffusion

)(χV

A
V

B
V C

V

kK
2

kK
311 k K1

χ

diffusion medium branching

)(χV

A
V

C
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3/11 k−

Fig. 22. The potential V (χ) in Eq. (5.6) in the space-like case (upper sign in front of

Q2). Left: low-energy case (ω ≪ Q3/T 2). Right: high-energy case (ω & Q3/T 2).

Note that, in the high-energy case the potential looks qualitatively similar for

a time-like current as well. (In these figures, Q is denoted as K, and all variables

have been made dimensionless by multiplying with appropriate powers of T .)

(i) Low energy: ω ≪ ωs ≡ Q3/T 2 (see Fig. 22 (left))
So long as the energy is relatively low (with ω ≫ Q2/T ≫ Q though!), the
potential shows a barrier corresponding to energy–momentum conservation,
so like in the vacuum (compare to Fig. 17 (left)). However, and unlike in the
vacuum, this barrier has now only a finite width — it extends over the inter-
val 1/Q . χ . χcr, with χcr = χ0

√

Q/k — and for larger χ≫ χcr we have
V ≃ VC which describes attraction by the BH. Hence, there is a small, but
non-vanishing, probability for the wave to penetrate through the barrier via
tunnel effect, and once that this happens the wave will fall into the BH. This
tunnel effect will provide an exponentially small contribution to the imagi-
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nary part of the polarisation tensor10, and hence to the structure functions,
which can be estimated in the WKB approximation as (parametrically) [30]

F2 ∼ xF1 ∼ xN2
cQ

2D ,

D ∼ exp
{

− c(ωs/ω)1/2
}

= exp

{

−c Q√
γ T

}

, (5.7)

where c is some undetermined numerical coefficient and we have used γ =
ω/Q. Interestingly, the exponential attenuation factor D which is gen-
erated through tunnelling looks formally like a Boltzmann thermal factor
exp(−Q/Teff ) with an effective temperature Teff =

√
γ T . One can under-

stand Teff as the temperature of the plasma in a boosted frame in which the
current has zero longitudinal momentum (and hence the plasma has a large
global velocity ω/k ≃ 1): indeed, the energy density of the plasma, which
in the plasma rest frame scales like11 E ≡ T00 ∼ N2

c T
4, becomes E ′ = γ2E

in the boosted frame; this is the same energy density as for a plasma at rest
but with an effective temperature

√
γ T .

We conclude that the low-energy space-like current can decay inside the
plasma, albeit very slowly. We shall later interpret this decay as pair produc-
tion induced by a uniform background force — that is, a kind of Schwinger
mechanism.

(ii) High energy: ω ≫ ωs ≡ Q3/T 2 (see Fig. 22 (right)).
With increasing energy at fixed T and Q2, χcr becomes smaller and smaller,
so the barrier becomes narrower and it eventually disappears: this happens
when χcr ∼ 1/Q, or ω ∼ ωs. For even higher energies we are in the situation
illustrated in Fig. 22 (right), where the wave can move all the way up to
the horizon, where it is ultimately absorbed with probability one. From the
point of view of DIS, this situation corresponds to the unitarity, or ‘black
disk’, limit (the strongest possible scattering).

In this high energy regime, the virtuality-dependent term VB in the po-
tential is comparatively small at any χ and thus can be neglected. We con-
clude that, for such a high energy, the dynamics is in fact the same for both
space-like and time-like currents; and, of course, it would be the same for
a light-like current (Q2 = 0) with high energy ω ≫ T . Then V (χ) ≃ VA+VC

has a maximum at χ = χs with

χs ∼ 1

T

(

T

ω

)1/3

=
1

Qs
, (5.8)

10 The corresponding real part remains the same as in the vacuum up to exponentially
small terms.

11 Its precise value in this strong coupling limit can be deduced from Eq. (1.2) as E =
3p = (3π2/8)N2

c T 4.
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which is far away from the horizon: χs ≪ 1/T ∼ χ0. Above, we have
introduced the plasma saturation momentum

Qs(ω, T ) ∼ (ωT 2)1/3 , or Qs(x, T ) ∼ T

x
, (5.9)

which is the virtuality which separates between the (almost) no-scattering
regime at Q ≫ Qs and the strong scattering regime at Q . Qs. In other
terms, the strong-scattering condition ω ∼ Q3/T 2 can be solved either for
ω, thus yielding ω ∼ ωs, or for Q, which gives Q ∼ Qs. We shall later
argue that, also in this context at strong coupling, the scale Qs is associated
with the phenomenon of parton saturation, so like in QCD at weak coupling
(cf. Sect. 2).
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Fig. 23. Space-like current in the plasma: the trajectory of the wave packet in AdS5

and its ‘shadow’ on the boundary. Left: the (relatively) low energy case — the

Maxwell wave gets stuck near the boundary up to tunnel effect. Right: the high

energy case — the wave has an accelerated fall into the BH.

The high-energy dynamics thus proceeds as follows (for either space-like
or time-like current; see also Fig. 23 (right)): Starting at t = 0 with a wave-
packet localised near the boundary (χ = 0), this will slowly diffuse inside
the bulk, so like in the vacuum (cf. Eq. (4.13)), up to a distance χ ∼ χs

where it starts feeling the BH. This takes a time ts determined as

χ(t) ∼
√

t

ω
& χ(ts) ∼ χs =⇒ ts ∼ ω

Q2
s

. (5.10)

Then, the wave falls towards the BH following an accelerated trajectory
which, interestingly, brings the wave-packet in the vicinity of the horizon
(χ(t) ∼ χ0) at a time tf which is parametrically of the same order as ts.
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This can be understood as follows: in the semi-classical, WKB, approxima-
tion, the centre of the wave-packet moves in the same way as a classical
particle with mass k in the potential V ≃ Vc and with zero total (kinetic
plus potential) energy. The last condition reads

T + Vc =
kχ̇2

2
− k

2

χ4

χ4
0

= 0 =⇒ dχ

dt
=

χ2

χ2
0

, (5.11)

which is easily integrated starting at time t = ts to yield

χ(t) =
χs

1 − χs

χ2
0

(t− ts)
. (5.12)

This χ(t) approaches χ0 ≫ χs when the denominator is almost vanishing,
which implies

tf − ts ≃ χ2
0

χs
∼ Qs

T 2
∼ ω

Q2
s

∼ ts . (5.13)

Thus, as anticipated, the total fall time (defined as the time after which the
wave packet arrives in the vicinity of the horizon) reads, parametrically,

ts ∼ ω

Q2
s

∼ 1

T

(ω

T

)1/3
. (5.14)

From the perspective of the dual gauge theory, this time ts is the lifetime
of the high energy current before being absorbed by the plasma. Since,
moreover, the current propagates essentially at the speed of light (at least,
before it starts to feel the plasma), ts also gives also the penetration length
for the high energy current, i.e., longitudinal distance ∆z travelled by the
current before disappearing in the plasma. As shown by the above estimate,
∆z scales like ω1/3, which is also the law found for a falling open string (the
dual of a ‘massless gluon’) in Refs. [47, 49]. This similarity points towards
the universality of the mechanism for energy loss in the strongly coupled
plasma, that we shall describe in Sect. 5.3.

To compute the plasma structure functions in this high-energy regime,
it is enough to consider the time-independent version of the ‘Schrödinger
equation’ (5.6) with the simplified potential V = VA + VC (together with
a similar equation for the transverse waves [30]). The details of the geometry
near the BH horizon are again irrelevant, since the outgoing-wave boundary
condition can be enforced already at relatively small distances χ ≪ χ0,
namely at any χ ≫ χs. (Recall that χs = 1/Qs ≪ χ0.) Then the classical
solutions are fixed at all smaller values of χ and, in particular, near the
Minkowski boundary. One thus obtains the following parametric estimates12

12 A similar result was found in Ref. [76] in a study of real photon production in the
strongly coupled plasma, where the equation corresponding to the zero-virtuality case
Q2 has been solved exactly.
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for F1,2 [30]

F2 ∼ xF1 ∼ xN2
cQ

2

(

T

xQ

)2/3

for Q . Qs(x, T ) =
T

x
. (5.15)

A physical interpretation for this result will be presented in Sect. 5.4.
Note finally that the lifetime (5.14) of the high-energy current is formally

the same as the coherence time for a current with virtuality equal to Qs (and
not to Q!). Since Qs ≫ Q in this regime, it is clear that ts ≪ ∆tcoh(Q): that
is, the current disappears in the plasma before having the time to develop
a normal partonic fluctuation with size L ∼ 1/Q, as it would do in the
vacuum. This has interesting consequences for the survival of a ‘meson’
state in the plasma:

A high-energy space-like current is the simplest device to create a ‘me-
son’, i.e., a partonic excitation which is overall colour neutral but has a
non-zero colour dipole moment. This is, of course, a virtual excitation and
not a truly bound state, but its lifetime ∆tcoh ∼ ω/Q2 can be made arbi-
trarily large by increasing the energy ω of the current (for a given transverse
size L ∼ 1/Q). At least, this is the situation in the vacuum. But what
about the strongly-coupled plasma? There, a similar situation holds too,
but only so long as the energy of the current is not too high: namely, when
ω ≪ ωs ∼ Q3/T 2, the ‘mesonic’ fluctuation lives nearly as long as in the
vacuum, since its interactions with the plasma are exponentially suppressed.
But for higher energies ω & Q3/T 2, the current is absorbed already before
having the time to create a meson. This puts an upper limit on the ‘rapidity’
γ ≡ ω/Q of the meson13 (with a given size L) that can be created by a high
energy process occurring within the plasma (‘limiting velocity’):

γmax ∼ ωs

Q
∼ Q2

T 2
∼ 1

(LT )2
, (5.16)

or, alternatively, an upper limit on its transverse size for a given value of γ
(‘screening length’):

Lmax ∼ 1

Qs
∼ Q2

s

ωT 2
∼ 1

γLmaxT 2
=⇒ Lmax ∼ 1√

γ T
. (5.17)

(Notice the emergence of the effective temperature Teff =
√
γ T .) Similar

limits have been found in a different approach [40–44], in which the ‘meson’
is viewed as a quark–antiquark pair (with heavy quarks), whose string dual
is an open string with endpoints attached to a D7-brane embedded in the

13 More precisely, the rapidity is the quantity η defined by cosh η ≡ γ.
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AdS5-BH geometry. This similarity between seemingly different physical
problems and approaches — R-current versus open string, heavy quarks
vs. massless quanta of N = 4 SYM — points, once again, towards an
universal mechanism for energy loss at strong coupling. We shall present
our conjecture [31] for this mechanism in Sect. 5.3, after the discussion of
the time-like current in the plasma. Before concluding, let us also mention
a difference between our results and those based on the open string picture
for the meson: in the low-energy/small-size regime where the meson can
form in the plasma, our approach predicts that the meson can decay, albeit
very slowly, via tunnelling (the corresponding width is exponentially small,
cf. Eq. (5.7)), whereas in the approach of Refs. [40–42] one finds that the
width is strictly zero (the lifetime of the meson is infinite). Very recently,
finite-width effects have been added to the string picture in Ref. [46], as
string worldsheet instantons; it would be interesting to clarify the relation
between these new results and those in Eq. (5.7).

5.2. Time-like current: e+e− annihilation in a strongly coupled plasma

The evolution of a time-like current in the plasma should in principle
teach us about the behaviour of nearly on-shell partonic jets which are
produced by a high-energy process, so like e+e− annihilation, taking place
within the plasma. From the previous discussion, we know already that,
at strong coupling, the situation is in fact more subtle. First, even in the
vacuum, the partons created by the decay of the time-like current are far
from being on-shell, at least in the early stages of the branching process.
Second, if the energy ω is high enough, such that ω/Q & (Q/T )2, then the
current disappears so fast into the plasma that it cannot even create the
kind of partonic fluctuation that it would develop into the vacuum. In other
terms, the virtual partons that the current fluctuates into have even larger
virtualities, of order Qs ≫ Q.

This last case, that of a highly-energetic current, has been already cov-
ered in the previous subsection: indeed, the respective dynamics is insen-
sitive to the virtuality Q2, and hence it is the same for time-like, space-
like, or even light-like, currents. Before we propose a physical interpreta-
tion for this dynamics, let us first consider the only remaining case, that of
a time-like current at relatively low energy: ω ≪ ωs ≡ Q3/T 2 (with
ω ≫ Q2/T ≫ Q though).

The respective potential is displayed in Fig. 24 (left) (this corresponds
to taking the lower sign in front of Q2 in Eq. (5.6); remember that K ≡
Q in this and similar figures). As in the corresponding space-like case,

cf. Fig. 22 (left), there is a critical radial distance χcr = χ0

√

Q/ω at
which the current starts to feel the plasma. For χ ≪ χcr, the dynamics
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Fig. 24. Left: the potential V (χ) in Eq. (5.6) in the time-like case (lower sign in

front of Q2). Right: the trajectory of the Maxwell wave-packet in AdS5 and its

‘shadow’ on the Minkowski boundary. In the left figure one uses dimensionless

variables together with the notation K ≡ Q; e.g. χ ∼
√

K/k in the left figure is

the same as χ ∼ 1/(γ1/2T ) in the right figure.

is the same as for a time-like current in the vacuum (cf. Sect. 4): (i) The
Maxwell wave-packet first diffuses inside the bulk up to a distance χ1 ∼ 1/Q;
this takes a time t1 ∼ ω/Q2 (the coherence time for the virtual ‘photon’).
(ii) Then, the potential becomes flat, so the wave-packet propagates at con-
stant radial speed vχ = Q/ω up to a distance χcr ≫ 1/Q; this takes an
additional time

tc − t1 ≃ χcr

vχ
∼ 1

T

√

ω

Q
≫ t1 ∼ ω

Q2
, (5.18)

which is much larger than t1; therefore, tc ≃ tc − t1 ∼ √
γ/T . (iii) For

χ & χcr, V ≃ Vc and the wave-packet falls towards the horizon according
to the same law as for the high-energy regime discussed in the previous
subsection, cf. Eqs. (5.11)–(5.12). The only difference is that, now, this fall
begins at a different time (tc instead of ts) and at a different radial location
(χcr instead of χs). Hence the trajectory of the centre of the wave-packet
now reads (compare to Eq. (5.12))

χ(t) =
χcr

1 − χcr

χ2
0

(t− tc)
, (5.19)

so that the travelling time tf − tc down to the vicinity of the horizon is now
of order tc:

tf − tc ≃ χ2
0

χcr
∼ 1

T

√

ω

Q
∼ tc . (5.20)
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Eq. (5.11) can be rewritten as vχ = (χ/χ0)
2, which shows that the radial

velocity of the wave-packet increases from a value vχ = Q/ω at χ = χcr

(in agreement with the respective result in the vacuum, cf. Eq. (4.15)) to a
value of order 1 for χ ∼ χ0. Accordingly we expect the wave-packet to be
decelerated in the longitudinal direction during its accelerated (radial) fall
towards the black hole. Physically this would correspond to the stopping
of the partonic system in the plasma. This will be further discussed in the
next subsection.

To summarise, a time-like current with relatively low energy disappears
into the plasma after a time of order tc, which scales with the energy like
ω1/2 (rather than ω1/3 for the high-energy current; compare to Eq. (5.14)).
This lifetime yields also the penetration length in the longitudinal direction
(since the longitudinal velocity is vz ≃ 1 at least during the free-streaming
part of the dynamics): ∆z = tc ∼

√
γ/T .

The polarisation tensor for the time-like current in this ‘low-energy’
regime is essentially the same as in the vacuum, cf. Eq. (4.10) with q2 < 0,
since this is determined by the classical solution in the region of small
χ ≪ χcr. In particular, the rate for the dissipation of the current, as given
by Im Πµν(q), is the same as in the vacuum: this simply tells that the cur-
rent disappears via branching into the partons of N = 4 SYM, and this
branching proceeds in its early stages in the same way as it does in the vac-
uum (as it should be obvious from the previous discussion). Of course, the
late-time evolution of the partons will be different at finite temperature as
compared to the zero temperature case, but the inclusive cross-section for
the decay of the current is insensitive to this late-time evolution, and also
to the details of the final state. The situation is more interesting in that
respect in the high-energy regime (cf. Sect. 5.1), since there the branch-
ing process is affected by the temperature already in its early stages, thus
yielding temperature-dependent decay rates. (These can be obtained from
the structure functions (5.15), via the relations (5.4); one finds, e.g., Im
Π1 ∼ N2

cQ
2
s (ω, T ) .) A physical picture for the plasma effects in the branch-

ing process will be presented in the next subsection.

5.3. Physical interpretation: Medium-induced parton branching

Now, that we have presented the AdS/CFT results for an R-current in
the plasma in all the interesting kinematical regimes, it is important to try
and understand the physical meaning of these results in the original gauge
theory. To that aim, we shall heavily rely on the IR/UV correspondence
(cf. Sect. 4.3) together with the previously developed physical picture for
the evolution of the current in the vacuum (cf. Sect. 4.4).
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The new dynamics that we have to understand is the fall of the Maxwell
wave-packet towards the BH horizon. Let us first ‘translate’ the correspond-
ing laws via the IR/UV correspondence: after identifying χ(t) with the in-
verse 1/Q(t) of the virtuality of the evolving partonic system, the equation
of motion (5.11) for the centre of the wave packet can be rewritten as

dQ(t)

dt
∼ −T 2 . (5.21)

The l.h.s. of this equation is the rate for the change in the parton transverse
momentum, hence the r.h.s. should be interpreted as a transverse force.
This force FT ∼ (−T 2) — the simplest one that one can built with the
unique scale T offered by the plasma in this strong coupling regime where
the coupling disappears from all formulae! — is uniform and independent of
the parton momentum, and it acts towards decreasing the parton virtuality.
That is, it favours the parton evolution towards lower virtualities, meaning
that it speeds up the branching process.

Another way to recognise this force within AdS/CFT is via the condition
that a space-like current has strong interactions with the plasma. In the
context of the supergravity calculation of Sect. 5.1, this was simply the
condition that the gravitational potential due to the BH, VC ∼ ω(Tχ)4,
when evaluated at the position χ ∼ 1/Q of the wave packet, be strong enough
to balance the potential barrier VB ∼ Q2/ω expressing energy–momentum
conservation:

ω
(

Tχ
)4

∣

∣

∣

∣

χ=1/Q

∼ Q2

ω
=⇒ Q ∼ ω

Q2
T 2 . (5.22)

In this condition, the r.h.s. (ω/Q2) × T 2 can be recognised as the product
between the coherence time ∆tcoh ∼ ω/Q2 of the current and the plasma
force FT ∼ T 2. This suggests the following interpretation: the interaction
between the current and the plasma becomes strong when the lifetime of the
partonic fluctuations of the current becomes large enough for the mechan-
ical work done by the plasma force on these partons to compensate their
virtuality. Once this happens, the partons can move away from each other
and eventually disappear into the plasma, so that the current decays.

This interpretation can be promoted into a qualitative and semiquanti-
tative physical picture for parton branching in the presence of the strongly-
coupled plasma. As we shall see, this picture is consistent with all the results
of the supergravity calculations in Sects. 6.1 and 6.2. This picture involves
again a parton cascade like the one shown in Fig. 20 (where the ‘parton’
which initiates the cascade is chosen as the R-photon), but the branching
law is now modified by plasma effects. We focus on the more interesting case
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at high energy, ω ≫ ωs ≡ Q3/T 2, where the plasma effects are important
even in the early stages. Recall that, in this regime, the initial virtuality Q2

of the current plays no dynamical role, so the subsequent discussion applies
equally well to space-like, time-like, or even light-like, current. (In the lat-
ter case, we simply require ω ≫ T .) Starting with a point-like current at
t = 0, this will develop a partonic fluctuation which grows diffusively like
L(t) ∼

√

t/ω, but at the same time feels the effects of the plasma force,
which reduces the partons virtuality at the rate shown in Eq. (5.21). Dur-
ing this phase, the effective virtuality of the partonic system is set by the
uncertainty principle as Q(t) ∼ 1/L(t). After some time ts, the mechanical
work tsT

2 done by the plasma force becomes of the order of the system vir-
tuality at that time, 1/Q(ts), and then the system can further decay. The
corresponding values ts and Qs ≡ Q(ts) are easily found as

ts ∼ 1

T

(ω

T

)1/3
∼ ω

Q2
s

, Qs(ω, T ) = (ωT 2)1/3 , (5.23)

in agreement with Eq. (5.14). This first branching produces (in general) two
new partons, each of them roughly carrying half of the energy of the original
current: ω1 ≃ ω/2. Thus, the new partons are themselves very energetic,
so their intrinsic virtuality is irrelevant for their subsequent evolution, so
like for the original photon. Therefore, they undergo an evolution similar
to that in the previous step, but at the lower energy ω1. This argument
generalises to the nth step in the evolution, where ωn ≃ ω/2n: a parton
from this generation, whose intrinsic virtuality is still negligible (which is
indeed the case so long as ωn ≫ T ), grows up a partonic fluctuation whose
effective virtuality Qn ∼ 1/Ln is of the order of the mechanical work ∆tnT

2

done by the plasma during the lifetime ∆tn ∼ ωn/Q
2
n of the fluctuation.

This condition implies

Qn ∼ Qs(ωn, T ) = (ωnT
2)1/3 . (5.24)

Note that the virtuality and lifetime of a given parton generation are now
dynamically established, via the action of the plasma force, and they are in-
dependent of the intrinsic virtuality of the partons in the previous generation
(unlike what happens in the vacuum, where we have seen that Qn ∼ Qn−1/2,
cf. Sect. 4.4). The process stops when Qn and ωn become both of order T ,
since by then the partonic system has extended over a transverse distance
Ln ∼ 1/T and hence the partons originating from the current cannot be dis-
tinguished anymore from the degrees of freedom of the plasma: they become
a part of the thermal bath.

To evaluate the overall lifetime of the cascade, we now study the evolu-
tion of the virtuality Q(t) and of the energy ω(t) of a typical parton in the
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cascade. By integrating Eq. (5.21) starting at time t = ts (when Q(ts) = Qs)
and using ω(t) ≃ Q3(t)/T 2, one easily finds

Q(t) ≃ Qs − T 2(t− ts) , ω(t) ≃ 1

T 2

[

Qs − T 2(t− ts)
]3
. (5.25)

These quantities become simultaneously of order T after a time tf such that
(recall that Qs ≫ T )

tf − ts ≃ Qs − T

T 2
≃ Qs

T 2
∼ ts , (5.26)

in agreement with the respective AdS/CFT result, Eq. (5.13). Eq. (5.25)
should be compared to the corresponding equations in the vacuum,
cf. Eq. (4.19): like in the vacuum, the energy of a typical parton decreases
with time because the total energy gets spread among an increasing number
of partons. So long as Q(t) ≫ T , these partons can be still distinguished
from the thermal bath, and thus the energy ω brought in by the virtual pho-
ton remains within the parton cascade. This energy is transmitted to the
plasma only in the last stages of the branching process, i.e., in a relatively
short lapse of time ∼ 1/T . This may explain the final, explosive, burst of
energy seen in numerical simulations for the energy loss of a ‘light quark’
(a null string falling in the AdS5 BH geometry) in Ref. [49].

It is finally interesting to study the stopping of the partons in the plasma
and, related to this, the shape of the parton cascade. As we shall see,
this study will provide an interesting connection to the ‘trailing string’ con-
structed in Refs. [32, 33]. Consider the ‘rapidity’ γn = ωn/Qn of the par-
tons in the nth generation; in continuous notations, this becomes γ(t) =
ω(t)/Q(t) and it decreases with time (unlike for a branching process tak-
ing place in the vacuum, for which we have seen, in Sect. 4.4, that γn was
constant along the cascade). This means that the partons in each new gen-
eration move slower along the z direction than their predecessors in the
previous generations; this deceleration continues until t ∼ tf , when γ(t)
decreases to a value of O(1). If z(t) denotes the longitudinal position of
the partons existing at time t, then the previous argument implies that
z(t) < vt ≈ t and, moreover, the separation ζ(t) ≡ vt − z(t) is increasing
with time. (v ≡ k/ω ≈ 1 is the velocity of the incoming photon.) At this
stage, it is convenient to recall that L(t) ∼ 1/Q(t) represents the transverse
size of the partonic system at time t. If we eliminate the variable t between
the functions L(t) and ζ(t), then the resulting function L(ζ) describes the
enveloping curve of the partonic cascade, i.e., the curve which characterises
the shape of the parton distribution within the cascade. To construct this
function, we start with the longitudinal velocity of the partons at time t
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(recall that ω(t) ≃ Q3(t)/T 2):

vz(t) ≡ dz

dt
=⇒ 1 − v2

z(t) =
1

γ2(t)
=

Q2(t)

ω2(t)
∼ (TL(t))4 . (5.27)

Note that the difference 1 − v2
z(t) is parametrically of the same order as

v2
⊥, where v⊥ is the transverse velocity: v⊥ ≡ dL/dt ∼ (TL(t))2. This

is consistent with the fact that the highly-energetic, massless, partons are
nearly on-shell. The longitudinal velocity vz(t) remains close to one (i.e., z(t)
remains close to t) so long as L(t) ≪ 1/T , that is, at all times except for
the final stages of the branching process. The above equation then implies

z(t) − t = −ζ(L(t)) with
dζ

dt
≡ dζ

dL

dL

dt
∼ (TL(t))4 . (5.28)

After also using dL/dt ≃ (TL)2, cf. Eq. (5.21), we finally deduce

dζ

dL
∼ (TL(t))2 =⇒ ζ(L) ∼ T 2L3 . (5.29)

This function ζ(L) represents the enveloping curve of the partonic cascade in
the regime where L ≪ 1/T (and hence ζ ≪ 1/T as well), and is illustrated
in Fig. 25. What is remarkable about this curve is that it is ‘dual’ — via
the standard replacement L → χ with χ = R2/r (the radial coordinate
on AdS5) — to the ‘trailing string’ solution constructed in Refs. [32, 33].
The trailing string is the supergravity dual of a heavy quark propagating at
constant speed vz through the strongly-coupled N = 4 SYM plasma; roughly
speaking, this is the trajectory of the energy flow from the heavy quark to
the BH horizon. This string moves solidary with the heavy quark and it
is parameterised as z(t, χ) = vzt − ζ(χ), where the function ζ(χ) describes
the shape of the string in the comoving frame. For χ ≪ 1/T , this function
has the parametric form14 shown in Eq. (5.29) where we identify L ≡ χ.
This strongly suggests that the heavy quark looses energy to the plasma via
the same mechanism as the R-current, that is, through parton branching:
the heavy quark radiates quanta (massless partons of N = 4 SYM), which
in turn radiate other such quanta, so that the energy originally encoded in
the heavy quark is progressively spread among many partons. Then the
piece of the trailing string located at radial distance χ is ‘dual’ (via the
UV/IR correspondence) to that part of the parton distribution which has

14 The restriction to χ ≪ 1/T is necessary since our physical discussion of parton
branching is too qualitative to capture the dynamics of the parton cascade at late
times, where L(t) ∼ 1/T . One should however emphasise that the exact function ζ(χ),
as valid for any χ ≤ χ0, appears also in the context of the AdS/CFT calculation for
the R-current, as a line of stationary phase for the Maxwell wave at χ ≫ χcr [30].
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a transverse extent L ∼ χ; hence, the shape ζ(χ) of the string should be
described by the same function as the enveloping curve ζ(L), which is what
we found indeed.

32
LTz =∆

χ

z

L

Tz
3χ=∆

T1

T1

0=χ

Fig. 25. The parton cascade generated by the current via medium-induced branch-

ing in the physical Minkowski space (represented here as the boundary of AdS5

at χ = 0) and the trailing string attached to the leading photon (represented for

χ≪ 1). The latter is ‘dual’ to the enveloping curve of the former.

As another check of this physical interpretation, let us compare the ‘drag
force’ computed in Refs. [32, 33] — the force which is required to pull the
heavy quark at constant speed through the plasma — to the rate of energy
degradation for partons in our parton cascade. (In the case of the heavy
quark, this is also the rate at which the heavy quark looses energy, since
this quark can be traced during the branching process, due to its conserved
baryonic charge.) Namely, in Refs. [32, 33] one found

− dE

dt
=

π

2

√
λ v2

z γ T
2 , (5.30)

with vz the (constant) velocity of the heavy quark and γ = 1/
√

1 − v2
z . On

the other hand, for the branching process described in this section we can
write (this follows from Eq. (5.21) by using ω(t) ∼ Q3(t)/T 2, or directly
from Eq. (5.25))

− dω(t)

dt
∼ Q2

s (ω(t), T ) ∼ (ω(t)T 2)2/3 ∼ γ(t)T 2 , (5.31)

where γ(t) = ω(t)/Q(t) is now time-dependent, because we are not in a
stationary situation (there is no drag force). But except for this time-
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dependence, Eqs. (5.30) and (5.31) are indeed consistent with each other15:
in both cases, the rate for energy loss is proportional to γT 2.

5.4. Physical interpretation: Parton saturation at strong coupling

We now return to the AdS/CFT results for a space-like current, cf.
Sect. 5.1, and show that these can be naturally interpreted in terms of parton
distributions in the strongly-coupled plasma. From Sect. 2.2 we recall that the
structure function F2(x,Q

2) is a measure of the hadron (here, plasma) con-
stituents with longitudinal momentum fraction x and transverse momenta
k⊥ . Q (i.e., which occupy a transverse area ∼ 1/Q2). Hence, by inspection
of the corresponding results in Sect. 5.1, one can immediately deduce that
there are no partons at sufficiently large values of Q2 ≫ Q2

s (x) = (T/x)2

for a given value of x, or, equivalently, at sufficiently large values of x for
a given Q2. Indeed, the structure functions are exponentially suppressed in
this high-Q2 (or ‘low-energy’, or ‘large-x’) regime, as shown in Eq. (5.7) that
one can rewrite as

F2/(xN
2
cQ

2) ∼ exp
{

− c(Q/Qs)
1/2

}

= exp
{

− c(x/xs)
1/2

}

for x > xs ≡
T

Q
. (5.32)

The saturation line Qs(x) = T/x is shown as the straight line lnQ2
s (Y ) = 2Y

in the kinematical plane for DIS, in Fig. 26 (left). As also indicated in
that figure, there are no partons on the right side of the saturation line:
the respective structure functions are so small that the scattering can be
characterised as quasi-elastic. The absence of partons from the wavefunction
of a hadron at strong coupling (and for relatively large Q2) was anticipated
by Polchinski and Strassler [50], via the following argument based on the
operator product expansion (OPE).

At weak coupling, the parton picture for DIS is meaningful because the
OPE for the structure functions at high Q2 is dominated by the operators
with leading twist — i.e., those having the minimal value for the difference
τj,n ≡ ∆j,n − j between their mass dimension ∆j,n and their spin j (n is an
operator index) — which have a manifest interpretation in terms of quark
and gluon number densities (see, e.g., [57]). In the classical, or zero-order,
approximation, this value is τcl = 2 for all the ‘leading-twist’ operators.
But in general this classical value receives quantum corrections in the form
of the ‘anomalous dimensions’ γj,n ≡ ∆j,n − dj,n (with dj,n the respective

15 Recall that our calculation applies to a ultrarelativistic particle with vz ≃ 1. Also the
factor of

√
λ in Eq. (5.30) is the coupling between the heavy quark and the quanta

of N = 4 SYM; for the R-current, this coupling is rather the electric charge, that we
have implicitly chosen to be one.
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Fig. 26. Left: The ‘phase diagram’ for DIS off a N = 4 SYM plasma at high energy

and strong coupling. Right: Parton cascades through which the partons fall at

small values of x . xs.

classical dimension). At weak coupling, these anomalous dimensions start
at O(g2) and can be computed in perturbation theory; in particular, for
a theory with conformal symmetry, so like the N = 4 SYM theory, and
for large Nc, these are pure numbers γj,n ∼ g2Nc ≡ λ which turn out
to be positive, or zero in some exceptional cases. The ‘exceptional cases’
refer to the operators which are ‘protected’ against quantum corrections
by some symmetry, so like the energy–momentum tensor T µν (for which
j = 2 and γ = 0). The fact that γj,n is positive means that the respective
contribution to the OPE of F2(x,Q

2) decreases with increasingQ2, according
to the power law (1/Q2)γj,n/2. (In pQCD, due to asymptotic freedom, this
decrease is slower, as an inverse power of lnQ2 [57].) But at weak coupling,
the exponent |γj,n/2| ∼ g2Nc ≪ 1 is small, so in spite of their positive
anomalous dimensions the ‘leading-twist’ operators still dominate over those
with a higher (classical) twist τ ≥ 3.

The situation however changes when moving to strong coupling, as
Polchinski and Strassler have emphasised: there, the anomalous dimensions
for the leading-twist operators are very large, of O(λ1/4) [75], and they are
still positive (whenever non-vanishing), so the respective contributions die
away very fast with increasing Q2. As a consequence, the DIS structure func-
tions at high Q2 and strong coupling are rather dominated by special higher-
twist operators which are protected by symmetries, and which in general can
be of two types: operators which describe the scattering off the hadron as
a whole [50] (as opposed to the scattering off its partonic constituents), and
multiple insertions of the protected leading-twist operator T µν , which can
be interpreted as diffractive scattering [51]. (In the dual string theory, such
diffractive processes appear as multiple graviton exchanges which can be
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resummed in the eikonal approximation [77, 78].) These higher-twist oper-
ators provide contributions to F2(x,Q

2) which at high Q2 fall off as large,
but finite (i.e., independent of λ), powers of 1/Q2.

Yet, for the strongly-coupled plasma, the structure functions in Eq. (5.32)
show an even faster decrease at high Q2 — exponential rather than power-
like. This is so since these results correspond to the strict limit Nc → ∞, in
which the multiple graviton exchanges with a single constituent of the plasma
are naturally suppressed: indeed, each such an exchange is of order 1/N2

c ;
this suppression can be compensated by the large number ∝ N2

c of degrees
of freedom in the plasma (this explains why the potential for one-graviton-
exchange in Eq. (5.6) is independent of Nc), but this is not possible when
the scattering involves only a single constituent of the plasma. This explains
why the plasma structure functions have no power tail at high Q2. As for the
fact that this tail is exponential, this can be understood as follows: In the
previous subsection, we have argued that the gravitational interactions in
the supergravity problem correspond, in the dual gauge theory, to a constant
force FT ∼ T 2 acting on a coloured particle within the plasma. Then the
plasma-induced decay of a space-like current with high Q2 can be understood
as a version of the Schwinger mechanism for pair production by a uniform
electric field.

We now turn to the more interesting case at small-x, x . xs = T/Q, or
relatively small virtuality Q2 . Q2

s , where the plasma structure functions
are significantly large, cf. Eq. (5.15), which is suggestive of a parton picture.
To develop such a picture, we need two additional ingredients:

(i) The Breit frame
Recall that the concept of ‘parton’ makes sense only in a frame in which the
plasma has a large longitudinal momentum (an ‘infinite momentum frame’).
It is convenient to choose the Breit frame, which is the frame in which the
R-current is a standing wave, with 4-momentum q′µ = (0, 0, 0, Q). This
frame is obtained from the plasma rest frame by performing a boost in the
negative z direction with a boost factor equal to that of the original current,
i.e., γ = k/Q. A typical quanta in the plasma (whatever is its nature) has
energy and momentum of order T in the plasma rest frame, hence it will have
a longitudinal momentum ∼ γT in the Breit frame. However the current is
not absorbed directly by such a typical, thermal, quanta, rather by a partonic
constituent of it, which carries only a small fraction x = Q2/(2ωT ) ≪ 1 of its
longitudinal momentum; hence, this parton has a longitudinal momentum
p′z ∼ x(γT ) ≃ Q. We see that, in this particular frame, the current acts as a
probe of the plasma with both longitudinal and transverse resolutions equal
to Q.
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(ii) The energy sum rule
We have previously mentioned the fact that the spin-2 operator T µν receives
no anomalous dimension, because of energy–momentum conservation. This
can be used to demonstrate the sum-rule (2.18) for the longitudinal momen-
tum fraction inside a hadron wavefunction [57]: this sum-rule is proportional
to the expectation value 〈T µν〉, and hence it is independent of Q2. There
are similar sum-rules constraining the plasma structure functions [30]; for
instance,

E = 18T 2

1
∫

0

dxF2(x,Q
2) , (5.33)

where E is the energy density in the N = 4 SYM plasma at infinite coupling:

E ≡ 〈T 00〉 =
3π2

8
N2

c T
4 . (5.34)

Let us first check that Eq. (5.33) is indeed verified, at least parametrically,
by our present approximation for F2. Clearly, the region at (relatively)
large x ≫ xs yields only a negligible contribution to the integral, since F2

is exponentially suppressed there. Using Eq. (5.15) for x . xs = T/Q,
one can check that the integral is in fact dominated by the upper limit
x ≃ xs of this ‘small-x’ region, i.e., by points in the vicinity of the saturation
line; moreover, these points yield a contribution with the right order of
magnitude: T 2 xF2(x,Q

2) ∼ N2
c T

4 for x ∼ T/Q (for any Q2!). Note that,
with increasing Q2, the support of the structure function F2(x,Q

2) shrinks
to smaller and smaller values of x . T/Q (cf. Fig. 26 (left)).

One can furthermore rely on Eq. (5.33) to deduce a physical interpreta-
tion for F2(x,Q

2) valid in the Breit frame. In this frame, the energy density
reads E ′ = γ2E and the current explores a region of the plasma with longi-
tudinal width ∆z′ ∼ 1/Q. Note that ∆z′ is the same as the coherence time
of the current, cf. Eq. (4.11), when measured in the Breit frame. Hence, the
quantity

dE′

d2b
≡ E ′ × ∆z′ ∼ γ × γ

Q
× E (5.35)

represents the energy per unit transverse area in the region of the plasma
explored by the current. Using γ/Q ∼ 1/(xT ) together with Eq. (5.33), we
deduce

dE′

d2b
∼ xTγ

(

1

x
F2(x,Q

2)

)

x=T/Q

. (5.36)
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As before mentioned, the quantity xTγ ∼ Q in the r.h.s. is the longitudinal
momentum of the constituent (parton) which interacts with the R-current.
It is therefore natural to interpret

1

x
F2(x,Q

2)
∣

∣

∣

x=T/Q
∼ dN

dY d2b⊥

∣

∣

∣

x=T/Q
, (5.37)

as the number of partons in the plasma per unit area per unit rapidity as
‘seen’ by a virtual photon with resolution Q. The occurrence of the rapidity
Y ≡ ln(1/x) can be understood in the same as way as for the hadron struc-
ture functions in Sect. 2.2 (cf. Eq. (2.20)): namely, the partons explored by
the virtual photon have longitudinal momentum p′z ∼ Q and occupy a lon-
gitudinal distance ∆z′ ∼ 1/Q, hence they are distributed within one unit of
rapidity: ∆Y = ∆z′∆p′z ∼ 1.

On the other hand, the AdS/CFT calculation in Sect. 5.1 implies,
cf. Eq. (5.15),

1

x
F2(x,Q

2)
∣

∣

∣

x=T/Q
∼ N2

cQ
2 for x ∼ T/Q . (5.38)

By comparing Eqs. (5.37) and (5.38), we finally deduce

dN

dY d2b⊥
≡

Q
∫

d2k⊥
dN

dY d2b⊥d2k⊥
∼ N2

cQ
2 for x ∼ T/Q . (5.39)

This result is naturally interpreted as saying that the partons with x ∼ T/Q
are distributed in phase–space in such a way that, at all transverse momenta
k⊥ . Q, there is roughly one parton of each colour per unit phase–space.
Alternatively, one can say that, for a given value of x ≪ 1, the partons
occupy the phase–space on the left of the saturation line, i.e., at k⊥ .
Qs(x) = T/x, with occupation numbers of O(1):

1

N2
c

dN

dY d2b⊥d2k⊥
≃ 1 for k⊥ . Qs(x) =

T

x
. (5.40)

This phase-space distribution is reminiscent of that produced by gluon satu-
ration in weakly-coupled QCD (cf. Sect. 2.1 and Fig. 16) — the occupation
numbers are maximal and uniform (i.e., independent of Y and k⊥) on the left
of the saturation line, and they decrease rapidly when moving to its right
— but there are also interesting differences: (i) the occupation numbers
at saturation are of O(1) at strong coupling, while they were much larger,
∼ 1/λ≫ 1, in the perturbative regime at λ≪ 1; (ii) in the dilute region at
k⊥ ≫ Qs(x) there are essentially no partons in the strongly-coupled plasma,
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while in pQCD the respective occupation numbers decrease rather slowly,
roughly like (Qs/k⊥)2 (cf. Eq. (2.22)); (iii) for a given, ‘hard’, resolution
Q2, the energy of a hadron in pQCD is carried mostly by its large-x partons,
while at strong coupling this is rather concentrated in the vicinity of the sat-
uration line, i.e., at small x; (iv) the rise of the saturation momentum with
1/x is much faster at strong coupling than at weak coupling: the saturation
exponent ωs (introduced in Eq. (2.23)) is estimated as ωs ∼ 0.2 ÷ 0.3 in
pQCD, and as ωs = 2 for the strongly-coupled plasma (cf. Eq. (5.9)).

The fact that, at strong coupling, all partons lie at small values of
x is in fact quite natural [50, 51], and can be heuristically explained via
the ‘quasi-democratic branching’ scenario previously introduced for the R-
current (cf. Sect. 4.4). Already at weak coupling, we noticed in Sect. 2.2
the natural tendency of the parton evolution to increase the number of par-
tons with small values of x. In that case, however, the evolution was biased
towards the emission of small-x gluons, which carry only a small fraction
x ≪ 1 of the longitudinal momentum of their parent parton; hence, after
emission, the latter could emerge with a relatively large momentum, which
explains why most of the total energy was still carried by the large-x par-
tons. By contrast, at strong coupling there is no reason why the energy
and momentum should not be ‘democratically’ divided among the daughter
partons. Then the energy is rapidly degraded along the parton cascade (as
illustrated in Fig. 26 (right)), and no partons can survive at large x. The
fact that this branching process stops when x becomes as small as xs ∼ T/Q
can be ‘understood’ as a consequence of energy conservation, Eq. (5.33), to-
gether with the condition that the occupation numbers at strong coupling
cannot be much larger than one. However, we have no intuitive explanation
for this last condition, except for the fact that it looks natural.

Note that there is nothing specific to the finite-temperature plasma in the
above argument, and indeed it turns out that a similar partonic picture holds
also for a single hadron at strong coupling. This was studied in Refs. [50,51],
with the ‘hadron’ being a bound state (a kind of glueball) of the N = 4 SYM
theory ‘deformed’ by the introduction of an infrared cutoff Λ, to mimic
confinement. Via AdS/CFT, this ‘glueball’ is dual to a dilaton state in
supergravity. The respective DIS process is then computed as the graviton-
mediated scattering between the dilaton and the Maxwell wave induced in
AdS5 by the R-current. For sufficiently high Q2, the inelastic scattering is
mainly ‘diffractive’ — it proceeds via multiple graviton exchanges — and its
study requires going beyond the classical supergravity approximation — in
the sense that Nc must be kept finite, although large, to allow for multiple
scattering. (The large-Nc limit and the high-energy limit are then correlated
with each other [51].) The main conclusion in Ref. [51] is that the hadron
wavefunction at strong coupling can be given a partonic interpretation which
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is quite similar to that for the plasma: all partons are concentrated, with
occupation numbers of O(1), at transverse momenta below the respective
saturation momentum, which reads

Q2
s (x) =

Λ2

xN2
c

(hadron at strong coupling) . (5.41)

This is suppressed in the large Nc limit since so is the scattering amplitude.
(In the case of the plasma, this suppression is compensated by the number
of thermal degrees of freedom, which is proportional to N2

c .) The fact that
Q2

s (x) rises as 1/x is the expected ‘Regge behaviour’ ∝ 1/xj−1 for an ampli-
tude mediated by the exchange of a ‘particle’ with spin j — here, a graviton
with j = 2. The corresponding rise appears to be even faster in the case of
the plasma, where we have seen that Q2

s (x) = T 2/x2 (cf. Eq. (5.9)). This
difference can be easily understood: Q2

s (x) is proportional to the density
of partons per unit transverse area, as obtained after integrating over the
longitudinal extent of the interaction region (recall, e.g., Eq. (2.22)). For
a hadron, this longitudinal extent is simply the hadron width, and is inde-
pendent of x. But for the plasma this is set by the coherence time of the
virtual photon, that is, ∆tcoh ∼ 1/xT (cf. Eq. (4.11)); this explains the
additional factor of 1/x in Eq. (5.9).

The above argument also suggests an heuristic way to generalise our
previous results to a plasma with finite longitudinal extent (a situation which
may be relevant to phenomenology): Namely, so long as this extent is much
larger than the photon coherence time, then everything proceeds like for
an infinite plasma, and the saturation momentum is given by Eq. (5.9).
On the other hand, if the plasma has a longitudinal width Lz ≪ ∆tcoh,
the corresponding value for Q2

s can be obtained by rescaling the result in
Eq. (5.9) by a factor Lz/∆tcoh ∼ xTLz. This yields

Q2
s (x, T, Lz)∼

T 3Lz

x
(plasma with longitudinal extent Lz ≪ 1

xT ) . (5.42)

It would be interesting to confirm this prediction via a direct calculation for
the finite plasma.

The peculiar partonic picture has striking consequences for a (hypothet-
ical) nucleus–nucleus collision at strong coupling. Such a collision allows us
to visualise the partons in the incoming nuclear wavefunctions: they are first
liberated by the collision and then hadronise on their way towards the de-
tector. Those hadrons originating in large-x partons have large longitudinal
momenta and thus appear in the detector at either forward, or backward,
‘rapidities’, i.e., at small angles relative to the collision axis. (Here, by ‘ra-
pidity’ we mean the space-time rapidity η related to the collision angle by



3276 E. Iancu

η = − ln tan(θ/2); for a massless particle, η coincides with the momentum
rapidity.) By contrast, the small-x partons give rise to hadrons which appear
at ‘central rapidities’ η ≈ 0, i.e., at large scattering angles θ ≃ π/2. In the
actual AA collisions at RHIC, one clearly sees the hadrons being produced
at both forward, and central, rapidities, and the latter are more numerous
than the former16. This observation is in agreement with the parton balance
in the nuclear wavefunction as predicted by pQCD (cf. Sect. 2.2). But the
situation would be very different at strong coupling: the absence of large-
x partons in the incoming wavefunction would then imply that there is no
particle production at small angles, so the final event would exhibit ‘rapidity
gaps’ ηgap(Q) ≃ ln(1/xs(Q)) (for jets with transverse momentum Q) in both
forward and backward directions (see Fig. 27).

t  < 0

min

Fig. 27. A picture of a hypothetical hadron–hadron collision at strong coupling:

there is no particle production within an angle θmin around the collision axis, which

is determined by xs.

6. Concluding remarks

The main lesson of these lectures may be summarised as follows: The
physical picture of a plasma as revealed by hard probes and, more generally,
the overall picture of scattering at high energy appear to be quite different
at strong coupling as compared to the respective predictions of perturbative
QCD, and also to the actual experimental observations. At strong coupling,
there are no jets in e+e− annihilation, no forward/backward particle pro-
duction in hadron–hadron collisions, no partons in the hadron wavefunctions
except at very small x. Also, phenomena like the energy loss or the trans-
verse momentum broadening of a partonic jets travelling into the plasma are
controlled by different mechanisms at strong coupling — where, as we have
seen, the dominant mechanism at work is medium-induced parton branch-
ing — as compared to weak coupling — where the momentum broadening
is mainly due to thermal rescattering, and the energy loss to the emission of
a hard gluon (as made possible by thermal rescattering, once again) [8,79,80].

16 See, e.g., the image of the final state for a Au+Au collision at RHIC as recorded by
the STAR experiment on
http://www.star.bnl.gov/public/imagelib/collisions2001/.
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Such differences should not come as a surprise: they reflect the fact
that the corresponding processes involve large momentum transfers, so in
QCD they are naturally controlled by small values of the coupling, because
of asymptotic freedom. Accordingly, much caution should be taken when
trying to extrapolate results from AdS/CFT to QCD in this particular con-
text of high-energy scattering and hard probes. But this does not exclude
the possibility that long-range processes in the quark–gluon plasma (so like
transport and screening phenomena, or the approach towards thermaliza-
tion) be still strongly coupled, precisely because they involve smaller en-
ergies and momenta. This may explain the RHIC data for elliptic flow
which, as explained in the Introduction, are consistent with a small value
for the viscosity-to-entropy ratio, as expected for a strongly-interacting fluid.
For a theory with asymptotic freedom and confinement, so like QCD, it is
natural and necessary to use different effective theories (or descriptions)
at different energy–momentum scales, as well known from the experience
with nuclear theory, chiral perturbation theory, heavy-quark effective theory,
hard thermal loops, colour glass condensate, etc. From this perspective, the
gauge/gravity duality is so far the unique effective theory which allows us to
address long-range and time-dependent phenomena in a QCD-like plasma in
the regime of strong coupling. This method has already produced some very
interesting results, so like the lower bound on the η/s ratio mentioned in the
Introduction, and has the potential to explain some outstanding open ques-
tions, so like the rapid thermalization of the quark–gluon matter observed at
RHIC, which seem to transcend perturbation theory. This is explained in the
lecture notes by Heller, Janik and Peschanski, included in this volume [81].

But even in the context of hard probes, which has been our main concern
throughout these lectures, the gauge/gravity duality may turn out to be use-
ful. Some of the observables measured by hard probes (so like jet quenching)
receive contributions from both short-range and long-range phenomena, and
thus combine perturbative and non-perturbative aspects. A possible strat-
egy to deal with such phenomena, as suggested in Refs. [82,83], is to distin-
guish between the respective ‘hard’ and ‘soft’ momentum contributions, and
then use string-inspired techniques in the soft sector alone, while the hard
sector is still treated in perturbation theory.

I would like to thank the organisers of the 48th Cracow School of The-
oretical Physics Aspects of Duality for their warm hospitality at Zakopane
during the School and for their patience with my slow writing of these lec-
tures notes. I am grateful to Grégory Giecold for a careful reading of the
manuscript. This work is supported in part by Agence Nationale de la
Recherche via the programme ANR-06-BLAN-0285-01.
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