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We study the fate of the energy deposited by a jet in a heavy ion
collision assuming that the medium created is opaque (jets quickly lose en-
ergy) and its viscosity is so low that the energy lost by the jet is quickly
thermalized. The expectation is that under these conditions the energy
deposited gives rise to a Mach cone. We argue that, in general, the be-
havior of the system is different from the naive expectation and it depends
strongly on the assumptions made about the energy and momentum de-
posited by the jet into the medium. We compare our phenomenological
hydrodynamic calculations performed in a static medium for a variety of
energy-momentum sources (including a pQCD-based calculation) with the
exact strong coupling limit obtained within the AdS/CFT correspondence.
We also discuss the observability of hydrodynamical features triggered by
jets in experimentally measured two-particle correlations at RHIC.

PACS numbers: 12.38.Mh, 24.10.Pa, 25.75.–q

1. Introduction

One of the most prominent experimental discoveries made at the Rela-
tivistic Heavy Ion Collider (RHIC) has been the suppression of highly en-
ergetic particles [1–4], which suggests that the matter created at RHIC is
a color-opaque, high density medium of colored degrees of freedom where
fast partons quickly lose energy by gluon emission [5–14]. Measurements
of anisotropies in soft particle momentum distributions [1–4] have further
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indicated that soft degrees of freedom are approximately thermalized. The
degree of thermalization has been found to be considerably above the predic-
tions [15] obtained within perturbative Quantum Chromodynamics (pQCD)
and, in fact, it seems to be compatible with the “perfect fluid” scenario where
the strongly coupled Quark–Gluon Plasma (sQGP) has almost zero viscos-
ity [16–24]. These two findings, taken together, suggest that the energy
deposited by the jet into the medium is thermalized and becomes part of
the fluid. The theory governing the further evolution of this energy is that
of hydrodynamic sound waves.
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Fig. 1. (Color online) A geometric sketch of the creation and evolution of a Mach

cone.

It was noticed in the 19th century that, when a probe travels through a
fluid with a speed greater than the speed of sound, the energy deposited by
the probe creates a forward moving conical shock-wave. The reason for this
can be seen in Fig. 1: at each point the deposited energy becomes a sound-
wave, which moves at the speed of sound cs. The spherical waves interfere
coherently creating the shock wave [25]. Fig. 1 can be used, together with a
simple geometrical argument, to show that the cone angle is related to the
speed of sound cs and the velocity of the jet v as

cos φM =
cs

v
(1)

and, thus, an experimental observation of a Mach cone provides both a proof
of the fluid-like behavior of the underlying system and a direct probe of its
equation of state. This idea actually predates the current investigations
about sQGP and even quark–gluon plasma by decades [26, 27].
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Similarly to ordinary sound waves, Mach cone shocks dissipate expo-

nentially (∼ e−k2Γx) with respect to the wave-number k and the distance
traveled x, where the characteristic sound wave attenuation length Γ is re-
lated to the shear viscosity η, the energy density ε, and the pressure p

Γ =
4

3

η

ε + p
. (2)

Therefore, the presence of a Mach cone signal would be an exponentially
precise confirmation of the low viscosity fluid limit, which is in principle
more sensitive to η than even anisotropic flow.

As with all heavy ion observables sensitive to hydrodynamic behavior,
the Mach cone signal suffers from the problem that we do not “see” the fluid
directly: only the final many-particle correlations are measured and they
are sensitive to all stages of the hydrodynamic evolution including the late
(presumably non-thermalized) stages and freeze-out (which is not under-
stood from first principles). A rough approximation is to assume that at a
certain locus in space-time Σµ = (t, ~x) the mean free path goes from zero to
infinity. This locus can be defined in terms of a local criterion (e.g. a com-
mon freeze-out temperature), or using a simple global geometry (isochronous
freeze-out). Using Stoke’s theorem, as well as entropy, energy and momen-
tum conservation yields the famous Cooper–Frye (CF) formula [28]

E
dN

d3p
=

∫

d3ΣµPµf(UµPµ, T ) , (3)

where Uµ is the collective flow vector, f(E,T ) the standard Boltzmann,
Bose–Einstein or Fermi–Dirac distribution function (in terms of tempera-
ture T ), and Pµ is the 4-momentum vector (E, ~p) of the associated particle.
Using an azimuthal coordinate system and putting the jet direction at the
origin yields a characteristic distribution dN/dφ with two Mach cone-like
peaks shown in Fig. 2. Note that “theoretically” this is an average distribu-
tion since we define the near-side jet to be at φ = 0.

Experimentally, however, this is a 2-particle correlation: the experiment
measures a high momentum “jet” particle (the near-side trigger) and then
looks at the correlation between the trigger and softer (sensitive to flow)
particles in the opposite direction (away-side region, where it is assumed
that the jet passed through the medium, was suppressed, and its energy
thermalized into Mach shocks). Tantalizingly, something similar does seem
to be observed in the experiment (Fig. 3): when a hard (jet-like) particle
is correlated with a soft (medium-like) particle, the “missing” away-side jet
signal reappears and shows a structure very similar to that of a Mach cone
with an angle close to the expectation for the ideal gas speed of sound
cs = 1/

√
3.
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Fig. 2. (Color online) A schematic representation of a Mach cone in heavy ion

collisions.

It should be said that this result has generated a lot of skepticism and
some debate (for a review see [29–31]). The “dip” between the Mach cone
peaks arises most clearly when the background 2-particle correlation (aris-
ing, for example, from the ellipticity of the initial fireball) is subtracted
(ZYAM method). This subtraction makes possibly unjustified assumptions,
e.g., that the Mach cone correlation and the elliptic correlation are inde-
pendent. Moreover, different theoretical interpretations have been given to
the apparent conical structure [32–35], which indicates that further studies
involving, for instance, 3-particle correlations [36] and the dependence of the
Mach cone angle on various other variables [37, 38] should be pursued.

Cone peaks?

Fig. 3. (Color online) Two-particle correlations induced by jets in d–Au collisions

(red) and Au-Au collisions (blue) at RHIC [29–31]. With a hard away-side trigger

(left, passoc

T
> 2 GeV/c), the away-side peak disappears in agreement with the hy-

pothesis that the jet is absorbed by the medium. However, if the away-side trigger

momentum is lowered (right panel, 0.15 > passoc

T
> 4 GeV/c), the peak reappears

(as expected from momentum conservation) and shows a cone-like pattern. The

absence of similar correlations in the d–Au “control” experiment confirms that this

is an effect of the “medium” rather than a deviation of the initial conditions.
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Nevertheless, the experimental observation of something that looks like
a Mach cone has greatly enhanced the theoretical interest on this phe-
nomenon [39–62]. In particular, an interesting question that still remains
to be properly answered is to what extent does the “naive” Mach cone pic-
ture introduced earlier survive when realistic physics conditions are intro-
duced [63].

In the next few sections we shall examine this issue in detail. Sec-
tion 2 describes an analysis of Mach cone propagation using ideal three-
dimensional full (non-linear) hydrodynamics, which shows that the observ-
able signal depends crucially on how energy and momentum are deposited
by the jet into the medium. Section 3 uses the Anti-de Sitter/Conformal
Field Theory (AdS/CFT) correspondence to try to obtain insights into the
non-equilibrium dynamics displayed by this problem, introduces the “Head
+ Neck” decomposition of the space-time region near the jet (based on the
degree of thermalization of the medium), and derives the contribution of
each region to the particle correlations. Section 4 does an analogous anal-
ysis with an energy-momentum source calculated in pQCD coupled with
ideal hydrodynamics and describes the observable differences with respect
to results obtained using AdS/CFT.

We use natural units and the Minkowski metric gµν = diag(−,+,+,+).
Lorentz indices are denoted with Greek letters µ, ν = 0, . . . , 3. Throughout
this paper we shall use a coordinate system corresponding to axial symmetry
with respect to the trigger jet axis. The components of a generic vector x
will be

xµ =









t
x1 = x − vt

x⊥ cos ϕ
x⊥ sin ϕ









(4)

coordinates, where x/x⊥ are taken to be parallel/perpendicular to the near-
side jet. The jet is assumed to be moving transversely with respect to the
beam (z axis) so the rapidity of the jet is taken to be zero. The away-side
direction in this system is (0, 1, 0, 0).

2. Mach cones in hydrodynamics

The geometrical argument for Mach cone formation and the angle for-
mula in Eq. (1) are only valid in the linearized hydrodynamics limit where
the energy of the sound waves is small compared to the energy density of
the background. The physical applicability of this condition is doubtful
since the order of magnitude of the jet’s “size” ∼ 1 fm, which leads to an
overwhelming energy density close to it even for moderate rates of energy
deposition. A “pile-up” of sound waves in front of the jet as it travels through
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the medium can also result in strong non-linear corrections to the fluid’s flow
profile. Furthermore, if the energy deposition is small with respect to the
background, an observable signal will not survive the thermal background
fluctuations inherent in a CF freeze-out. It is relatively easy to show ana-
lytically [41, 56] that this is the case unless either the strength of the signal
is large enough to require a non-linearized treatment or the momentum is
large enough to put the thermalization assumption in doubt1.

For associated (massless) particles with Pµ = (pT, pT cos(π − φ),
pT sin(π − φ), 0) the momentum distribution at mid rapidity is given by

dN

pTdpTdφ

∣

∣

∣

y=0
=

∫

Σ

dΣµPµ
[

f(Uµ, Pµ, T ) − feq

(

P 0, T0

)]

. (5)

We subtract a non-flowing Uµ = (1, 0) thermal T = T0 constant back-
ground yield via feq ≡ f |Uµ=0,T=T0

. Viscous corrections to the Boltzmann
distribution function [64] produce subleading contributions that are negligi-
ble in the linearized approximation. Choosing an isochronous ansatz where
dΣµ = x⊥dx⊥dx1dϕ (1, 0, 0, 0), the Boltzmann exponent can be expanded

up to corrections O(〈U〉4). The associated away side azimuthal distribution
at mid-rapidity f(pT, φ) = dN/pTdpTdydφ|y=0 with respect to the nuclear
beam axis is then given after integrating over ϕ by

f(pT, φ) = 2π pT

∫

Σ

dx1dx⊥x⊥

×
(

exp
{

−pT

T
[U0 − U1 cos(π − φ)]

}

I0(a⊥) − e−pT/T0

)

, (6)

where a⊥ = pTU⊥ sin(π − φ)/T and I0 is the modified Bessel function. In
the linearized approximation a⊥ ≪ 1 and, thus, we can use the expansion
for the Bessel function

lim
x→0

I0(x) = 1 +
x2

4
+ O(x4) (7)

to get the approximate equation for the distribution

f(pT, φ) ≃ e−pT/T0
2π p2

T

T0

[〈∆T 〉
T0

+ 〈U1〉 cos(π − φ)

]

. (8)

1 “Harder” particles are more contaminated by non-thermal processes such as minijet
fragmentation. While this is “obvious” since the effective mean free path grows with
the particle momentum, the scale at which the medium stops being the main source of
particles is not known precisely (though assumed to be in the pT ∼ 1–2 GeV range).
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Note that deviations from isotropy are then controlled by the following global
moments 〈∆T 〉 =

∫

Σ dx1dx⊥x⊥ ∆T and 〈U1〉 =
∫

Σ dx1dx⊥x⊥ U1.
It is clear that in the strict linearized limit the azimuthal distribution

only has a trivial broad peak at φ = π. A double-peaked structure in
the away-side of the jet correlation function can only arise when the Bessel
function expansion is invalid, i.e., away from the linearized limit or for large
pT ≫ T0. For such large momenta, contamination from non-thermalized
degrees of freedom and coalescence [65–71] effects are non-negligible.

On the other hand, for a non-linear perturbation in the medium it is not
clear that the Mach cone angle is anything like the one derived geometrically
in the Introduction. For large energy depositions, the more appropriate de-
scription is that of an angular shock, i.e., a step function in energy density.
This problem was analyzed analytically in [72], where the angle was found
to be in general larger than the geometrical expectation from Mach’s law.
Deviations from equilibration, expected in the region where the energy de-
position from the jet is comparable to the local energy density, may also
lead to a different cone angle.

In addition, the Mach cone is not the only collective mode that can be
excited by the moving jet. The ratio of momentum to energy deposition is
not known but a common assumption is to have the same amount of en-
ergy and momentum being deposited by the jet. Longitudinal momentum
deposition results in a column of fluid that flows in the direction of the
jet’s motion. This structure is known as a the “diffusion wake”. We have
taken all these effects into account in Ref. [53] where we studied energy and
momentum deposition in a static medium using the 3D ideal hydrodynam-
ics SHASTA code presented in [73]. Note that the simulations presented
below only refer to a static thermal background, and as such neglect the
effects of transverse and longitudinal flow (which are a simple deformation
in the linearized approximation [42] but can be non-trivial in full nonlinear
hydrodynamics [63]).

Fig. 4 shows what happens when the momentum deposition is included
in the full hydrodynamic simulations [53]: the temperature profile remains
invariant and maintains the correct angle. However, the flow profile acquires
an additional component co-moving with the jet. See Fig. 5 for a sketch
of all these effects combined. It then becomes clear that the appearance
of a cone-like signal in hydrodynamics is not assured, since the strongest
signals may come from contributions which are not conical and possibly
not locally equilibrated. More complicated momentum depositions, such as
including transverse momentum, or introducing a momentum dependence
of the deposited energy (the so-called “Bragg peak”) do not change these
conclusions qualitatively [74].
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Fig. 4. (Color online) Temperature (left panel) and flow (right panel) profiles for a

hydrodynamic simulation of a jet with different energy and momentum deposition

schemes in a static medium (from Ref. [53]).

Fig. 6 shows what happens after freeze out: when conical distributions
dominate, the system does exhibit a cone signal with the correct angle, al-
beit the momenta of the associated particles are so high that one is likely to
question their effective thermalization once the ideal fluid approximation is
relaxed. On the other hand, when the diffusion wake is significant the only
correlation visible is a unique peak in the away-side, which is indistinguish-
able from a generic peak expected from momentum conservation.

To strengthen this conclusion, note that the pure energy deposition
scheme may be completely undetectable in a realistic and approximately
isothermal freeze-out condition since hotter regions will simply freeze-out
later. Momentum flow, however, will persist independently of freeze-out
and will in general be modified only a little by the last (cooler) stages of the
fireball evolution. Thus, it is the right panel of Fig. 4 that shows the fluid
correlations most apt to be imprinted on two-particle correlation functions.
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Fig. 5. (Color online) A schematic representation of a Mach cone solution including

non-linear and non-equilibrium effects.

Fig. 6. (Color online) Effect of freeze-out for various energy-momentum depositions

[53]. Note that angle φ is shifted in the left-hand plot in such a way that the away-

side peak is located at φ = 0.
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In sum, a phenomenological hydrodynamical approach shows that Mach
cones are not guaranteed to appear in the final angular correlation functions.
The problem of the away-side jet correlations in the sQGP is a very inter-
esting and complicated subject because of its inherent out of equilibrium,
non-linear, and non-perturbative features. An interesting development in
this direction was provided by the possibility of using string theory dualities
to calculate observables in a strongly coupled gauge theory without the a
priori equilibration assumptions.

3. Mach cones in AdS/CFT

3.1. Introduction

The energy-momentum tensor of a system composed of a heavy quark
passing through a strongly coupled λ ≫ 1 (λ = g2

SYMNc is the t’Hooft
coupling) N = 4 SU(Nc) Yang–Mills plasma at finite temperature T can
be computed using the AdS/CFT correspondence [46–51], first conjectured
in [75]. According to the correspondence, gauge invariant observable quan-
tities in a strongly coupled N = 4 SYM theory can be determined using
weakly coupled 10-dimensional type IIB superstring theory, where 5 of the
dimensions are Anti-de Sitter and the other 5 correspond to a 5-sphere.

The problem of a heavy quark2 moving at constant speed in a strongly
coupled finite temperature N = 4 SYM medium can be analyzed (Fig. 7) by
considering metric fluctuations due to a string that is hanging down from the
boundary of an AdS Schwarzschild (AdS-SS) background geometry [76–78].
Quantum fluctuations can be neglected for a slowly moving heavy quark [76].
In this limit, the action that describes the supergravity approximation to
type IIB string theory in an AdS-SS background and the classical string is
given by the sum of the following partial actions

AG =
1

16πG5

∫ √
−G

(

R +
12

L2

)

(9)

and

ANG = − 1

2πα′

∫ √

−G
(0)
µν ∂αXµ∂βXνd2σ , (10)

where L is the radius of AdS5, G5 = πL2/2N2
c , α′ = L2/

√
λ, Gµν is the

total metric, and G
(0)
µν is the metric of the unperturbed AdS-SS black hole

(without effects from the string), which can be obtained from

ds2 =
L2

z2

(

−g(z)dt2 + d~x 2 +
dz2

g(z)

)

, (11)

2 Note that “Mach-like” signals found in experiment so far are triggered by light
quark/gluon jets [2,4,29,30].
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Fig. 7. (Color online) The Mach cone set-up associated with heavy quarks within

the AdS/CFT correspondence (the figure on the left-hand side was taken from

Ref. [46]). The finite-temperature medium corresponds to an event horizon and

the quark to the tip of a fundamental string stretched between the horizon and the

boundary of AdS5.

where z goes from 0 at the AdS boundary to z0 = 1/πT at the black hole
horizon (T is the Hawking temperature associated with the black hole) and
g(z) = 1 − (z/z0)

4. The string coordinates Xµ(σ, τ) in the Nambu-Goto
action in Eq. (10) are chosen in such a way that the string endpoint (which
corresponds to the heavy quark in the 4-dimensional boundary) moves at
constant speed v and no energy flows from the horizon into the string [76,77].

Minimizing the action S with respect to the metric G leads to the full
set of Einstein’s equations. It is sufficient for our purposes here to consider
instead the linearized Einstein’s equations for the metric fluctuations hµν ,

which are defined via Gµν = G
(0)
µν + hµν . It can be shown [46, 47] that the

contribution from the moving quark to the total energy-momentum tensor3

is Tquark = 1
π

√

λ
1−v2 Q, where the tensor Q is obtained by expanding h in

powers of z near the boundary, i.e., h ∼ Qz4. An example of the formidable
analytical power of AdS/CFT calculations was given by Yarom in Ref. [47]
(see also [79]) where he computed the total energy-momentum tensor in the
lab frame that describes the near-quark region

T Y
µν = P0 diag{3, 1, 1, r2} + ξ P0 ∆Tµν(x1, r) , (12)

where the explicit form of ∆Tµν is

∆Ttt = α
v
(

r2(−5 + 13v2 − 8v4) + (−5 + 11v2)x2
1

)

x1

72
(

r2(1 − v2) + x2
1

)5/2
, (13)

3 By Tµν we mean 〈Tµν〉, though we will drop the 〈...〉 notation for brevity.
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∆Ttx1
= −α

v2
(

2x2
1 + (1 − v2)r2

)

x1

24
(

r2(1 − v2) + x2
1

)5/2
, (14)

∆Ttr = −α
(1 − v2)v2

(

11x2
1 + 8r2(1 − v2)

)

r

72
(

r2(1 − v2) + x2
1

)5/2
, (15)

∆Tx1x1
= α

v
(

r2(8 − 13v2 + 5v4) + (11 − 5v2)x2
1

)

x1

72
(

r2(1 − v2) + x2
1

)5/2
, (16)

∆Tx1r = α
v(1 − v2)

(

8r2(1 − v2) + 11x2
1

)

r

72
(

r2(1 − v2) + x2
1

)5/2
, (17)

∆Trr = −α
v(1 − v2)

(

5r2(1 − v2) + 8x2
1

)

x1

72
(

r2(1 − v2) + x2
1

)5/2
, (18)

∆Tθθ = −α
v(1 − v2)x1

9
(

r2(1 − v2) + x2
1

)3/2
(19)

and α = γ
√

λT 2. In the equations above we used dimensionless coor-
dinates in which the distance is normalized to 1/(πT ) and also defined

ξ = 8
√

λγ/N2
c and γ as the quark time dilation factor 1/

√
1 − v2. Moreover,

P0 = N2
c π2T 4/8 + O(N0

c ) is the pressure of the ideal SYM plasma [80].
Note that it is assumed throughout the derivation of Eq. (12) that the

metric disturbances caused by the moving string are small in comparison
to the AdS5 background metric. Therefore, this result is correct as long as
this condition is fulfilled. In fact, since ∆Tµν scales inversely with the to-
tal distance from the quark, the region where the condition ξ∆Tµν < 1 (or,

equivalently, h small in comparison to G(0)) holds can be taken to be arbi-
trarily small as long as the limit where Nc → ∞ and λ is large is employed.
However, in order to evaluate the relevance of this approach to heavy ion
collisions, one could set Nc = 3, λ = 3π (αs = 0.25), and γ = 10, which gives
ξ > 30. This value of ξ then sets a lower bound of 5/πT on the minimum
distance from the quark that marginally fulfills the condition ξ ∆Tµν < 1.

We stress that the energy-momentum tensor shown above is not a so-
lution of the hydrodynamic equations but rather the full non-equilibrium
result in the strong coupling limit. The resemblance of this set-up to the
hydrodynamic calculations Sections 1 and 2 indicates that, for strongly cou-
pled field theories, jet energy deposition is really reduced to something that
looks hydrodynamical and linear reasonably close ∼ 5/(πT ) from the jet.



Mach Cones in Heavy Ion Collisions 3293

3.2. Comparison to hydrodynamics

The disturbances in the fluid caused by the moving jet are expected to
behave hydrodynamically in the region sufficiently far from where the jet is
presently located. However, in the near zone close to the heavy quark hy-
drodynamics must break down and this can be checked explicitly by looking
at the isotropy in the Landau frame (denoted henceforward by brackets and
subscript L, (...)L) at each point [56], which is defined by the condition that
(T Y

0i )L = 0. The boost with respect to the lab frame defines the hydrody-
namic flow vector Uµ. Note that, unless the system is a coherent field where
the phase velocity is equal to the speed of light (such would be the case of
an electromagnetic wave), this transformation is always possible. This can
be accomplished by solving a system of two equations for the two space-like
components of Uµ, U1 and Ur (Uθ = 0),

(

T Y
0i

)

L
= Λµ

i T Y
µν Λν

0 = 0 , (20)

where Λµ
i is a general coordinate dependent Lorentz transformation

Λ =

(

γ ~UT

~U 1 +
~U⊗~UT

~U2
(γ − 1)

)

, (21)

and γ ≡ U0 =
√

1 + ~U2. Using the representation

T Y =

(

ε −~ST

−~S τ̂

)

, (22)

where ε = T Y
00 and τ̂ij = T Y

ij (i, j = 1, 2, 3), we obtain that Eq. (20) becomes

~U =
1

(

γε − ~ST · ~U
)

[

1 +
~U ⊗ ~UT

~U2
(γ − 1)

]

(

γ~S − τ̂ ~U
)

. (23)

For finite Nc and λ this equation can only be solved numerically. However,
for very large Nc and large λ one can use that, to leading order in 1/Nc,
γ ≈ 1, ε ≈ 3P0, and τ̂ ≈ P0. Using these approximations, one can then
obtain that

~U ≈
~S

4P0
. (24)

In deriving the equation above we used that ξ ∼ O(
√

λ/N2
c ). The fact that

|~U | ∼ O(
√

λ/N2
c ) in the large Nc, λ limit implies that nonlinear terms in

the hydrodynamic description are subleading contributions that can be ne-
glected. Thus, if the system’s dynamics can be described by hydrodynamics,
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these equations have to be linear for the present string theory setup obtained
in the large Nc, λ limit. However, at finite Nc and λ nonlinear effects are
expected to be relevant. These nonlinear effects can only be properly taken
into account by incorporating subleading 1/Nc corrections.

In hydrodynamics, the Knudsen number Kn is defined as the ratio be-
tween the mean free path lMFP and a characteristic spatial dimension of the
system q. Hydrodynamics is applicable when Kn ≡ lMFP/q ≪ 1. In confor-
mal field theories at finite temperature, the only dimensionful parameter is
given by the temperature T and, thus, both lMFP and q should be propor-
tional to 1/T . However, the mean free path is not a well defined quantity
in N = 4 SYM theories at very strong coupling. Nevertheless, one can still
define an effective Knudsen field in terms of the sound attenuation length Γ
and the Poynting vector ~S as follows [52]

Kn = Γ

∣

∣

∣

∣

∣

∇ · ~S

S

∣

∣

∣

∣

∣

. (25)

It is easy to check that in the weak coupling limit this definition reduces
to the usual one corresponding to the mean free path over the macroscopic
system size (in this case the scale is defined by the flow gradient) or, in other
words, the number of times a microscopic degree of freedom interacts while
traversing a macroscopic region the system. Also note that this definition is
well defined in the supergravity limit. As Fig. 8 shows, when v = 0.9 the
region where hydrodynamics provides a good approximation of the near-

Fig. 8. (Color online) The local Knudsen number field for the near zone Yarom

stress. Note the 3Kn > 1 region that defines the Knudsen Neck zone when v = 0.9.
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quark region approximately coincides with the locus defined by the local
Knudsen number being K−1

n ≥ 3, which then corresponds to the onset of
hydrodynamics (Kn << 1) as a sensible approximation. We will later use
this condition to further analyze our AdS/CFT results and compare it to
a pQCD-like solution. A direct comparison of the near-zone Yarom tensor
and a first-order Navier–Stokes ansatz showed [52] that a hydrodynamic
description of the disturbances caused by the heavy quark is valid down to
distances of about 1/T from the heavy quark.

3.3. Observability of the AdS/CFT Mach cone

The fact that in the supergravity approximation T µν can be described
by (mostly) linearized hydrodynamics means that once the system breaks
up into particles, a conical signal in the corresponding angular correlations
may be washed out by thermal smearing, as discussed in the beginning of
Section 2. This means that a detectable Mach cone-like signal may also come
from the region where the linearized approximation is not valid. In fact,
we will show that the only detectable cone-like signal from the AdS/CFT
solution comes precisely from the region that is not fully thermalized.

The T 00 and T 0i components of the energy momentum tensor (com-
puted within the supergravity approximation) that describe both the near
region and the far zone were computed numerically by Gubser, Pufu, and
Yarom in Ref. [49]. In Fig. 9 we show the energy density perturbation
∆ε(x1, x⊥)/εSYM computed using the data from Ref. [49] due to a heavy
quark jet with v = 0.9 in a N = 4 SYM plasma modeled via the AdS/CFT
string drag model for Nc = 3, λ = g2

Y NNc = 5.5. The left panel shows the
far zone (the numbers in the plot label the contours, in per cent as defined
on the upper-left corner). The Mach wake zone is above the dashed line,
cos φM = 1/(

√
3v), and the Diffusion zone lies below that line. Normalized

Poynting (momentum flux) vector flow directions are indicated by arrows.
The insert shows the nonequilibrium “Neck” zone (with the Coulomb Head
subtracted) as defined by the condition that ∆ε/εSYM > 0.3.

In order to understand the various regions mentioned above, we decom-
pose Tµν into terms that dominate in different spatial scales (see Fig. 9):

T µν(x) = T µν
0 + δT µν

Mach + δT µν
Neck + δT µν

Coul , (26)

where the far zone “Mach” part of the stress tensor is defined by K−1
n > 3,

and coincides with the hydrodynamic description,

δTMach(x1, x⊥) =
3

4
K

{

T 4

(

4

3
UµUν − 1

3
gµν +

η

sT
∂{µUν}

)

− T µν
0

}

×θ(1 − 3Kn) (27)
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Fig. 9. (Color online) T00 (contour) and T0i (arrows) for the Mach cone AdS/CFT

solution (the full numerical computation of [49]). The three regions defined in

Eq. (26) are identified. Note the presence of a strong non-hydrodynamic trans-

verse energy flow near the core. The dashed line shows the Mach cone line in the

linearized approximation.

and the Neck zone is defined by the region close to the heavy quark jet where
the local Knudsen field is large and even uncertainty bounded equilibration
rates are too small to maintain local equilibrium. The background stress
tensor in T µν

0 . As shown in [47,56] the non-equilibrium zone is characterized
by a stress of the form

δTNeck(x1, x⊥) ≈ θ(3Kn(x) − 1)

√
λT 2

0

x2
⊥ + γ2x2

1

Y µν(x1, x⊥) , (28)

where Y µν is a dimensionless “angular” tensor field. At very small distances
from the jet, δTNeck(x1, x⊥) reduces to the analytic stress tensor defined in
Eqs. (13)–(19).

Within the Neck zone, there is also an inner “Head” region where the
stress becomes dominated by the contracted Coulomb self field stress of
the quark δT µν

Coul. The Head zone can formally be defined as in Ref. [81]
by equating the analytic Coulomb energy density [46], εC(x1, x⊥), to the
analytic near zone energy density [47] given by Eq. (13). This Coulomb
head boundary is approximately given by

x2
⊥ + γ2x2

1 =
1

(πT0)4
(2x2

⊥ + x2
1)

2

γ4x2
1(x

2
⊥/2 + γ2x2

1)
2

. (29)
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The Head zone is a Lorentz contracted pancake with longitudinal thick-
ness ∆x1,C π T0 ∼ 1/γ3/2 and an effective transverse radius ∆x⊥,C π T0 ∼
1/γ1/2, which is in agreement with the general considerations in Ref. [81].
However, as we have shown in Fig. 8, for relativistic jets the Neck has a
two lobe structure. The lobes are nearly independent of v and the lobe
region thickness is ∆x1,Kn

∼ 1/πT0 ≫ ∆x1,C. The second thin pancake
component of the Kn that develops for large γ (not shown) is similar to the
shape of the Head zone. The relative independence of the two lobe compo-
nent of the Neck zone on v is in agreement with the parametric dependence
∆x1,N ∝ 2/πT0 ∼ 6Γ expected from the bound of dissipation rates imposed
by the uncertainty principle.

We now turn to the observable consequences of the AdS string drag
stress model by assuming the Cooper–Frye hadronization scheme [28] with
isochronous freeze-out discussed in Section 24. Our system of coordinates
is explained in more detail in Fig. 10. As the discussion in Section 2 has
shown, the only way that a nontrivial angular correlation can arise in the
soft degrees of freedom within the AdS/CFT string drag model is if we relax

the linearized approximation, i.e., the formal Nc, λ → ∞ but
√

λ/N2
c → 0

condition used to derive the stress and boldly extrapolate towards more
“physical” parameters to make contact with our QCD world.

Away−side
jet

Trigger

Sound
wave

z(beam)

φ

Away−side
particle

x

Freeze−out

M
φ

1x

Fig. 10. (Color online) Schematic of the geometry used here. The trigger jet corre-

sponds to the heavy quark produced near the surface in the −x̂ direction transverse

to beam axis “z”. The away side jet moves in x̂ direction with velocity v. The co-

moving coordinate is x1 = x − vt and the transverse radial coordinate relative to

this is xp. A Mach wake (solid blue line) is produced at azimuthal angle φM in the

x1–xp plane.

4 This is a strong model assumption on top of the AdS calculus and will need
much closer scrutiny in the future. We have, however, experimented with differ-
ent hadronization conditions and observables in [58] and found the results of this
section, as well as the analogous results in Section 4.2, to be qualitatively the same.
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We computed f(φ;V ) with Nc = 3, λ = 5.5 for v = 0.58, 0.75, 0.90, in a
static uniform background from the tables of T 00 and T 0i (used in [49]). Our
total CF volume is defined by −14 < X1 (πT0) < 1, 0 < X⊥ (πT0) < 14, and
ϕ ∈ [0, 2π]. Here we define the head of the jet as the volume where ξ > 0.3,
which roughly corresponds to the region between −1 < X1 (πT0) < 1 and
0 < X⊥ (πT0) < 2. We show results for the azimuthal angular correlations
in Fig. 11. The dotted (blue) curves exclude the chromo-viscous Neck zone
from the CF volume , the solid (red) Neck curves only include the Neck zone
approximated here by δT 00(x) > 0.3 ǫSYM.

0 1 2 3 4 5 6
φ

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6
φ

dN(φ)/dydφ - dN(0)/dydφ

1 2 3 4 5 6
φ

v = 0.90 v = 0.75 v = 0.58

x 30 x 3000

Fig. 11. (Color online) Mid-rapidity azimuthal away-side associated angular dis-

tribution from the Cooper–Frye freeze-out of the AdS/CFT string drag model

(T (x), ~U(x)) fields from [49]. Three cases for various heavy quark jet velocity

and associated hadron transverse momentum ranges, 1 : (v = 0.9, pT/πT0 = 4-5,

2 : (v = 0.75, pT/πT0 = 5-6), and 3 : (v = 0.58, pT/πT0 = 6-7), are compared.

The short arrows show the expected Mach angles. The solid (red) curves showing

the double shoulder away side dip (conical) correlations are from the Neck region

defined here as where ∆ǫ/ǫSYM > 0.3 (see Fig. 9). The dotted (blue) curves result

from integrating only in the far Mach zone outside the Neck region and show no

sign of the weak Mach wake seen in Fig. 9 because the NO-GO freeze-out theorem

(Sec. 2) remains in force even for our Nc = 3, λ = 5.5 downward extrapolation

from the supergravity limit. The sum total correlation exhibits a double shoulder

correlation for v < 0.9 arising from the chromo-viscous near zone that is however

unrelated to the Mach wakes seen in Fig. 9.

As can be seen, only the solid (red) Neck curves display the double-peak
structure while the “Mach” zone is too weak even in the Nc = 3 extrapola-
tion of AdS to produce a dip at φ = π. For v = 0.9 the two peaks from the
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Neck zone appear at angles accidentally similar to the putative Mach cone
angle. Particles coming out of the “Neck” region will however probably not
be thermalized (exponential, with the slope parameter given by tempera-
ture and flow as in Eq. (5)), though it is difficult to say whether one could
establish “lack of thermalization” conclusively from experimental data.

The fact that the “cone-like signal” arising from the neck region is not a
true Mach cone has more direct phenomenological consequences: as shown
in Fig. 11, the angle between the double peaks is relatively independent of
the jet velocity v (here tested for v = 0.58, 0.75 and 0.99), which violates
the Mach’s law dependence (indicated by the small arrows). We propose
that looking for deviations from Mach’s law for supersonic but not ultra-
relativistic identified heavy quark jets could test this novel prediction of the
AdS/CFT drag model. Unlike light quark jets, even high momentum heavy
quarks move at velocities significantly smaller than c. A scan of Mach cone
angles with the jet velocity should be, therefore, experimentally feasible.
These results permit us to use the Mach-cone like signal to understand the
“phenomenology” of AdS/CFT, since it is not at all obvious that any model
will have a sizeable enough Neck region with the correct flow behavior. In
fact, an explicit counter-example is the pQCD model proposed by [59].

4. Mach cones in pQCD coupled to ideal hydrodynamics

4.1. Energy-momentum source computed in pQCD

As before, we will decompose the energy-momentum tensor into a Head,
Neck and Mach part according to Eq. (26). However, in this section we focus
on the case of a pQCD plasma treated in the chromo-hydrodynamic limit
[59]. The background stress tensor in this case is T µν

0 = diag(ε0, p0, p0, p0),
where ε0 = 8π2T 4

0 /15 is the background energy density of gas of massless
SU(3) gluons (background temperature T0) and p0 = ε0/3. The role played
by the vacuum contribution to the energy-momentum tensor, δT µν

Coul(X),
which is associated with the classical, non-Abelian Lorentz boosted Coulomb
field created by the fast moving parton, is to produce the anomalous response
of the medium denoted by the Neck component. Here, we assume, as in
Section 3.3 and [81], that the very near bare Coulomb field stress zone, in
which δT µν

Coul ∼ O(1/x4), is the self field stress of the heavy quark and does
not fragment into associated hadrons.

The far zone “Mach” part of the stress can be expressed in terms of the
axially symmetric local temperature T (X) and fluid (Landau) flow veloc-
ity fields Uα(X) through the first-order Navier–Stokes stress form Eq. (27).
Even though we will use the pQCD chromo-viscous source computed in lin-
ear response in [59,60], we will assume here the perfect fluid to maximize the
freeze-out azimuthal conical signature that is otherwise even more washed
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out when viscous dissipation is taken into account. Our aim here is not to
fit RHIC data but rather to contrast weakly coupled and strongly coupled
plasma response effects in the most idealized conditions of a uniform static
plasma coupled to the external Lorentz contracted color (Ea,Ba) fields as-
sociated with a uniformly moving supersonic color charge.

Thus, while we assume in the background the perfect fluid η/s = 0 limit
of the full anomalous chromo-viscous equations derived in [82], we also retain
the anomalous diffusion stress Neufeld source [59,60] that we rewrite in the
more easily recognized Joule heating form (see Eqs. (6.2)–(6.11) of [82])

∂µT µν = σν = F να aJa
α = (F να aCαβγ ∗ F βγ a) , (30)

where Fµν a(X) is the external Yang–Mills field tensor and

Ja(X) =

∫

d4K/(2π)4 exp(−iK · X)Ja(K) (31)

is the color current that is related via Ohm’s law to Fµν a(K) through the
(diagonal in color) conductivity rank three tensor Cµαβ(K). The ∗ denotes
a convolution over the nonlocal non-static conductive dynamical response of
the polarizable plasma.

The source is then [59]

σν =

∫

d4P P ν

(2π)4
∂α

P Dαβ[X,P ;F ] ∂β
P f(X,P ) , (32)

where Dαβ is a quadratic form in the external field tensor Fµν a components
and f(X,P ) is the parton distribution function. In fact, the above and
Eq. (28) of [59] factorize into the Joule heating (F a · Ja)ν form above.

The covariant generalization of Neufeld’s source is easiest in Fourier de-
composition with Ja

ν (K) = Cνµα(K)Fµα a(K) and the color conductivity
expression derived in [83]

Cµαβ(K) = ig2

∫

d4P
PµPα ∂P

β

P · K + i P · U/τ∗
f0(P ) , (33)

where f0(P ) =
(

N2
c − 1

)

G(P ) is the effective plasma equilibrium distribu-

tion with G(P ) = (2π3)−1θ(P0)δ(P
2)/(eP0/T −1). Here, Uµ is the 4-velocity

of the plasma as in Eq. (27). For an isotropic plasma Cµαβ(K) = cµα(K)Uβ.

In the long wavelength limit, Cµαβ(K → 0) = τ∗m2
D gµαUβ/3, where m2

D =
g2T 2 is the Debye screening mass for a noninteracting plasma of massless
SU(3) gluons in thermal equilibrium.



Mach Cones in Heavy Ion Collisions 3301

The relaxation or decoherence time τ∗ is of the generic form noted in [82]

1

τ∗
=

1

τp
+

1

τc
+

1

τan
(34)

with τp ∝ (α2
sT ln(1/αs))

−1 being the collisional momentum relaxation time
[15, 84], τc = (αsNcT ln(mD/mM))−1 being the color diffusion time defined
in [83] in terms of the Debye electric and assumed O(g2T ) magnetic screen-
ing masses, and τan ∝ (mD(η|∇U |/Ts)1/2)−1 being the anomalous strong
electric and magnetic field relaxation time derived in Eq. (6.42) of [82]. Note
that one can express

τan =
1

gT

1√
Kn(X)

(35)

in terms of the local Knudsen number. However, because η ∝ τ∗sT , Eq. (35)
is really an implicit equation for τan. Combining these relations and taking
into account the uncertainty principle constraint discussed in Section 3 and

(τ∗ >∼ 1/ (3T )) [15],

1

τ∗
= T

(

a1 g4 ln g−1 + a2 g2 ln g−1 + a3 g
√

Kn

) <∼ 3T . (36)

As Kn gets large, τan can get small even in the weak coupling limit. Thus,
large gradients, which are the hallmark of the Neck zone, increase the impor-
tance of anomalous relaxation over color diffusion and collisional relaxation.
Short relaxation times arise not only in the strong coupling but also in the
weak coupling but classical field limits.

The full source σν(X) was computed analytically by Neufeld in Ref. [60]
and it reads

σµ(X) = (σ0,vσ0 − σ
v) . (37)

The components of the source term are reproduced below for convenience

σ0(t,x) = d(t,x)γ v2



1 − x1

(x2
1 + x2

⊥)



x1 +
γ vx2

⊥
√

x2
⊥ + x2

1γ
2







 , (38)

σv(t,x) = (x − vt)
αsC m2

D

8π
(

x2
1 + x2

⊥

)2





v4x4
⊥+
(

x2
1γ

2+x2
⊥

) (

2x2
1+
(

v2+2
)

x2
⊥/γ2

)

(

x2
1γ

2+x2
⊥

)2 − 2vx1

γ
√

x2
1γ

2+x2
⊥



 , (39)

where γ = 1/
√

1 − v2, αs = g2/ (4π) = 1/π, m2
D = gT and C = 4/3 for

a quark. These equations were obtained in the limit where the dielectric
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functions that describe the medium’s response to the color fields created
by the heavy quark were set to unity. The effects from medium screening
on σµ were studied in detail in Ref. [60]. In our numerical calculations we
used x⊥max = 1/mD as an infrared cutoff while the minimum lattice spacing
naturally provided an ultraviolet cutoff. The background temperature was
set to T0 = 0.2 GeV.

This result holds for the weak coupling, long relaxation time 1/τ∗ =
ǫ → 0+ limit. In this limit the color conductivity is large and Joule heat-
ing efficiently converts field energy and momentum into plasma heating and
collective flow. The most interesting aspect of this for the present applica-
tions is the effect of highly inhomogeneous anisotropic Lorentz contracted
Coulomb field of a uniformly moving heavy quark and color Casimir 4/3 on
the collective flow pattern imprinted on the plasma.

4.2. Numerical results for the freeze-out

We now turn to the observable consequences of the pQCD chromo-fluid
flow. The plot in Fig. 12 was obtained using the source of Section 4.1
integrated into the hydrodynamical code used in Section 2. The associated
heavy quark jet is created in the beginning of the hydro evolution t = 0
at x1 = −4.5 fm and the freeze-out is done when the it reaches the origin
of the coordinates, independently of the heavy quark’s velocity (note that
we do not include the trigger jet in our analysis). This provides a very
rough description of the case in which a very energetic heavy quark punches
through the medium.

Comparing Fig. 12 with Fig. 9 it is apparent that the qualitative features
displayed by both of these systems are very similar. In particular, both
systems exhibit the Mach-like behavior when the distance from the source
∼ 5/T . The transverse flow in the Neck region, however, is considerably
smaller in pQCD in comparison to the AdS result found in Section 3.3. We
then expect, based on the study in Section 3.3, that the pQCD produced
Mach cones are not observable.

We present normalized CF azimuthal distribution in the form of Eq. (5)
in Fig. 13. We computed f(φ) for v = 0.58, 0.75, 0.90 in a static uni-
form background. The results for the azimuthal angular correlations for
pT = 8πT0 = 5 GeV, and y = 0 are shown in Fig. 13. The pQCD an-
gular distribution shows only a sharp peak at π for all velocities while the
AdS/CFT distribution displays the double-peak structure for all velocities
shown in Fig. 11. Note, once again, that the peaks in the AdS/CFT cor-
relation functions do not obey Mach’s law since they do not come from the
far-away linearized region. The smaller transverse flow of the Neck produced
by the pQCD source term ensures that the Mach contribution is washed out
by the Cooper–Frye thermal smearing.
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Fig. 12. (Color online) The relative local temperature perturbation ∆T/T0 =

T (x1, x⊥)/T0 − 1 and flow velocity profile due to a heavy supersonic quark jet

moving with v = 0.9 (speed of sound cs = 1/
√

3). The results were obtained us-

ing perfect fluid (3+1)D hydrodynamics in the presence of the pQCD source term

computed by Neufeld in [60]. The panel shows the Mach wake (see purple dashed

line) and trailing shear column in the far zone as well as the Neck region (red) near

the jet. The heavy quark is at the origin of the coordinates. The arrows show the

direction and magnitude of the flow. The numbers in the plot label the contours of

constant ∆T/T0. Note that non-Mach flow induced by Joule heating is generated

near the jet.

Fig. 13. (Color online) Normalized and background subtracted azimuthal away side

jet associated correlation after Cooper–Frye freeze-out (Eq. (5)) for pQCD. Here

f(φ) = d3N/dydp⊥dφ is evaluated at p⊥ = 12.5T0, and y = 0. The black line is for

v = 0.58, the blue line for v = 0.75, and for the red line v = 0.9. Compare to the

AdS/CFT result in Fig. 11.



3304 G. Torrieri et al.

5. Conclusions

In conclusion, we have shown that Mach cones in the fluid phase of the
system are a generic prediction of a medium characterized by low viscosity
and a high opacity to hard probes. However, the signal seen in the ex-
periment is likely to be considerably different from the naive expectation
both because of the medium-induced thermal smearing at freeze-out and
the presence of additional structures such as the diffusion wake.

We have illustrated these issues using examples taken from AdS/CFT
and pQCD and shown that the critical requirement for a “Mach-cone like
signal” is in fact the presence of a strong transverse flow in the non-linear
unthermalized Neck region close to the source since this is most likely to
survive freeze-out and yield a cone-like signal. However, the formation of
strong transverse flow in the Neck region is far from assured. For instance,
it is prominent in the AdS/CFT solution and missing in pQCD.

Our analysis is far from complete. The most obvious physical aspects it
misses are the underlying transverse flow (probably significant at timescales
relevant to jet absorption), coalescence dynamics (certainly significant at
momenta comparable to the away-side correlation used by experiment), and
the dynamics of the freeze-out hypersurface. Efforts in this direction are
ongoing [63] and more studies are needed before a conclusive link between the
experimental result and the theory can be made. However, as it stands, Mach
cones remain as extremely promising probes in the study of the strongly
coupled medium produced in ultra-relativistic heavy ion collisions.
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thanks the Alexander Von Humboldt Foundation and Goethe University for
support. G.T. is extremely grateful to the organizers of the Cracow School of
Theoretical Physics for providing him the opportunity and financial support
to attend the school.
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