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We review a recently discovered continuum limit for the one-matrix
model which describes “causal” two-dimensional quantum gravity. The be-
haviour of the quantum geometry in this limit is different from the quantum
geometry of Euclidean two-dimensional quantum gravity defined by taking
the “standard” continuum limit of the one-matrix model. Geodesic distance
and time scale with canonical dimensions in this new limit, contrary to
the situation in Euclidean two-dimensional quantum gravity. Remarkably,
whenever we compare, the known results of (generalized) causal dynam-
ical triangulations are reproduced exactly by the one-matrix model. We
complement previous results by giving a geometrical interpretation of the
new model in terms of a generalization of the loop equation of Euclidean
dynamical triangulations. In addition, we discuss the time evolution of the
quantum geometry.
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1. Introduction

Two dimensional quantum gravity is an interesting playground for quan-
tum geometry. General ideas for string theory and quantum gravity can
be tested by exactly solvable models. Particularly for string theory the 2d
gravity point of view has been rather fruitful. Following the seminal work of
Polyakov et al. [1] powerful conformal field theory methods were developed.
They allowed an exact solution for a select class of observables of 2d gravity
(see e.g. [2]), including the coupling of simple matter models.

Starting earlier [3] and further developed in parallel with the continuum
methods [4] is the method of dynamical triangulation (DT). Especially (gen-
eralized) enumeration of the DT random surfaces by matrix models proved
fruitful, and random matrix models became an important tool in the study
of 2d Euclidean quantum gravity coupled to certain conformal field theo-
ries. Moreover, the current understanding is that whenever the discrete and
continuum methods can be compared the results coincide [5].

For a large class of observables the discrete methods have been proven
to be more powerful. Correlators with surfaces of higher genus can be effi-
ciently computed by matrix model techniques [6] and fixed geodesic distance
(propertime) correlation functions can be extracted by loop equations [7],
transfer matrices [8] or through bijections with random trees [9]. So far these
results have eluded the continuum methods.

In 1998 a different theory of 2d gravity was introduced called causal dy-
namical triangulations (CDT) [10]. Using computer simulations the method
has been successfully extended to 4d quantum gravity [11]. The results are
very promising and indicate that four dimensional gravity might be non-
perturbatively renormalizable. The origin of the renormalizability could be
a nontrivial fixed point scenario as described by Weinberg [12].

Although similar in spirit to Euclidean DT, the continuum limit of 2d
CDT is significantly different. The main cause that puts 2d CDT in a dif-
ferent universality class from non-critical string theory is that in CDT the
topology of spatial slices is fixed. This makes generic triangulations in CDT
much better behaved, since unlike in Euclidean DT the spatial topology fluc-
tuations cannot dominate the continuum limit. Consequently, the scaling of
time in Euclidean DT is non-canonical and the Hausdorff dimension of the
quantum geometry is dH =4. The quantum geometry of CDT on the other
hand has a canonically scaling time variable and a Hausdorff dimension of
dH =2.

Recent developments have shown that spatial topology fluctuations can

be included while preserving the appealing features of CDT. The main idea
is to assign a scaling coupling constant to the spatial topology change pro-
cess [13] and that this generalized CDT model can be described by a matrix
model [14].



A Causal Alternative for c = 0 Strings 3357
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Fig. 1. Illustration of the two composition moves to add a triangle. The white

dot on the right-hand-side shows the position of the mark before the triangle was

added whereas the black dot shows the mark after the triangle was added.

Before coming to the matrix model we rederive the disc function of pure
CDT, i.e. without spatial topology change, by a simple geometrical loop
equation. Such an equation is known to be remarkably powerful. It allows
one to compute time dependent correlators, where time is defined as the
geodesic distance [7, 15]. At the end of this letter we derive the differen-
tial equation for the time dependent propagator and show that unlike in
Euclidean DT, but typical for CDT, the scaling of time is canonical.

After discussing pure CDT we add a term to the loop equation that
introduces spatial topology change. Only upon adding this term we can
relate the loop equation to the Schwinger–Dyson equation of a one-matrix
model with a linear term in the action. Remarkably, the linear term allows
us to take a continuum limit that is very different from the well known limit
of Euclidean DT but very similar to the continuum limit of CDT [14]. In
fact, the continuum limit of the generalized loop equation reproduces the
results of [13, 16]. Amazingly, the continuum limit of the matrix model can
already be taken at the level of the matrix action, giving another matrix
model that has a direct continuum interpretation [17].

2. Geometrical loop equations for 2D causal quantum gravity

In this section we compute the generating function for a set N of trian-
gulations which are similar to the original set of causal triangulations and
which lead to the same continuum physics: Let n denote the number of
triangles and l the number of links at the boundary (which has one marked
link), and assume the topology is that of the disk and denote the generating
function Φ(g, x):

Φ(g, x) =
∞
∑

l,n=0

[Φ(g, x)]n,l =
∞
∑

l,n=0

N (n, l)gnxl =
∞
∑

l=0

pl(g)xl . (1)

The triangulations can be generated by recursively adding triangles. In
our model there are two possible moves. Firstly, one can glue two edges
of the additional triangle to the triangulation, one to the marked edge and
the other one next to it in the clockwise direction (Fig. 1 (a)). Secondly,
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Fig. 2. Graphical representation of the loop equations (2) and (5).

one can add a triangle by simply gluing one of its edges to the marked edge
of the triangulation and assigning the new mark to the new edge further
clockwise (Fig. 1 (b)). Together, the two moves give the following generating
equation for large n and l (see Fig. 2),

[Φ(g, x)]n,l =
g

x
[Φ(g, x)]n,l + gx[Φ(g, x)]n,l . (2)

To keep the nice pictorial interpretation whilst making equation (2) exact,
even for n, l = 1 and n, l = 0, one defines the following derivative operator,
see e.g. [18],

∂x

∞
∑

l=0

clx
l =

∞
∑

l=1

clx
l−1 , (3)

∂xΦ =
1

x
(Φ − 1) , ∂2

xΦ =
1

x2
(Φ − xp1(g) − 1) . (4)

The exact generating equation can now be written as

Φ(g, x) = 1 + gx + gx∂2
xΦ(g, x) + gx2∂xΦ(g, x) , (5)

where x and ∂x have the clear graphical interpretation of adding and remov-
ing boundary edges.

Equation (5) is a simple linear equation and the solution is given by

Φ(g, x) = g

(

1 − (1/g − p1(g)) x

gx2 − x + g

)

, (6)

where p1(g) can be determined by demanding that the singularity structure
of (6) does not change discontinuously near g = 0. The poles of (6) are
located at

x± =
1 ±

√

1 − 4g2

2g
,

1

g
− x− = x+ . (7)

Since the expansion of p1(g) needs to be a power series we have that p1 = x−,
hence the disc function is given by

Φ(g, x) =
1

1 − p1(g)x
, pl(g) = p1(g)l . (8)
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Fig. 3. Illustration of the composition moves to add a double link.

3. The continuum limit

Using the same scaling relations as in the transfer matrix formalism of
CDT,

g =
1

2
e−a2Λ/2 , x = e−aX , (9)

we reproduce the continuum disc amplitude of causal quantum gravity [10]

WΛ(X) =
1

X +
√

Λ
, WΛ(L) = e−

√
ΛL . (10)

4. A matrix model for generalized 2D causal quantum gravity

To include spatial topology change we introduce a quadratic term in the
loop equation (5) (see Fig. 3)

Φβ(g, x) = 1 + gx + gx∂2
xΦβ(g, x) + gx2∂xΦβ(g, x) + βx2Φβ(g, x)2 , (11)

where β is a coupling constant that determines the rate of the spatial topol-
ogy fluctuations (see Fig. 4). To conform with matrix model conventions it
is useful to introduce the following notation

wβ(g, z) =
Φβ(g, x = 1/z)

z
. (12)

With these conventions the loop equation is given by

βwβ(g, z)2 − v′(z)wβ(g, z) + qβ(g, z) = 0 , (13)

where
v(z) = −gz + 1

2
z2 − 1

3
gz3 , v′(z) = −g + z − gz2 , (14)

and
qβ(g, z) = 1 − g(p1(g, β) + z) . (15)

Written in the form of (13) it is easily seen that the loop equation corresponds
to the Schwinger–Dyson equation of a simple one-matrix model [14],

Zdisc. =

∫

Dm exp

(

−N

β
[Tr v(m)]

)

, (16)
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= + +β

Fig. 4. Graphical representation of the loop equation (11).

where m is a Hermitian N × N -matrix and the functional form of the po-
tential v(m) is given by (14).

The solution of the loop equation (13) is of the following well-known
form

wβ(g, z) =
1

2β

(

v′(z) −
√

v′(z)2 − 4βqβ(g, z)

)

. (17)

At this stage the solution of the disc function is still implicit since it depends
on p1(g, β) through (15). Demanding the solution to have only one cut in
the complex z plane gives the explicit result

wβ(g, z) =
1

2β

(

−g + z − gz2 + (gz − c)
√

(z − c+)(z − c−)
)

, (18)

where c is the solution of a third order polynomial,

2c3 − 3c2 +
(

2g2 + 1
)

c = g2(1 − 2β) , (19)

and

c± =
1 − c ±

√
2
√

(1 − c)c − g2

g
. (20)

5. The “causal” continuum limit

In the well known continuum limit of the one-matrix model with poly-
nomial potential and generic coupling constants the critical value for the
boundary cosmological constant z coincides with the critical value of c+

only. As a result, this standard limit has the peculiar feature that it leaves
a non-scaling term as a memory of the discrete theory, since

wEuc.
λ (x) = wns(x) + a3/2 WEuc.

Λ (X) + O(a2) , (21)

where wns(x) is a non-scaling part and

WEuc.
Λ (X) =

(

X − Λ

2

)√

X +
√

Λ (22)

is the continuum disc function. Observe that the continuum disc function is
even subleading in the lattice cutoff a.
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In our specific model the matrix potential is such that the critical points
of c+ and c− coincide. This leads us naturally to the universality class
of two-dimensional CDT implying the same scaling relations as before (9),
provided one also scales the coupling constant β [13]:

β =
1

2
gsa

3 , c =
1

2
eaC . (23)

Contrary to the standard limit of the one matrix model our “causal” contin-
uum limit is free from leading nonscaling contributions,

wβ(g, x) =
1

a
WΛ,gs

(X) + O(a0) , (24)

where WΛ,gs
(X) is the continuum disc function previously derived with other

methods [13, 16],

WΛ,gs
(X) =

1

2gs

(

−(X2 − Λ) + (X − C)
√

(X + C)2 − 2gs/C
)

, (25)

where C is the solution to a third order polynomial equation,

C3 − ΛC + gs = 0 . (26)

Observe that this equation is precisely the continuum limit of equation (19).
Furthermore it is interesting to note that the structure of the discrete (18)
and continuum (25) disc functions is very similar. This is not a coinci-
dence since, as has been noticed recently, the continuum results can also be
described by a matrix model [17],

Zcont. =

∫

DM exp

(

−N

gs
[Tr V (M)]

)

, (27)

with the following potential

V (M) = ΛM− 1

3
M3. (28)

In fact, it can be shown that the continuum matrix model (27) can be
understood as the continuum limit of the matrix model (16) with a standard
combinatorial interpretation [14]. While our continuum limit (9) and (23)
is non-standard from the matrix model point of view it is very natural from
a CDT perspective [13, 16].
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6. Time evolution

To see that the non-critical string theory limit of the matrix model is
really very different from our “causal” continuum limit, we briefly discuss the
so-called fixed time (geodesic distance) two-loop amplitude Gβ(l1, l2; g; t).
This amplitude is defined as the sum over all triangulations with initial
boundary of length l1 and final boundary of length l2 at fixed geodesic
distance t. With this in mind, it is natural to interpret the loop equation as
a time dependent process [7, 15, 19], where each addition or subtraction of
a triangle is a “1/l1-th” part of a time step. For large l1 we have

1

l1

∂

∂t
Gβ(l1, l2; g; t) = gGβ(l1 − 1, l2; g; t) − Gβ(l1, l2; g; t)

+gGβ(l1 + 1, l2; g; t) + 2β

∞
∑

l=0

pl(g, β)Gβ(l1 − l − 2, l2; g; t) . (29)

After a “discrete Laplace transformation” this equation becomes

∂

∂t
Gβ(z,w; g; t) =

∂

∂z

[(

−g + z − gz2 − 2βwβ(g, z)
)

Gβ(z,w; g; t)
]

. (30)

The crucial difference between this equation and similar equations in non-
critical string theory is the scaling of time in their continuum limits. Unlike
in non-critical string theory the continuum limit of (30) involves a canoni-
cally scaling time parameter T ∼a t, yielding

∂

∂T
GΛ,gs

(X,Y ;T )=− ∂

∂X

[(

X2−Λ+2gsWΛ,gs
(X)

)

GΛ,gs
(X,Y ;T )

]

. (31)

This is precisely the result of the propagator derived from generalized
CDT [13, 16]. Already since the inception of CDT [10] it has been known
that the scaling of the geodesic distance is intimately related to the Hausdorff
dimension of the quantum geometry. One can argue that the “causal” con-
tinuum limit of the one-matrix model is better behaved since its Hausdorff
dimension is dH =2 instead of dH =4 in non-critical string theory [10].

7. Conclusions

We have described a recently found “causal” continuum limit for the one-
matrix model [14]. With the here described combinatorial interpretation this
limit is naturally defined when inserting a linear term in the action with
a specially chosen coefficient. We have shown here that this coefficient can
naturally be interpreted as an additional way to add a triangle in the loop
equations. The associated “causal” continuum limit is very different from
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the “old” double scaling limit and exactly reproduces the known results of
causal dynamical triangulations [10, 13]. An intriguing aspect of this new
continuum limit is that the continuum results are also described by a matrix
model. This matrix model has of course both an expansion in the coupling
constants gs and Λ, as well as a large N expansion in powers of 1/N2,
which reorganizes the power expansions in gs and Λ in convergent “subseries”.
By comparing with the generalized causal dynamical triangulation model
the powers of N−2h+2 in the large N expansion can be identified with the
continuum causal dynamical surfaces of genus h [14, 17]. In this sense our
“causal” continuum limit leads to a picture that is much closer in spirit to
the original idea by ’t Hooft [20] for QCD.

As a complement to previous results we also derived the differential equa-
tion for the fixed geodesic distance two-loop amplitude. The observed canon-
ical scaling of time is directly related to the fact that the quantum geometry
obtained from our new “causal” continuum limit has Hausdorff dimension
dH = 2 instead of dH = 4 for the “old” continuum limit of the one-matrix
model.

Until now, only the transfer matrix formalism has been available for
analytical computations in causal dynamical triangulations. Here we ex-
tended the available tools and presented new, more powerful, matrix model
and loop equation methods. Importantly, these new methods allow one to
analytically study simple matter models coupled to two-dimensional causal
quantum gravity. Several of these models are currently under investigation.
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