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We present a semiclassical description of the SU(N) Yang–Mills the-
ory whose partition function at nonzero temperatures is approximated by
a saddle point — an ensemble of an infinite number of interacting dyons
of N kinds. The ensemble is governed by an exactly solvable 3D quantum
field theory, allowing calculation of correlations functions relevant to con-
finement. We show that known criteria of confinement are satisfied in this
semiclassical approximation: (i) the average Polyakov line is zero below
some critical temperature, and nonzero above it, (ii) static quarks in any
nonzero N -ality representation have linear rising potential energy, (iii) the
average spatial Wilson loop falls off exponentially with the area, (iv) N2

gluons are canceled out from the spectrum. The critical temperature is in
good agreement with lattice data.

PACS numbers: 11.15.–q, 11.10.Wx, 11.15.Tk

1. Philosophy

Quantum Chromodynamics (QCD) is hardly an exactly solvable quan-
tum field theory, even in the largeN limit. Therefore, one can either do exact
calculations in a theory that has more symmetries but is not our world, or
work with QCD but make approximations. The first is useful as a theoret-
ical laboratory, the second is necessary to understand semi-quantitatively
the key phenomena, to explain experimental data, and to make predictions.

An approximation is considered to be legitimate if there is a systematic
way of improving its accuracy. The semiclassical approach belongs to this
category. One chooses a saddle-point classical field and then has to take into
account quantum fluctuations about it. Part of the fluctuations are ultra-
violet and are thus the same as in empty space. Therefore, their role is to
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renormalize the bare coupling constant; at this point the famous dimensional
transmutation occurs, when the ultraviolet cutoff in a proper combination
with the bare coupling constant forms the QCD scale parameter Λ, the only
dimensional scale that henceforth will be in the theory. What is left, is
a series in the ’t Hooft running coupling λ ≡ Nαs/2π coming from loop
expansion in the background of classical configurations.

The argument of the running coupling λ is determined by the largest

scale in the vacuum, max(T, n
1
4 ), where T is temperature, and n is the

mean 4D density of the (large) classical field configurations. For example,
near the deconfinement temperature T ≈ Tc ≈ Λ the running coupling is
approximately λ = [(11/3) ln

(

4πT/ΛeγE)]−1
∣

∣

T=Λ
≈ 1/7 [1]. The numeri-

cally large factor 2π in the argument of the logarithm is not accidental but
related to the fact that it is actually not the temperature itself but rather
the Matsubara frequency 2πT that defines the scale. At zero temperature
many QCD specialists believe that αs does not grow above the value of 0.5,
which gives λ ≈ 1/4. Therefore, in the whole range of temperatures within
the confining phase the semiclassical approximation is expected to yield the
accuracy of 15–25%, already in the 1-loop approximation (provided the sad-
dle point is chosen correctly!) with a possibility for rapid improvement when
higher loops are taken into account. We shall see, however, that the actual
accuracy can be much better than this estimate. It is not a too big price to
pay if confinement, the most challenging riddle in 35 years, is explained in
simple terms.

We shall be considering the pure Yang–Mills theory based on the SU(N)
gauge group in a broad range of temperatures between 0 and Tc, the decon-
finement phase transition temperature. Although the formalism we use is
designed for nonzero T , we shall see that the physical observables we find
(such as the string tension) have a finite limit when T → 0. In this limit the
nonzero temperature can be thought of as an infrared regulator. After all,
our world’s temperature is 2.7K 6= 0.

Confinement, as we understand it today and learn from lattice experi-
ments with a pure glue theory, has in fact many facets, and all have to be
explained. Let us enumerate the main:

• the average Polyakov line in any N -ality nonzero representation of the
SU(N) group is zero below Tc and nonzero above it,

• the potential energy of two static colour sources (defined through the
correlation function of two Polyakov lines) asymptotically rises linearly
with the separation; the slope called the string tension depends only
on the N -ality of the sources,
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• the average of the spatial Wilson loop decays exponentially with the
area spanning the contour; at vanishing temperatures the spatial
(“magnetic”) string tension has to coincide with the “electric” one, for
all representations,

• the mass gap: no massless gluons left in the spectrum.

Remarkably, all these requirements are satisfied already in a semiclassical
approximation if one uses an ensemble of dyons as a saddle point in the
Yang–Mills partition function [2]. That paper with Victor Petrov is the
base for this presentation.

2. Yang–Mills theory at nonzero temperatures

The Yang–Mills (YM) partition function can be written as a path or
functional integral over the spatial components of the connection Ai(t,x)
satisfying the periodic boundary conditions up to a gauge transformation
Ω(x) over which one has to integrate separately [3]:

Z =
∑

gauge invariant states

〈n
∣

∣

∣
e−βH

∣

∣

∣
n〉 =

∫

DΩ(x)DAi(x)

[

β =
1

T

]

×
Ai(x)Ω(x)
∫

Ai(x)

DAi(t,x) exp



− 1

g2

β
∫

0

dt

∫

d3
x Tr

(

ȦiȦi+BiBi

)



 , (1)

where Bi = ǫijk
(

∂jAk − i
2 [AjAk]

)

is the magnetic field strength and AΩ
i ≡

Ω†AiΩ + iΩ†∂iΩ is the gauge-transformed potential. Ai, Bi are N ×N
matrices belonging to the su(N) algebra while Ω is an element of the SU(N)
group.

One can rewrite the partition function in a more customary form by
introducing gauge-transformed integration variables Ai that are strictly pe-
riodic in time, and trading Ω for the time component of the YM potential
A4 that is also periodic:

Z =

∫

DAµ(t,x) exp






− 1

2g2

1
T
∫

0

dt

∫

d3
x TrFµνFµν






, (2)

Aµ

(

t+
1

T
,x

)

= Aµ(t,x) ,

where Fµν is the usual field strength. This form stresses the fact that Eu-
clidean O(4) symmetry is restored as T → 0.
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An important variable is the Polyakov loop: in the formulation (2) it is
the path-ordered exponent

L(x) = P exp






i

1
T
∫

0

dtA4(t,x)






(= Ω(x)) . (3)

In the formulation (1) it is nothing but the SU(N) matrix Ω(x) over which
there is a final integration in Eq. (1). The eigenvalues of L(x) are gauge
invariant; we parameterize them as

L = diag
(

e2πiµ1 , e2πiµ2 , . . . , e2πiµN
)

, µ1+. . .+ µN = 0 , (4)

and assume that the phases of these eigenvalues are ordered: µ1 ≤ µ2 ≤
. . . ≤ µN ≤ µN+1 ≡ µ1 + 1. We shall call the set of N phases {µm} the
“holonomy” for short. Apparently, shifting µ’s by integers does not change
the eigenvalues, hence all quantities have to be periodic in all µ’s.

The holonomy is said to be “trivial” if L belongs to one of theN elements of
the group center ZN . For example, in SU(3) the three trivial holonomies are

1. µ1 = µ2 = µ3 = 0 =⇒ L =





1 0 0
0 1 0
0 0 1



 ,

2. µ1 = −2

3
, µ2 =

1

3
, µ3 =

1

3
=⇒ L = e

2πi
3





1 0 0
0 1 0
0 0 1



 ,

3. µ1 = −1

3
, µ2 = −1

3
, µ3 =

2

3
=⇒ L = e−

2πi
3





1 0 0
0 1 0
0 0 1



 .

Trivial holonomy corresponds to equal µ’s, modulo unity. Out of all possible
combinations of µ’s a distinguished role is played by equidistant µ’s:

µconf
m = −1

2
− 1

2N
+
m

N
, TrL = 0 . (5)

For example, in SU(3) it is

µ1 =−1

3
, µ2 =0 , µ3 =

1

3
=⇒ L=







e−
2πi
3 0 0

0 e
0 πi
3 0

0 0 e
2πi
3






, TrL=0. (6)

We shall call it “most non-trivial” or “confining” holonomy as it corresponds
to TrL = 0 which is the 1st confinement requirement.
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Immediately, an interesting question arises: Imagine we take the YM
partition function, be it in form (1) or (2), and integrate out all degrees of
freedom except the eigenvalues {µm} of the Polyakov loop L(x) (or Ω(x)),
which, in addition, we take slowly varying in space. What is the effective
action for µ’s? What set of µ’s is preferred dynamically by the YM system
of fields?

In general, it is a difficult calculational problem that can be addressed
using various approximations but in one case the result is known exactly.
It is the case of the supersymmetric N =1 version of the YM theory (SYM)
where in addition to gluons there are gluinos in the adjoint representation.
In order not to spoil supersymmetry one takes not the real temperature
but rather a 4D space compactified in the time direction, R3 ×S1. The
difference is that in the “real temperature” case one uses periodic conditions
in the Euclidean time direction for boson fields (gluons) and antiperiodic
conditions for fermion fields (gluinos) — that spoils supersymmetry; in the
“compactification” case one implies periodic conditions for both kinds of
fields, what supports supersymmetry. However, we shall anyway call the
inverse circumference of the compactified time direction “temperature” for
short.

There is no perturbative contribution to the potential energy in question
as function of µ’s (directly related in this case to the holomorphic super-
potential) because of the supersymmetric cancellation between boson and
fermion loops, and the only contribution is nonperturbative coming from
dyons. It can be reliably computed in the limit of high “temperatures”
and then claimed to be actually independent of temperature owing to the
holomorphy typical in supersymmetry. The result [4] is that the potential
energy of the system has the minimum at precisely the “most non-trivial” or
“confining” holonomy (5).

In the non-supersymmetric pure YM theory, there is a perturbative ef-
fective action for slowly varying µ’s. It can be understood as gluon loop(s)
in the background of a slowly varying field A4(x). The effective action can
be expanded in the number of gradients of µ’s. The zero-order term, the po-
tential energy with no derivatives, has been computed long ago in Refs. [3,5]:

P pert = V
(2π)2T 3

3

N
∑

m>n

(µm − µn)2[1 − (µm − µn)]2

∣

∣

∣

∣

∣

mod 1

. (7)

Since the piece with no derivatives implies constant µ’s, it has to be propor-
tional to the 3-volume V , and hence to T 3 by dimensions. P pert has exactly
N zero minima when all µ’s are equal modulo unity. Hence, P pert says that
at high temperatures the system prefers one of the N trivial holonomies cor-
responding to the Polyakov loop being one of the N elements of the center
ZN , see Fig. 1, top.
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Fig. 1. The perturbative (top) versus nonperturbative (bottom) potential energy

as a function of the Polyakov line for the SU(2) (left) and SU(3) (right) groups.

The perturbative potential energy has minima where the Polyakov loop is one of

the N elements of the center ZN and is maximal at the “confining” holonomy. The

nonperturbative potential energy, on the contrary, has a single and non-degenerate

minimum at the confining holonomy corresponding to TrL = 0.

However, gradient terms in the effective action indicate that there is
a problem with the trivial-holonomy points, already at the perturbative
level. Indeed, the two-derivative term is [1]

Spert
2−der =

N
∑

m>n

∫

d3x [∂i(µm − µn)]2
11

12
T

[

H(µm − µn) + 2 log

(

4πT

ΛeγE

)]

,

H(ν) = [ψ(ν) + ψ(1 − ν) + 2γE ]mod 1 ,

ψ(ν) =
d

dν
lnΓ (ν) . (8)

Since ψ(ν) ≈ −1/ν at small ν, the gradient term becomes negative near
“trivial” holonomy, which signals its instability even in perturbation theory.

We shall show below that a semiclassical configuration — an ensemble
of dyons with quantum fluctuations about it — generates a nonperturba-
tive free energy shown in Fig. 1, bottom. It has the opposite behavior of
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the perturbative potential energy, having the minimum at the equidistant
(confining) values of the µ’s. There is a fight between the perturbative and
nonperturbative contributions to the free energy [6]. Since the perturbative
contribution is ∼ T 4 with respect to the nonperturbative one, it certainly
wins when temperatures are high enough, and the system is then forced
into one of the N vacua thus breaking spontaneously the ZN symmetry.
At low temperatures the nonperturbative contribution prevails forcing the
system into the confining vacuum. At a critical Tc there is a confinement–
deconfinement phase transition. It turns out to be of the second order for
N = 2 but the first order for N = 3 and higher, in agreement with lattice
findings.

3. Dyon saddle points

Dyons or Bogomolny–Prasad–Sommerfield (BPS) monopoles [7] are (anti)
self-dual solutions of the nonlinear Maxwell equations, Dab

µ F
b
µν = 0. In

SU(N) there are exactly N kinds of “fundamental” dyons with Coulomb
asymptotics for both electric and magnetic fields (hence the term “dyon”):

±E = B
|x|→∞

=
1

2

x

|x|3×





1 0 0
0−10
0 0 0



 ,





0 0 0
0 1 0
0 0 −1



 ,





−1 0 0
0 0 0
0 0 1



 . (9)

Dyon solutions are labeled by the holonomy or the set of µ’s at spatial
infinity:

A4(|x|→∞) → 2πT





µ1 0 0
0 µ2 0
0 0 µ3



 (10)

(we illustrate it for the case of SU(3)). The explicit expressions for the solu-
tions in various gauges can be found e.g. in the Appendix of Ref. [8]. Inside
the cores which are of the size ∼ 1/(T (µm+1 − µm)), the fields are large,
nonlinearity is essential. The action density is time-independent everywhere
and is proportional to the temperature. Isolated dyons are thus 3D objects
but with finite action Sdyon = (8π2/g2)(µm+1 −µm) independent of temper-
ature (here µN+1 ≡ µ1 + 1). The full action of all N kinds of well-separated
dyons together is that of one standard instanton: Sinst = 8π2/g2.

In the semiclassical approach, one has first of all to find the statisti-
cal weight with which a given classical configuration enters the partition
function. It is given by exp(−Action), times the determinant −1/2 from
small quantum oscillations about the saddle point. For an isolated dyon as
a saddle-point configuration, this factor diverges linearly in the infrared re-
gion owing to the slow Coulomb decrease of the dyon field (9). It means that
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isolated dyons are not acceptable as saddle points: they have zero weight,
despite finite classical action. However, one may look for classical solutions
that are superpositions of N fundamental dyons, with zero a net magnetic
charge. The small-oscillation determinant must be infrared-finite for such
classical solutions, if they exist.

4. Instantons with non-trivial holonomy

Remarkably, the needed classical solution has been found a decade ago
by Kraan and van Baal [9] and independently and simultaneously by Lee and
Lu [10], see also [11]. We shall call them for short the “KvBLL instantons”;
an alternative name is “calorons with non-trivial holonomy”. The solution
was first found for the SU(2) group but soon generalized to the arbitrary
SU(N) [12]. A nice overview of the solutions has been presented by Pierre
van Baal at the 2003 School in Zakopane [13]. We shall mention only the
essentials here.

The general solution depends on Euclidean time t and space x and is
parameterized by 3N positions of N kinds of “constituent” dyons in space
x1, . . . ,xN and their U(1) phases ψ1, . . . , ψN . All in all, there are 4N col-
lective coordinates characterizing the solution (called the moduli space), of
which the action Sinst = 8π2/g2 is in fact independent, as it should be for
a general solution with a unity topological charge. The solution also depends
explicitly on temperature T and on the holonomy µ1, . . . , µN :

AKvBLL
µ = Āa

µ(t,x; x1, . . . ,xN , ψ1, . . . , ψN ; T, µ1, . . . , µN ) . (11)

The solution is a relatively simple expression given by elementary functions.
If the holonomy is trivial (all µ’s are equal modulo unity) the expression
takes the form of the strictly periodic O(3) symmetric caloron [14] reducing
further to the standard O(4) symmetric BPST instanton [15] in the T → 0
limit. At small temperatures but arbitrary holonomy, the KvBLL instanton
also has only a small O(T ) difference with the standard instanton.

One can plot the action density of the KvBLL instanton in various corners
of the parameter (moduli) space, see Fig. 2.

When all dyons are far apart one observes N static (i.e. time-indepen-
dent) objects, the isolated dyons. As they merge, the configuration is not
static anymore, it becomes a process in time. In the limiting case of a com-
plete merger, the configuration becomes a 4D lump resembling the standard
instanton. The full (integrated) action is exactly the same Sinst = 8π2/g2 for
any choice of the dyon separations. It means that classically dyons do not
interact. However, they do experience a peculiar interaction at the quantum
level to which we proceed.
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Fig. 2. Action density inside the SU(3) KvBLL instanton as a function of time

and one space coordinate, for large (left), intermediate (middle) and small (right)

separations between the three constituent dyons.

5. Quantum weight of a neutral cluster of N dyons

Remarkably, the small-oscillation determinant about the KvBLL instan-
ton can be computed exactly; this has been first done for the SU(2) group in
Ref. [16] and later generalized to SU(N) in Ref. [17]. The quantum weight
of the KvBLL instanton can be schematically written as an integral over 3N
coordinates of dyons (the weight does not depend on the U(1) angles ψm,
hence they can be integrated out):

W1 =

∫

dx1 . . . dxN

√

det g

(

4π

g4

µ4

T

)N

exp

(

−8π2

g2

)

(Det(−△))−1
reg,norm ,

(12)
where g is the full 4N×4N metric tensor of the moduli space, defined as the
zero modes overlap matrix, and Det(−△) is the functional determinant over
nonzero modes, normalized to the free one and regularized by the background
Pauli–Villars method; µ is the Pauli–Villars ultra-violet cutoff and g2 is the
bare coupling constant defined at that cutoff. The Jacobian det g turns
out to be a square of the determinant of an N × N matrix G(1) such that√

det g = detG(1) where

G(1)
mn = δmn

(

4πνm +
1

T |xm − xm−1|
+

1

T |xm − xm+1|

)

− δm,n−1

T |xm − xm+1|
− δm,n+1

T |xm − xm−1|
,

νm = µm+1 − µm,

N
∑

m=1

νm = 1 , (13)

is a matrix whose entries are Coulomb interactions between dyons that are
nearest neighbors in kind. The Coulomb interactions in the zero mode over-
lap matrix arise naturally from the Coulomb asymptotics of the dyon field (9),
so it is quite simple to check that Eq. (13) is correct at large separations.
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A nontrivial fact is that Eq. (13) is actually exact for all separations be-
tween dyons, including the case when they strongly overlap like in Fig. 2,
right. This has been first conjectured by Lee, Weinberg and Yi [18] and
then proved to be indeed exact at all separations by a direct calculation by
Kraan [19] and later checked in Ref. [20]. In the last paper it has been also
shown that in the limit of trivial holonomy (µm = 0) or vanishing tempera-
ture the measure given by Eqs. (12) (13) reduces to the standard instanton
measure written in terms of the conventional “center-size-orientation”, which
is a rather nontrivial but gratifying statement.

The functional determinant over nonzero modes Det−1(−△) together
with the classical action and the Pauli–Villars cutoff combine into the renor-
malized scale parameter ΛPV, times a function of dyon separations, ΛPV and
T [16,17]. It is a complicated function which, for the time being, we approx-
imate by its most essential part: a constant equal to exp

(

−P pert
)

, where
P pert is the perturbative gluon loop (7) in the background of a constant
field A4 (10). This part is necessarily present in Det−1(−△) as most of
the 3D space outside the instanton’s core is just a constant A4 background,
and indeed the calculation [16, 17] exhibits this piece which is the only one
proportional to the 3-volume.

Therefore, we write the weight of the KvBLL instanton i.e. a neutral
cluster of N different-kind dyons as

W1 ≈
∫

dx1 . . . dxN detG1 f
N exp

(

−P pert(µ1, . . . , µN )
)

, (14)

where the fugacity f is

f =
4π

g4

Λ4

T
= O(N2) . (15)

The bare coupling constant g2 in the pre-exponent is renormalized and starts
to “run” only at the 2-loop level not considered here. Eventually, its argu-
ment will be the largest scale in the vacuum, be it the temperature or the
equilibrium density of dyons.

6. Quantum weight of many dyons

In the vacuum problem, one needs to use not one but O(V ) number of
KvBLL instantons as the saddle point. Solutions with the topological charge
greater than 2 will be hardly ever known explicitly as their construction runs
into the problem of resolving the nonlinear Atiyah–Drinfeld–Hitchin–Manin–
Nahm constraints. At present 2-instanton solutions characterized by a non-
trivial holonomy have been found [21] but it is insufficient. Nevertheless, the
moduli space measure of an arbitrary number K of KvBLL instantons can
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be constructed despite the lack of explicit solutions, at least in the approx-
imation which seems to be relevant for the large-volume thermodynamics,
if not exactly.

When one takes a configuration ofK instantons each made ofN different-
kind dyons one encounters also same-kind dyons for which the metric (13)
is inapplicable. However, the case of identical dyons has been considered
separately by Gibbons and Manton [22]. The integration measure for K
identical dyons following from that work is, in our notations,

W ident =
1

K!

∫

dx1 . . . dxK detGident
K×K ,

Gident
ij =

{

4πνm −∑k 6=i
2

T |xi−xk|
, i = j

2
T |xi−xj |

, i 6= j
, (16)

where the identity factorial is inserted to avoid counting same configurations
more than once.

As in the case of different-kind dyons, this result for the metric can be
easily obtained at large separations from considering the asymptotics of the
zero modes’ overlap. However, in contrast to the different-kind dyons, it
is not possible to prove that this expression is correct at all separations.
Moreover, such an extension of Eq. (16) is probably wrong. The metric for
two same-kind dyons has been found exactly at all separations by Atiyah
and Hitchin [23]: it is more complicated than what follows from Eq. (16) at
K = 2 but differs from it by terms that are exponentially small at large sep-
arations [24]. We shall neglect the difference and use the Gibbons–Manton
metric at face value. The point is, Eq. (16) imposes very strong repulsion
between same-kind dyons (as does the exact Atiyah–Hitchin metric), hence
the range of the moduli space where the two metrics differ is, statistically,
not frequently visited by dyons. We do not have a proof that all ther-
modynamic quantities will be computed correctly with this simplification:
proving or disproving it is an interesting and important problem. To remain
on the safe side, one has to admit today that the metric (16) is applica-
ble if the dyon ensemble is sufficiently dilute, that is at high temperatures.
Nevertheless, physical observables we compute have a smooth limit even at
T → 0. Therefore, it may well prove to be a correct computation at any
temperatures, but this remains to be seen.

It is possible to combine the metric tensors for different-kind (13) and
same-kind (16) dyons into one metric appropriate for the moduli space of
K1 dyons of kind 1, K2 dyons of kind 2, . . . , KN dyons of kind N . It is
a matrix whose dimension is the total number of dyons, that is a (K1 + . . .+
KN ) × (K1 + . . .+KN ) matrix:
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Gmi,nj = δmnδij

(

4πνm +
∑

k

1

T |xmi−xm−1,k|
+
∑

k

1

T |xmi−xm+1,k|

− 2
∑

k 6=i

1

T |xmi−xmk|

)

− δm,n−1

T |xmi−xm+1,j |
− δm,n+1

T |xmi−xm−1,j |
+ 2

δmn

T |xmi−xmj |

∣

∣

∣

∣

i6=j

, (17)

where xmi is the coordinate of the ith dyon of kind m. Since the statis-
tical weight of a configuration of dyons is large when detG is large and
small when it is small, detG imposes an attraction between dyons that are
nearest neighbors in kind, and a repulsion between same-kind dyons. The
coefficients −1, 2,−1 in front of the Coulomb interactions are actually the
scalar products of the Cartan generators that determine the asymptotics of
the dyons’ field, see Eq. (9).

The matrix G has the following nice properties:

• symmetry: Gmi,nj = Gnj,mi;

• overall “neutrality”: the sum of Coulomb interactions in non-diagonal
entries cancel those on the diagonal:

∑

nj Gmi,nj = 4πνm;

• identity loss: dyons of the same kind are indistinguishable, meaning
mathematically that detG is symmetric under permutation of any pair
of dyons (i↔ j) of the same kind m. Dyons do not “know” to which
instanton they belong to;

• factorization: in the geometry when dyons fall into K well separated
neutral clusters of N dyons of different kinds in each, detG factorizes
into a product of exact integration measures for K KvBLL instantons,
detG = (detG(1))K where G(1) is given by Eq. (13);

• last but not least, the metric corresponding to G is hyper-Kähler, as it
should be for the moduli space of a self-dual classical field [23]. In fact,
it is a severe restriction on the metric.

7. Ensemble of dyons

In the semiclassical approximation we thus replace the YM partition
function (2) by the partition function of an interacting ensemble of an arbi-
trary number of dyons of N kinds:

Z =
∑

K1 ...KN

1

K1! . . . KN !

N
∏

m=1

Km
∏

i=1

∫

(dxmi f) detG(x) , (18)
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where xmi is the coordinate of the ith dyon of kind m, the matrix G is given
by Eq. (17) and the fugacity f is given by Eq. (15). The overall exponent
of the perturbative potential energy as function of the holonomy {µ} is
understood, as in Eq. (14).

The ensemble defined by a determinant of a matrix whose dimension
is the number of particles, is not a usual one. More customary, the inter-
action is given by the Boltzmann factor exp (−Uint(x1, . . .)). Of course,
one can always present the determinant in that way using the identity
detG = exp(Tr logG) ≡ exp(−Uint) but the interactions will then include
three-, four-, five- . . . body forces. At the same time, it is precisely the de-
terminant form of the interaction that makes the statistical physics of dyons
an exactly solvable problem.

8. Dyons’ free energy: confining holonomy preferred

The partition function (18) can be computed directly and exactly, just
by writing the determinant of G by definition as a sum of permutations
of products of the matrix entries. The result is astonishingly simple: all
Coulomb interactions cancel exactly after integration over dyons’ positions,
provided the overall neutrality condition is satisfied, viz. K1 = K2 = . . . =
KN = K; otherwise the partition function is divergent. Therefore, the
recipe for computing the partition function is just to impose the neutrality
condition and then to throw out all Coulomb interactions! We have thus to
take the product of (4πνm)’s from the diagonal of G:

Z =
∑

K

(4πfV )KN

(K!)N

N
∏

m=1

νK
m .

The quantity 4πfV is dimensionless and large for large volumes V . The sum
can be, therefore, computed from the saddle point in K using the Stirling
asymptotics for large factorials, and we obtain

Z = exp
(

4πfV N (ν1ν2 . . . νN )
1
N

)

, ν1 + ν2 + . . . + νN = 1 . (19)

By definition, F = −T logZ is the nonperturbative dyon-induced free energy
as function of the holonomy; for N = 2, 3 it is plotted in Fig. 1, bottom.
Evidently, it has the minimum at

ν1 = ν2 = . . . = νN =
1

N
(20)

corresponding to equidistant, that is confining values of µ’s (5)! At the
minimum, the free energy is

Fmin = −T logZmin = −4πfV T = −16π2

g4
Λ4 V =

N2

4π2

Λ4

λ2
V (21)
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and there are no Coulomb corrections to this result. In the last equation we
have introduced the N -independent ’t Hooft coupling λ ≡ αsN/2π.

We note that the free energy is O(N2) as expected on general N -counting
grounds and that it is temperature-independent. It corresponds to logZ
being proportional to the 4-volume V (4) = V/T , demonstrating the expected
extensive behavior at low temperature.

9. Statistical physics of dyons as a Quantum Field Theory

Although the Coulomb interactions of dyons cancel exactly in the free
energy, the dyon ensemble defined by Eq. (18) is not a free gas but a highly
correlated system. To facilitate computing observables through correlation
functions, we rewrite Eq. (18) as an equivalent quantum field theory. As
a byproduct, we shall also check that the result for the free energy (19) is
correct.

To proceed to the quantum field theory description we use two mathe-
matical tricks.

1. “Fermionization” (Berezin [25]). It is helpful to exponentiate the
Coulomb interactions rather than keeping them in detG. To that end one
presents the determinant of a matrix as an integral over a finite number of
anticommuting Grassmann variables:

det(GAB) =

∫

∏

A

dψ†
A dψA exp

(

ψ†
AGAB ψB

)

.

Now we have the two-body Coulomb interactions in the exponent and it
is possible to use the second trick presenting Coulomb interactions with the
help of a functional integral over an auxiliary boson field.

2. “Bosonization” (Polyakov [26]). One can write

exp

(

∑

m,n

QmQn

|xm − xn|

)

=

∫

Dφ exp

[

−
∫

dx

(

1

16π
∂iφ∂iφ+ ρφ

)]

= exp

(∫

ρ
4π

△ ρ

)

,

ρ =
∑

Qm δ(x − xm) .

After applying the first trick the “charges” Qm become Grassmann vari-
ables but after applying the second one, it becomes easy to integrate them
out since the square of a Grassmann variable is zero. In fact one needs 2N
boson fields vm, wm to reproduce diagonal elements of G and 2N anticom-

muting (“ghost”) fields χ†
m, χm to present the non-diagonal elements. The
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chain of identities is accomplished in Ref. [2] and the result for the partition
function (18) is, identically, a path integral defining a quantum field theory
in 3 dimensions

Z =

∫

Dχ†DχDvDw exp

∫

d3x

{

T

4π

(

∂iχ
†
m∂iχm + ∂ivm∂iwm

)

+ f

[

(−4πµm + vm)
∂F
∂wm

+ χ†
m

∂2F
∂wm∂wn

χn

]}

, (22)

F =
N
∑

m=1

ewm−wm+1 . (23)

The fields vm have the meaning of the asymptotic Abelian electric potentials
of dyons

(A4)mn = δmnAm 4 ,

Am 4(x)

T
= 2πµm − 1

2
vm(x) ,

Em = ∇Am 4 , (24)

while wm have the meaning of the dual (or magnetic) Abelian potentials.
Note that the kinetic energy for the vm, wm fields has only the mixing term
∂ivm∂iwm which is nothing but the Abelian duality transformation E · B.
The function F(w) (23) where one assumes a cyclic summation over m, is
known as the periodic (or affine) Toda lattice.

Although the Lagrangian in Eq. (22) describes a highly nonlinear inter-
acting quantum field theory, it is in fact exactly solvable! To prove it, one
observes that the fields vm enter the Lagrangian only linearly, therefore one
can integrate them out. It leads to a functional δ-function:

∫

Dvm −→ δ

(

− T

4π
∂2wm + f

∂F
∂wm

)

. (25)

This δ-function restricts possible fields wm over which one still has to inte-
grate in Eq. (22). Let w̄m be a solution to the argument of the δ-function.
Integrating over small fluctuations about w̄ gives the Jacobian

Jac = det−1

(

− T

4π
∂2δmn + f

∂2F
∂wm∂wn

∣

∣

∣

∣

w=w̄

)

. (26)

Remarkably, exactly the same functional determinant (but in the numer-
ator) arises from integrating over the ghost fields, for any background w̄.
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Therefore, all quantum corrections cancel exactly between the boson and
ghost fields (a characteristic feature of supersymmetry), and the ensemble
of dyons is basically governed by a classical field theory.

To find the ground state we examine the fields’ potential energy being
−4πfµm∂F/∂wm which we prefer to write restoring νm = µm+1 − µm and
F as

P = −4πfV
∑

m

νm ewm−wm+1 (27)

(the volume factor arises for constant fields wm). One has first to find the
stationary point in wm for a given set of νm’s. It leads to the equations

∂P
∂wm

= 0 ,

whose solution is

ew1−w2 =
(ν1ν2ν3 . . . νN )

1
N

ν1
, ew2−w3 =

(ν1ν2ν3 . . . νN )
1
N

ν2
, etc. (28)

Putting it back into Eq. (27) we obtain

P = −4πfV N(ν1ν2 . . . νN )
1
N , ν1 + ν2 + . . . + νN = 1 , (29)

which is exactly what one gets from a direct calculation of the partition
function, outlined in the previous section, see Eq. (19). The minimum is
achieved at the equidistant, confining value of the holonomy, see Eqs. (5),
(20). Using field-theoretic methods, we have also proven that the result is
exact, as all potential quantum corrections cancel. It is in line with the exact
cancelation of the Coulomb interactions in the determinant.

Given this cancelation, the key finding — that the dyon-induced free
energy has the minimum at the confining value of holonomy — is trivial. If
all Coulomb interactions cancel after integration over dyons’ positions, the
weight of a many-dyon configuration is the same as if they were infinitely
dilute (although they are not). Then the weight, what concerns the holon-
omy, is proportional to the product of diagonal matrix elements of G in
the dilute limit, that is to the normalization integrals for dyon zero modes.
These are nothing but the field strengths Fµν of individual dyons, hence the
normalization is proportional to the product of the dyon actions ∼ νm where
νm = µm+1 − µm and νN = µ1 + 1 − µN such that ν1 + ν2 + . . . + νN = 1.
The sum of all N kinds of dyons’ actions is fixed and equal to the instanton
action, however, it is the product of actions that defines the weight. The
product is maximal when all actions are equal, hence the equidistant or con-
fining µ’s are statistically preferred. Thus, the average Polyakov line is zero,
〈TrL〉 = 0.
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10. Heavy quark potential

The field-theoretic representation of the dyon ensemble enables one to
compute various Yang–Mills correlation functions in the semiclassical ap-
proximation. The key observables relevant to confinement are the correla-
tion function of two Polyakov lines (defining the heavy quark potential), and
the average of large Wilson loops. A detailed calculation of these quantities
is performed in Ref. [2]; here we only present the results and discuss the
meaning.

10.1. N -ality and k-strings

From the viewpoint of confinement, all irreducible representations of the
SU(N) group fall into N classes: those that appear in the direct product of
any number of adjoint representations, and those that appear in the direct
product of any number of adjoint representations with the irreducible repre-
sentation being the rank-k antisymmetric tensor, k = 1, . . . , N−1. “N -ality”
is said to be zero in the first case and equal to k in the second. N -ality-zero
representations transform trivially under the center of the group ZN ; the
rest acquire a phase 2πk/N .

One expects that there is no asymptotic linear potential between static
color sources in the adjoint representation as such sources are screened by
gluons. If a representation is found in a direct product of some number
of adjoint representations and a rank-k antisymmetric representation, the
adjoint ones “cancel out” as they can be all screened by an appropriate
number of gluons. Therefore, from the confinement viewpoint all N -ality
= k representations are equivalent and there are only N − 1 string tensions
σk,N being the coefficients in the asymptotic linear potential for sources in
the antisymmetric rank-k representation. They are called “k-strings”. The
representation dimension is dk,N = N !/(k!(N − k)!) and the eigenvalue of
the quadratic Casimir operator is Ck,N = (N + 1)/(2N ) k(N − k).

The value k = 1 corresponds to the fundamental representation whereas
k = N − 1 corresponds to the representation conjugate to the fundamental
[quarks and anti-quarks]. In general, the rank-(N − k) antisymmetric rep-
resentation is conjugate to the rank-k one; it has the same dimension and
the same string tension, σk,N = σN−k,N . Therefore, for odd N all string
tensions appear in equal pairs; for even N , apart from pairs, there is one
privileged representation with k = N/2 which has no pair and is real. The
total number of different string tensions is thus [N/2].

The behavior of σk,N as function of k and N is an important issue
as it discriminates between various confinement mechanisms. On general
N -counting grounds one can only infer that at large N and k≪N , σk,N/σ1,N

= (k/N)(1 + O(1/N2)). Important, there should be no O(N−1) correc-
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tion [27]. A popular version called “Casimir scaling”, according to which the
string tension is proportional to the Casimir operator for a given represen-
tation (it stems from an idea that confinement is somehow related to the
modification of a one-gluon exchange at large distances), does not satisfy
this restriction.

10.2. Correlation function of Polyakov lines

To find the potential energy Vk,N of static “quark” and “antiquark” trans-
forming according to the antisymmetric rank-k representation, one has to
consider the correlation of Polyakov lines in the appropriate representation:

〈

TrLk,N(z1) TrL†
k,N(z2)

〉

= const. exp

(

−Vk,N(z1 − z2)

T

)

. (30)

Far away from dyons’ cores the field is Abelian and in the field-theoretic
language of Eq. (22) is given by Eq. (24). Therefore, the Polyakov line in
the fundamental representation is

TrL(z) =

N
∑

m=1

Zm , Zm = exp

(

2πiµm − i

2
vm(z)

)

. (31)

In the general antisymmetric rank-k representation

TrLk,N (z) =
N
∑

m1<m2<...<mk

Zm1Zm2 . . . Zmk
, (32)

where cyclic summation from 1 to N is assumed.
The average (30) can be computed from the quantum field theory (22).

Inserting the two Polyakov lines (32) into Eq. (22) we observe that the
Abelian electric potential vm enters linearly in the exponent as before.
Therefore, it can be integrated out, leading to a δ-function for the dual
field wm, which is now shifted by the source (cf. Eq. (25)):
∫

Dvm −→
∏

m

δ

(

− T

4π
∂2wm + f

∂F
∂wm

− i

2
δ(x−z1)(δmm1 + . . .+ δmmk

)

+
i

2
δ(x−z2)(δmn1 + . . . + δmnk

)

)

. (33)

One has to find the dual field wm(x) nullifying the argument of this
δ-function, plug it into the action

exp

(∫

dx
4πf

N
F(w)

)

, (34)
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and sum over all sets {m1 < m2 < . . . < mk}, {n1 < n2 < . . . < nk} with
the weight exp (2πi(m1 + . . .+mk − n1 − . . .− nk)/N). The Jacobian from
resolving the δ-function again cancels exactly with the determinant aris-
ing from ghosts. Therefore, the calculation of the correlator (30), sketched
above, is exact.

At large separations between the sources |z1−z2|, the fields wm resolving
the δ-function are small and one can expand the Toda chain:

F(w) =
∑

m

ewm−wm+1 ≈ N +
1

2
wm Mmnwn ,

∂F
∂wm

≈ Mmn wn , (35)

where

M =











2 −1 0 . . . 0 −1
−1 2 −1 . . . 0 0
0 −1 2 −1 . . . 0
. . . . . . . . . . . . . . . . . .
−1 0 0 . . . −1 2











. (36)

As apparent from Eq. (35), the eigenvalues of M determine the spectrum
of the dual fields wm. There is one zero eigenvalue which decouples from
everywhere, and N − 1 nonzero eigenvalues

M(k) =

(

2 sin
πk

N

)2

, k = 1, . . . , N − 1 . (37)

Certain orthogonality relation imposes the selection rule: the asymptotics of
the correlation function of two Polyakov lines in the antisymmetric rank-k
representation is determined by precisely the kth eigenvalue. We obtain [2]

〈

TrLk,N(z1) TrL†
k,N(z2)

〉

z12→∞
= const. exp

(

−|z1 − z2|M
√

M(k)
)

,

(38)
where M is the “dual photon” mass,

M2 =
4πf

T
=

16π2Λ4

g4T 2
= O(N2). (39)

Comparing it with the definition of the heavy quark potential (30) we find
that there is an asymptotically linear potential between static “quarks” in
any N -ality nonzero representation, with the k-string tension

σk,N = MT
√

M(k) = 2MT sin
πk

N
=
Λ2

λ

N

π
sin

πk

N
. (40)
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This is the so-called “sine regime”: it has been found before in certain su-
persymmetric theories [28]. Lattice simulations [29] support this regime,
whereas another lattice study [30] gives somewhat smaller values but within
two standard deviations from the values following from Eq. (40). For a gen-
eral discussion of the sine regime for k-strings, which is favored from many
viewpoints, see [27].

We see that at large N and k ≪ N , σk,N/σ1,N = (k/N)(1+O(1/N2)), as
it should be on general grounds, and that all k-string tensions have a finite
limit at zero temperature.

11. Area law for large Wilson loops

When dealing with the ensemble of dyons, it is convenient to use a gauge
where A4 is diagonal (i.e. Abelian). This necessarily implies Dirac string
singularities sticking from dyons, which are however gauge artifacts as they
do not carry any energy. Moreover, the Dirac strings’ directions are also
subject to the freedom of the gauge choice. For example, one can choose
the gauge in which N dyons belonging to a neutral cluster are connected by
Dirac strings. This choice is, however, not convenient for the ensemble as
dyons have to loose their “memory” to what particular instanton they belong
to. The natural gauge is where all Dirac strings of all dyons are directed to
infinity along some axis, e.g. along the z axis. The dyons’ field in this gauge
is given explicitly in Ref. [8] (for the SU(2) group).

In this gauge, the magnetic field of dyons beyond their cores is Abelian
and is a superposition of the Abelian fields of individual dyons. For large
Wilson loops we are interested in, it is this superposition field of a large
number of dyons that contributes most as they have a slowly decreasing
1/|x−xi| asymptotics, hence the use of the field outside the cores is justified.
Owing to self-duality,

[Bi(x)]mn = [∂iA4(x)]mn = −T
2
δmn ∂ivm(x) , (41)

cf. Eq. (24). Since Ai is Abelian beyond the cores, one can use the Stokes
theorem for the spatial Wilson loop:

W ≡TrP exp i

∮

Aidx
i =Tr exp i

∫

Bi d
2σi =

∑

m

exp

(

−iT
2

∫

d2σi∂ivm

)

.

(42)
Eq. (42) may look contradictory as we first use Bi = curlAi and then Bi =
∂iA4. Actually there is no contradiction as the last equation is true up to
Dirac string singularities which carry away the magnetic flux. If the Dirac
string pierces the surface spanning the loop it gives a quantized contribution
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exp(2πi × integer) = 1; one can also use the gauge freedom to direct Dirac
strings parallel to the loop surface in which case there is no contribution
from the Dirac strings at all.

Let us take a flat Wilson loop lying in the (xy) plane at z = 0. Then
Eq. (42) is continued as

W =
∑

m

exp






−iT

2

∫

x,y∈Area

d3x ∂zvmδ(z)







=
∑

m

exp






i
T

2

∫

x,y∈Area

d3x vm ∂zδ(z)






. (43)

It means that the average of the Wilson loop in the dyons ensemble is given
by the partition function (22) with the source

∑

m

exp

(

i
T

2

∫

d3x vm
dδ(z)

dz
θ(x, y ∈ Area)

)

,

where θ(x, y ∈ Area) is a step function equal to unity if x, y belong to the
area inside the loop and equal to zero otherwise. As in the case of the
Polyakov lines the presence of the Wilson loop shifts the argument of the
δ-function arising from the integration over the vm variables, and the average
Wilson loop in the fundamental representation is given by the equation

〈W 〉 =
∑

m1

∫

Dwm exp

(
∫

dx
4πf

N
F(w)

)

det

(

− T

4π
∂2δmn + f

∂2F
∂wm∂wn

)

×
∏

m

δ

(

−T
4π
∂2wm+f

∂F
∂wm

+
iT

2
δmm1

dδ(z)

dz
θ(x, y ∈ Area)

)

. (44)

Therefore, one has to solve the non-linear equations on wm’s with a source
along the surface of the loop

−∂2wm +M2
(

ewm−wm+1 − ewm−1−wm
)

= −2πi δmm1

dδ(z)

dz
θ(x, y ∈ Area) ,

(45)
for all m1, plug it into the action (4πf/N)F(w), and sum over m1. In order
to evaluate the average of the Wilson loop in a general antisymmetric rank-k
representation, one has to take the source in Eq. (45) as −2πi δ′(z) (δmm1+
. . . + δmmk

) and sum over m1<. . .<mk from 1 to N , see Eq. (32). Again,
the ghost determinant cancels exactly the Jacobian from the fluctuations of
wm about the solution, therefore the classical-field calculation is exact.
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Contrary to the case of the Polyakov lines, one cannot, generally speak-
ing, linearize Eq. (45) in wm but has to solve the non-linear equations as they
are. The Toda equations (45) with a δ′(z) source in the r.h.s. define “pinned
soliton” solutions wm(z) that are 1d functions in the direction transverse to
the surface spanning the Wilson loop but do not depend on the coordinates
x, y provided they are taken inside the loop. Beyond that surface wm = 0.
Along the perimeter of the loop, wm interpolate between the soliton and
zero. For large areas, the action (34) is, therefore, proportional to the area
of the surface spanning the loop, which gives the famous area law for the
average Wilson loop. The coefficient in the area law, the “magnetic” string
tension, is found from integrating the action on the solution wm(z) in the z
direction.

The exact solutions of Eq. (45) for any N and any representation k have
been found in Ref. [2], and the resulting “magnetic” string tension turns out
to be

σk,N =
Λ2

λ

N

π
sin

πk

N
, (46)

which coincides with the “electric” string tension (40) found from the corre-
lators of the Polyakov lines, for all k-strings!

Several comments are in order here.

• The “electric” and “magnetic” string tensions should coincide only in
the limit T → 0 where the Euclidean O(4) symmetry is restored. Both
calculations have been in fact performed in that limit as we have ig-
nored the temperature-dependent perturbative potential (7). If it is
included, the “electric” and “magnetic” string tensions split.

• Despite that the theory (22) is 3-dimensional, with the temperature
entering just as a parameter in the Lagrangian, it “knows” about the
restoration of Euclidean O(4) symmetry at T → 0.

• The “electric” and “magnetic” string tensions are technically obtained
in very different ways: the first is related to the mass of the elementary
excitation of the dual fields wm, whereas the latter is related to the
mass of the dual field soliton.

12. Cancelation of gluons in the confinement phase

To prove confinement, it is insufficient to demonstrate the area law for
large Wilson loops and the zero average for the Polyakov line: it must be
shown that there are no massless gluons left in the spectrum. We give an
argument that this indeed happens in the dyon vacuum.
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A manifestation of massless gluons in perturbation theory is the Stefan–
Boltzmann law for the free energy:

−T
V

logZSB =
FSB

V
= −π

2

45
T 4 (N2 − 1) . (47)

It is proportional to the number of gluons N2 − 1 and has the T 4 behavior
characteristic of massless particles. In the confinement phase, neither is
permissible: If only glueballs are left in the spectrum the free energy must
be O(N0) and the temperature dependence must be very weak until T ≈ Tc

where it abruptly rises owing to the excitation of many glueballs.
As explained in Section 8, the ensemble of dyons has a nonperturbative

free energy
Fdyon

V
= −N2

2π2

Λ4

λ2
. (48)

It is O(N2) but temperature-independent. We have doubled Fmin from
Eq. (21) keeping in mind that there are also anti-dyons and assuming that
their interactions with dyons is not as strong as the interactions between
dyons and anti-dyons separately, as induced by the determinant measure
(17), therefore treating dyons and anti-dyons as two independent “liquids”.
(By the same logic, the string tension (40) has to be multiplied by

√
2 as

due to anti-dyons.)
Dyons force the system to have the “most nontrivial” holonomy (5). For

that holonomy, the perturbative potential energy (7) is at its maximum equal
to

Fpert, max

V
=
π2

45
T 4

(

N2 − 1

N2

)

. (49)

The full free energy is the sum of the three terms above.
We see that the leading O(N2) term in the Stefan–Boltzmann law is

canceled by the potential energy precisely at the confining holonomy point
and nowhere else! In fact it seems to be the only way how O(N2) massless
gluons can be canceled out of the free energy, and the main question shifts to
why does the system prefer the “most nontrivial” holonomy. Dyons answer
that question.

13. Deconfinement phase transition

As the temperature rises, the perturbative free energy grows as T 4 and
eventually it overcomes the negative nonperturbative free energy (48). At
this point, the trivial holonomy for which both the perturbative and non-
perturbative free energy are zero, becomes favorable. Therefore, an estimate
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of the critical deconfinement temperature comes from equating the sum of
Eq. (48) and Eq. (49) to zero, which gives

T 4
c =

45

2π4

N4

N4 − 1

Λ4

λ2
. (50)

As expected, it is stable in N . A more robust quantity, both from the
theoretical and lattice viewpoints, is the ratio Tc/

√
σ since in this ratio the

poorly known parameters Λ and λ cancel out:

Tc√
σ

=

(

45

4π4

π2N2

(N4 − 1) sin2 π
N

) 1
4

N→∞−→ 1

π

(

45

4

) 1
4

+ O
(

1

N2

)

. (51)

In Table I, we compare the values from Eq. (51) to those measured in
lattice simulations of the pure SU(N) gauge theories [31]; there is a surpris-
ingly good agreement. A detailed study of the thermodynamics of the phase
transition will be published elsewhere.

TABLE I

SU(3) SU(4) SU(6) SU(8)

Tc/
√
σ, theory 0.6430 0.6150 0.5967 0.5906

Tc/
√
σ, lattice 0.6462(30) 0.6344(81) 0.6101(51) 0.5928(107)

14. Relation to other suggestions to explain confinement

Several mechanisms of confinement have been suggested in the past. The
most popular are

• condensation of monopoles, or the dual Meissner effect [32, 33],

• proliferation of center vortices [32, 34], see a modern overview [35].

These two mechanisms and in particular lattice evidence supporting them
have been reviewed by Greensite [35] and we are not going to repeat it
here. What is important, both monopoles and vortices are identified on a
lattice by fixing the gauge — choosing the “maximally Abelian” gauge in
the first case and the “maximally center” gauge in the second. If this gauge-
fixing procedure is applied to the dyon vacuum of the present paper, the
maximally Abelian gauge would probably reveal lattice monopoles where
dyons are placed, and a subsequent application of the maximally center
gauge would probably reveal center vortices which would be nothing but the
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phantom Dirac strings connecting dyons. Therefore, lattice findings that
“there is no confinement without Abelian monopoles” and that “there is no
confinement without center vortices” is presumably in no contradiction with
the vacuum being formed by dyons. Moreover, recently there have been
direct observations of dyons on the lattice by the Humboldt Universität —
ITEP group, see [36] and further references therein.

Some time ago we have observed that standard instantons are also capa-
ble of yielding confinement, provided the instanton size distribution falls off
as 1/ρ3 at large sizes ρ [37]. This regime implies, however, that large-size in-
stantons inevitably overlap, since in 4D the packing fraction is proportional
to the fourth moment of the size distribution ρ4 which is divergent. There-
fore, the usual instantons’ “center-size-orientation” parameterization being
all right for dilute systems is inapplicable for the confinement purposes. One
needs a parametrization of the collective instantons’ coordinates that is as
good for overlapping solutions as it is for dilute ones.

In an analogous 2D CPN−1 model also possessing instantons such a pa-
rameterization has long been known: instantons there are parameterized by
the positions of N kinds of “instanton quarks”. The measure of the moduli
space of multi-instantons is fortunately known exactly [38] and is given by
a holomorphic function of the instanton quarks’ coordinates. The measure
is invariant under permutation of the instanton quarks (they should not
‘know’ what instanton they belong to) and is perfectly valid for overlapping
instantons, as well as for dilute ones. In the latter case the measure becomes
the product of instanton “center-size-orientation” measures [39].

In the 4D YM theory a similar parameterization of multi-instantons has
long been sought, starting from the pioneering work of Callan, Dashen and
Gross who suggested “merons” as instanton constituents [40], but that did
not work as merons had a divergent action. Zhitnitsky [41], Petrov and my-
self put much effort in identifying “instanton quarks” for the YM solutions
but real progress has been achieved in constructing the KvBLL instantons
[9, 10] whose constituents have been found to be the BPS monopoles, or
dyons. The price is that one is obliged to take nonzero temperatures, how-
ever if one is interested in the zero-temperature case, T can be considered
as an infrared regulator which is safe to put to zero at the end, if needed.

The measure of the multi-instanton space (17) is now written in terms
of the coordinates of the constituent dyons. The metric is hyper-Kähler
(which is the 4D analogue of holomorphy in 2D), the measure is invariant
under permutation of dyons (they should not “know” what instanton they
belong to) and is presumably valid for overlapping instantons, as well as
for dilute ones. In the latter case the measure becomes the product of the
instanton “center-size-orientation” measures [20]. Therefore, it seems to be
the solution of a long-standing problem.
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Two steps in modernizing the semi-classical “instanton liquid” model [6]
are critical in getting confinement:

• generalizing instantons in such a way that they can have arbitrary
holonomy, and allowing nontrivial holonomy, despite that in perturba-
tion theory it is forbidden,

• writing the quantum weight of instantons with nontrivial holonomy
through coordinates of constituent dyons, such that it is applicable for
overlapping instantons.

What happens, can be summarized as follows:

• The ensemble of dyons favors dynamically the “most nontrivial” or
confining value of the holonomy. This is almost clear, given that the
weight is proportional to the product of individual actions of N kinds
of dyons.

• Dyons form a sort of Coulomb plasma (but an exactly solvable variant
of it) with an appearance of the Debye mass both for “electric” and
“magnetic” (dual) photons. The first give rise to the exponential fall-off
of the correlation of two Polyakov lines, i.e. to the linear heavy-quark
potential, the second yield the area law for spatial Wilson loops.

• N2 − 1 massless gluons cancel out from the free energy, and only
massive (string?) excitations are left.

We do not see the quantum-mechanical condensation of monopoles; it is
hence a new mechanism of confinement.

15. Why does it work and what should be done next?

The reason why a semiclassical approximation works well for strong in-
teractions (where all dimensionless quantities are, generally speaking, of the
order of unity) is not altogether clear. A possible justification has been out-
lined in Section 1: After UV renormalization is performed about the classical
saddle points and the scale parameter Λ appears as the result of the dimen-
sional transmutation, further quantum corrections to the saddle point is
a series in the running ’t Hooft coupling λ whose argument is typically the
largest scale in the theory, in this case max(T, n1/4) where n is the 4D density
of the dyons. An estimate shows that the running λ is between 1/4 at zero
temperature and 1/7 or less at critical temperature. Therefore, although
these numbers are “of the order of unity”, in practical terms they indicate
that high order loop corrections are not too large. Let us recall that quite an
accurate computation of anomalous dimensions in critical phenomena from
the ǫ-expansion by Fisher and Wilson [42] is based on truncating the Taylor
expansion in ǫ at the first couple of terms, where ǫ=1 or sometimes 2!1

1 I take the opportunity to thank Michael Fisher and Valery Pokrovsky for a discussion
of this numerical miracle.
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Unfortunately, approximations made in Ref. [2] and reproduced above
are not limited to higher loop corrections. We have (i) ignored dyon inter-
actions induced by the small oscillation determinant over nonzero modes,
except the potential energy as function of the holonomy, (ii) ignored the in-
teractions of dyons of different duality, treating them as two noninteracting
“liquids”, (iii) conjectured a simple form of the dyon measure which may be
incorrect when two same-kind dyons come close. Although certain justifica-
tion for these approximations can be put forward (see above and Ref. [2])
it is desirable not to use them at all, and that may be possible.

These mathematical problems are of course in the line, as well as fur-
ther physical problems, probably the most urgent being switching in light
dynamical quarks into the dyon vacuum, that is moving into the realm of
the real-world QCD. The main problem there is the spontaneous breaking
of chiral symmetry. Although we do not think that its mechanism will differ
dramatically from that found in Ref. [43], as due to the delocalization of the
near-zero fermion modes, it would be very interesting to see how the ensuing
effective chiral Lagrangian “knows” about the confinement.

I would like to thank Nick Dorey for helpful conversations during the
School in Zakopane, and its organizers, especially Michal Praszałowicz, for
most kind hospitality. Dziękuję bardzo! Almost continuous discussions with
Victor Petrov, the co-author of Ref. [2] on which these notes are based, are
gratefully acknowledged. This work has been supported in part by Russian
Government grants RFBR-06-02-16786 and RSGSS-5788.2006.2.
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