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Renormalization group procedure suggests that the low-energy behav-
ior of effective coupling constant in asymptotically free Hamiltonians is
connected with the existence of bound states and depends on how the in-
teractions responsible for the binding are included in the renormalization
group equations.
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1. Introduction

Using a very simple model with asymptotic freedom (or limit cycle) and
bound states, we explain a renormalization group (RG) procedure for Hamil-
tonians, including the result that an effective interaction strength grows at
low energies. Instead of integrating out high-energy degrees of freedom,
the procedure explained here is carried out using similarity transformations.
The magnitude of increase of the interaction strength (a coupling constant
in an effective Hamiltonian) at low energies is related in the model to the
existence of a bound state and a degree to which the interaction responsi-
ble for the effect of binding is included in the generator of the similarity
transformation. Most briefly, the more interaction in the generator the less
increase in the coupling constant. In addition, since a tiny and quite generic
modification of the simple model changes the asymptotically free behavior
into a limit cycle of a large period, the model shows that an apparently
asymptotically free behavior in a considered range of scales may actually be
a part of a cycle with a period much larger than the considered range. In
the limit cycle case, the model illustrates how a large set of bound states
can influence behavior of the effective coupling constant at low energies,
also depending on the generator used for the similarity transformation. Key
references are [1] and [2].
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How the renormalization group findings concerning bound states may be
related to the AdS/CFT correspondence [3,4], including the RG interpreta-
tion proposed by Polyakov [5, 6], is not yet established. On the other hand,
the RG procedure discussed here is particularly useful in the front form of
Hamiltonian dynamics [7, 8]. This form of dynamics is precisely the one in
which recent holographic models have been proposed for calculating masses
and wave functions of bound states of quarks and gluons [9, 10].

Sec. 2 defines the model Hamiltonian. Subsequent sections introduce
relevant concepts on the basis of elementary calculations in the model. Ul-
traviolet divergences are identified in Sec. 3. Sec. 4 reviews a standard RG
procedure. The review includes: derivation of the result that a coupling
constant increases at low energies (without explicit discussion of scattering
processes or Green’s functions); demonstration of asymptotically free behav-
ior of the coupling constant; explanation of how counterterms are calculated;
and identification of difficulties associated with the increase of the coupling
constant at low energies. Sec. 5 introduces the similarity RG (SRG) proce-
dure. A simple class of generators of similarity transformations is introduced
in Sec. 5.1. Solutions for effective Hamiltonians in the SRG procedure with
different generators, are described in Sec. 6. The case of asymptotic freedom
is discussed in Sec. 6.1, and the case of limit cycle, related to asymptotic
freedom, is discussed in Sec. 6.2. Sec. 7 concludes the lecture by a sum-
mary of the connection found in the model between the increase of effective
interaction strength at small energies and existence of bound states.

A set of brief appendices is added in order to point out analogies be-
tween the simple model and quantum field theory (QFT), such as QCD. The
appendices discuss: singular, δ-function potentials in effective Schrödinger
equations (Sec. 8.1), theory of effective particles that aims at explaining the
origin of the constituent quark model and binding of partons (Sec. 8.2), and
some questions concerning a possible connection between the SRG procedure
and AdS/CFT correspondence (Sec. 8.3).

2. Model

In order to understand the mechanism that causes an asymptotically free
interaction to rapidly increase at small energies, a theoretical feature often
suggested to be associated with confinement, we need a precise definition
of what is meant by the effective coupling constant. In theories as complex
as QCD, the concept of effective coupling constant at low energies is not
simple. Therefore, it seems appropriate to first define the concept using
a simple model and see what happens there before one plunges into the
complexity of QCD.
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The well-known asymptotically free coupling constant depends on the en-
ergy scale logarithmically (it is proportional to the inverse of the logarithm
of the energy). The energy is actually a kinetic one, not involving interac-
tions in any significant way, and the scale should be conceptually associated
with momentum, a kinematical variable of quantum mechanics rather than
a dynamical one. Thus, when constructing a simple model Hamiltonian in
the generic form of

H = H0 +HI , (1)

one considers H0 a free (kinetic) energy and HI an interaction. An alterna-
tive way of thinking is that all eigenvalues and eigenstates of H0 are known
and provide a basis for describing what happens due to HI. In both ways, for
studies of logarithmic effects of asymptotic freedom, it is useful to assume
that the spectrum of H0 is not degenerate and has the form

H0|n〉 = En|n〉 , En = µ bn , b > 1 , (2)

where µ is a unit of energy. For convenience, µ is set to 1 and omitted from
further consideration (all numbers that refer to energy need to be multiplied
by µ in order to obtain the actual quantity). The utility of using powers
of b is that successive momentum scales, or eigenvalues of H0, are separated
by a constant on a logarithmic scale, the constant being ln b. Therefore,
a small number of states, just one per momentum (or energy measured
by H0) scale, will be sufficient to track logarithmic effects associated with
asymptotic freedom and, at the same time, control effects of binding. Once
the eigenstates of H0 are normalized, 〈m|n〉 = δmn, the matrix elements
of H0 in the model are

〈m|H0|n〉 = Emδmn . (3)

The interaction Hamiltonian HI is defined in the model by its matrix ele-
ments, using assumption that these elements should be factorized,
i.e., HImn = HmHn, for the purpose of having very simple exact solutions
to the eigenvalue problem for H. Thus, the factor Hn should have dimen-
sion of square root of energy. The simplest possibility is Hn ∼

√
En. The

proportionality is reduced to a dimensionless number, and one can write

〈m|HI|n〉 = −g
√

Em

√

En , (4)

where g determines the strength of the interaction. It is called coupling con-
stant, in analogy with the standard nomenclature in QFT. The negative sign
is chosen so that there exists a bound state for a sufficiently large positive g.
By definition, the bound state corresponds to a negative eigenvalue of H.
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In summary, matrix elements of the model Hamiltonian are

Hmn = 〈m|H|n〉 = Emδmn − g
√

Em

√

En . (5)

Note that it will have to be clarified what the words “sufficiently large g”
are supposed to mean, because the model Hamiltonian produces divergences
(infinities) no matter how small the number g is.

3. Ultraviolet divergences

Consider first very small numbers g and the intuition that eigenvalues
of H should be nearly equal to the eigenvalues of H0. For example, first-

order perturbation theory produces a correction ∆E
(1)
m to the energy Em of

the form

∆E(1)
m = 〈m|HI|m〉 = −g Em . (6)

When g is small, the correction is small; it is just a fraction g of the energy
being corrected. (This situation resembles what happens in the Schrödinger
equation for atoms or positronium when one derives corrections to the
Coulomb potential from QED and calculates their influence on energy levels
in first-order perturbation theory, see Appendix, Sec. 8.1.)

Consider now the second-order correction to the same energy

∆E(2)
m =

∑

k 6=m

|〈m|HI|k〉|2
Em − Ek

= g2Em

∑

k 6=m

Ek

Em − Ek
. (7)

Since Ek = bk, a term number k contributes 1/(bm−k − 1) in the sum.
Thus, terms with k < m contribute a finite sum of a nearly geometric series
(with quotient 1/b), which is not sensitive to any lower bound on k in the
sum, say M , if bM ≪ bm. However, a lower bound is needed to define
a Hamiltonian whose matrix has a finite size. In order to focus attention on
Em ∼ 1, one can set the lower bound on k to be a large negative integer
M . As a result, all eigenvalues of H0 included in the model are from now
on assumed to satisfy the condition Ek ≥ bM , and bM ≪ 1.

In contrast, terms with k ≫ m contribute each −1. For b ≫ 1, the
second-order correction is proportional to the number of basis states with
energies (eigenvalues of H0) greater than Em. In order to obtain a finite
answer, one must limit this number. For example, one can limit from above
the range of summation over k by certain large positive integer N . Then,
one has to understand what happens when N is very large. Imposing a limit
such as N is called ultraviolet regularization.
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Including the ultraviolet regularization, the result of Eq. (7) is approxi-
mated by the formula (the larger b, the better the approximation)

∆E(2)
m = −g2Em (N −m) . (8)

This formula shows that the correction tends to −∞ when one attempts
to send the ultraviolet cutoff on energies, Λ = bN , to infinity. Since N =
lnΛ/ ln b, the second-order correction is also approximately given by the
formula

∆E(2)
m = −g

2Em

ln b
ln

Λ

Em
. (9)

This result explains why the correction is called logarithmically divergent
in the ultraviolet. A direct comparison of Eqs. (8) and (9) illustrates that
the ultraviolet logarithmic divergence results from all different energy scales
contributing equally to the eigenvalues. This conclusion is not limited to
perturbation theory.

Consider the eigenvalue problem for the matrix [Hmn],

N
∑

n=M

Hmnψn = Eψm , (10)

whose subscripts are limited after the regularization, M ≤ m,n ≤ N . Be-
cause the interaction is factorized, one has

ψm =
g
√
Em

Em − E

N
∑

n=M

√

Enψn , (11)

and the sum in Eq. (11) is just a number (does not depend on m), say c.
Substituting this solution for the wave function into Eq. (10), one obtains

Em
cg
√
Em

Em − E
− g
√

Em

N
∑

n=M

cgEn

En − E
= E

cg
√
Em

Em − E
(12)

or

1 + g
N
∑

n=M

En

E − En
= 0 . (13)

As far as the high-energy part is concerned, the sum in this non-perturbative
eigenvalue condition is of the same type as in the perturbative Eq. (7), the
only change being that Em with one particular value of m is now replaced by
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the unknown eigenvalue E. This does not change the fact that the sum can
be approximated by − ln (Λ/|E|). The result is that the eigenvalue condition
has no meaning for finite E when Λ→ ∞.

More specifically, consider a possibility that a bound state exists, with
a negative eigenvalue E = −EB. Replace the sum over n by an integral with
measure dn = dEn/(En ln b), just to get an idea what happens. One has

1 − g

ln b

Λ
∫

bM

dE

EB + E
= 0 (14)

or

EB =
Λ− bMe

ln b
g

e
ln b
g − 1

. (15)

When one takes the limit of Λ→ ∞ for fixed g, the binding energy diverges
linearly with Λ.

One can also observe that the square of the matrix HI with large N and
M is equal to (gbΛ/(1−b))HI, which means that it diverges in the ultraviolet
limit of Λ → ∞ for fixed g. This means that all powers of the entire H are
ultraviolet divergent. In particular, the evolution operator U(t, 0) = e−iHt

does not exist in this limit.
Note that the divergences in Eqs. (8), (9), and (15), result from the

diverging number of degrees of freedom. Similar problems may occur in
classical statistical systems with a huge number of degrees of freedom if all
these degrees of freedom contribute significantly to observables [11].

4. Standard renormalization group procedure

Given the divergences, the task now is to figure out whether to keep
or discard the model that produces such diverging results when N grows.
Of course, one can keep N fixed and try to describe physics (in the simple
model, “physics” amounts to a set of eigenvalues and transition amplitudes).
But if N is expected (and hoped) to be very large (a desire a physicist has
when designing a fundamental theory), the divergences can only be removed
by making the coupling constant g vanishingly small, and fine tuned to the
value of Λ = bN . On the other hand, a good model is expected to capture
physics in a natural way, without worrying about very large numbers that by
no means are comparable to the scale of observables of immediate interest.
So, the trouble with the diverging model can be summarized as follows.

Initially (in the model, by assumption; in realistic theories, motivated
by experience gathered through observations and experiments), one is led to
believe that certain HI is a good candidate to consider. For example, in the
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model one may imagine that one measures transition rates between two
states, say |m1〉 and |m2〉, and that these rates can be described in first-order
perturbation theory by an interaction Hamiltonian with matrix elements

[

〈m2|HI|m2〉, 〈m2|HI|m1〉
〈m1|HI|m2〉, 〈m1|HI|m1〉

]

= −g
[

Em2
,

√

Em2
Em1

√

Em1
Em2

, Em1

]

.

(16)

One is then compelled to postulate that the whole matrix of HI has the form
given in Eq. (4). This way of thinking leads to divergences, as described in
the previous section, and the question what to do about them. It is clear now
that one does not want to abandon the proposed interaction entirely since
it does work for small g in the cases of interest (in the example, for a short-
time evolution of states built from |m1〉 and |m2〉) and exhibits appealing
symmetry. In fact, this way of thinking is used in building theories, by
extrapolation from known examples. An analogy in QFT is provided by
the gauge symmetry [12]. Thus, one needs to conceive a general way out of
the problem with divergences that are produced by naive extrapolation of
knowledge from a small set of matrix elements to a large set of them. The
large set is desired when one seeks a theory of presumably large range of
applicability and a lot of predictive power.

The basic idea described here (using the model) has been originally for-
mulated in Refs. [13,14]. The idea is to learn what happens when one starts
with some large N and tries to reduce the value of N to a smaller value, say
N1, and properly includes all effects due to states between N and N1. (This
is sometimes called “integrating out high-energy degrees of freedom.”) The
resulting Hamiltonian H(1), limited in energy by Λ1 = bN1 , will contain in-
formation about what has to be done in order to compensate for the presence
of the arbitrarily chosen cutoff Λ1. The step of reducing the size of a cutoff
can be repeated. One can reduce Λ1 to Λ2, Λ2 to Λ3, and so on. Such steps
are called RG transformations. When a transformation is applied K times,
a chain of Hamiltonians is obtained, including H,H(1), . . . ,H(K). Eventu-
ally, two things happen.

First, the relationship between H(K) and H(K+1) may become universal
in the sense that it no longer depends on all details of the initial H. For
example, if H(K) contains an interaction term of the form −g(K)

√
EmEn

and H(K+1) contains an interaction term of the form −g(K+1)
√
EmEn, the

relationship between g(K) and g(K+1) may be independent of the value of
the initial coupling constant g in H. Instead, a universal recursion is found
for the coupling constant when the cutoff is changed. (Such recursion may
include rescaling variables in order to compare successive Hamiltonians in
terms of functions of dimensionless variables in a fixed range, leading to
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anomalous dimensions.) We will see how the recursion emerges in the model
shortly. The model illustrates this way how the existence of a β-function
in QED [15] could be understood, and explained in Ref. [16] in the context
of strong interactions. This is also how universality in critical phenomena
could be explained in classical statistical mechanics [11].

Second, after many RG steps, one obtains Hamiltonians with running
cutoffs ΛK . Suppose that one reduces the cutoff in every RG step by a fac-
tor of b. Then ΛK = bN−K may be finite even when Λ is sent to infinity.
What is required is that the number of the RG steps, K, increases when
one increases N for fixed N − K. Since the finite cutoff ΛK can be cho-
sen arbitrarily and, by construction, eigenvalues smaller than ΛK for all K
considered do not depend on ΛK at all, one eventually obtains a family of
effective Hamiltonians, Hλ labeled by a finite cutoff parameter λ = ΛK .
Predictions that follow from Hλ do not depend on λ.

4.1. Gaussian step

It is time now to attempt the RG procedure described in the previous
section in the case of our model. We will see how lowering λ leads to increase
of a coupling constant and why this increase causes trouble.

There are essentially two interrelated tasks to accomplish. One is to
establish the Hamiltonian with the large cutoff N , so that the resulting
theory does not produce divergences (dependence of observables on N). The
other one is to evaluateHλ with a finite λ from the well-defined initialH with
a priori arbitrarily large N . The conceptual difficulty of the RG procedure
is that the first task is accomplished in the process of trying to complete the
second one, and in the second task, the result for Hλ is used to decide how
the initial H should be defined in order to make sure that matrix elements
of Hλ do not depend on Λ. The need for executing this process in a sequence
of successive approximations that can converge on a structure that one is
looking for, is the hardest aspect of the procedure to understand.

In the simple model, one can start with the eigenvalue problem

H|ψ〉 = E|ψ〉 , (17)

|ψ〉 =

N
∑

k=M

ψk|k〉 , (18)

in which the coefficients ψk (a wave function) satisfy the set of linear equa-
tions (10). One RG step is done by eliminating ψN from the remaining
N −M equations. Note that the initial number of equations is N −M + 1,
because there is one equation with E0 = 1, in addition to N equations cor-
responding to positive and −M equations corresponding to negative powers
of b.
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The eigenvalue problem is split into one equation for the highest energy
component and a set of equations for the remaining components:

ENψN +

N
∑

n=M

HINnψn = EψN , (19)

Emψm +

N
∑

n=M

HImnψn = Eψm , M ≤ m ≤ N − 1 . (20)

Eq. (19) produces

ψN = (E − EN −HINN )−1
N−1
∑

n=M

HINnψk , (21)

which is used in the remaining N−M equations to eliminate ψN from them.
In its essence, the RG step is Gaussian elimination of one equation in a set
of linear equations. The set involves the unknown eigenvalue E. The result
of the first step is a set of equations with M ≤ m ≤ N − 1,

Emψm +
N−1
∑

n=M

HImn ψn +
N−1
∑

n=M

HImNHINn

E − EN −HINN
ψn = Eψm . (22)

Therefore, the new interaction “Hamiltonian” in this one-step smaller set of
equations has the following matrix elements (M ≤ m,n ≤ N − 1):

H
(1)
Imn = HImn +

HImNHINn

E − EN −HINN
. (23)

The word “Hamiltonian” is used in quotation marks because the matrix ele-

ments of H
(1)
I depend on the unknown eigenvalue E. Nevertheless, Eq. (23)

is an exact result in the model. It guarantees that H(1) = H0 +H
(1)
I with

the cutoff Λ1 = bN−1 has the same eigenvalue E as the Hamiltonian H with

the cutoff Λ = bN has. On the other hand, the operator H
(1)
I is not fully

defined before one specifies how to find the eigenvalue it depends on. Some
consistency conditions would have to be imposed in a way that still allows
us finding the initial Hamiltonian and reliably calculate Hλ.

The situation simplifies considerably if one can limit the RG procedure
to eigenvalues E that are much smaller than a suitable finite cutoff λ one
wishes to reach. “Suitable finite cutoffs λ” in realistic theories are cutoffs
that are small enough so that one can solve the eigenvalue problem for Hλ

on a computer. This condition puts severe constraints on the size of λ in
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realistic theories, illustrated by, e.g., computational limitations of the lattice
gauge theory. One has to execute N−n relatively complex RG steps in order
to reduce the cutoff from a formally infinite Λ = bN to some finite λ and

obtain H
(N−n)
I in Hλ with λ = bn that is sufficiently small for a reliable

computation of the eigenvalues. Hλ still includes a large number of matrix
elements, on the order of (n−M + 1)2 times a potentially large number of
other degrees of freedom besides the size of momentum, such as the numbers
of virtual particles and their angular momenta, spins, colors, or flavors.

In order to see how the simplification mentioned above emerges for small
eigenvalues E, and how the simplification eventually ceases to be valid in
the case of asymptotically free Hamiltonians, one may step back to Eq. (23)
and check what happens in our model. Conclusions will not be limited to
the model case.

4.2. Asymptotic freedom in the model Hamiltonian

In the model, Eq. (23) reads

H
(1)
Imn = −g

√

EmEn +
(−g

√
EmEN ) (−g

√
ENEn

E − EN + gEN
)

= −
(

g − g2EN

E − EN + gEN

)

√

EmEn . (24)

It is clear that the interaction “Hamiltonian” H
(1)
I has the same structure of

matrix elements as HI but contains a new “coupling constant,” say g(1), that
depends on the eigenvalue E. g(1) is given by the expression in the bracket
in Eq. (24).

The simplification for cutoffs much larger than E becomes obvious when
one re-writes Eq. (24) as

g(1) = g − g2EN

E − EN + gEN
= g

1 − E/EN

1 − g − E/EN
. (25)

One can neglect the ratio E/EN provided that the eigenvalue E is small in
comparison to the energy EN = bN . With this simplification, Eq. (25) reads

g(1) =
g

1 − g
, (26)

and implies the following recursion in further RG steps

g(K) =
g(K−1)

1 − g(K−1)
, (27)
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for as long as EN−K ≫ |E| and 1− gK−1 ≫ |E|/EN−K+1. The recursion of
Eq. (27) is solved by

g(K) =
g

1 − gK
. (28)

Suppose one can solve the eigenvalue problem for H(K) = Hλ0
with λ0 =

bN−K and establish that the coupling constant g(λ0) = g(K) should have
some value g0 in order to reproduce some measured eigenvalue E0 ≪ λ0.
Eq. (28) says that

g0 =
gΛ

1 − gΛ

ln b lnΛ/λ0
. (29)

Eq. (29) allows one to calculate gΛ that needs to stand in the initial H with
the cutoff Λ to produce the same eigenvalue. The result is

gΛ =
g0

1 + g0

ln b lnΛ/λ0
. (30)

This means that the model is asymptotically free: the larger the cutoff Λ in
the initial H, the smaller the coupling constant gΛ in it. The most famous
analogy in QFT is found in Refs. [17, 18].

4.3. Calculation of counterterms

Since Eq. (30) has been obtained from an exact RG procedure under
the two conditions that |E0| ≪ λ0 and 1 − g0 ≫ |E0|/λ0, one may expect
that the replacement of g by gΛ given by Eq. (30) provides a model H with
all eigenvalues E that satisfy the same two conditions being also indepen-
dent of Λ. Thus, these eigenvalues are also expected to be common for all
Hamiltonians Hλ with λ ≥ λ0, i.e., they do not depend on the finite running
cutoff λ that limits the momentum range in Hλ.

The model calculation presented so far provides an example of how one
takes the first step in identifying the initial H. The point is that the matrix
elements of the initial H can be now written as

Hmn = Emδmn − g
√

Em

√

En + CTmn , (31)

CTmn = (g − gΛ)
√

Em

√

En , (32)

where the letters CT are chosen as an abbreviation for the word “countert-
erm”. The counterterm guarantees that small eigenvalues do not depend
on the ultraviolet cutoff Λ. The size of the coupling constant g that was
considered small in Sec. 3, can now be understood as actually concerning gΛ
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in the initial, regulated Hamiltonian that includes counterterms; a bound
state exists if gΛ is sufficiently large and this means different sizes of gΛ for
different values of Λ.

Note that the finite part of the counterterm, which amounts to the choice
of gλ at some value of λ, is fixed by the condition of matching one eigen-
value with experiment. This one condition by itself (fixing one parameter to
match one energy) would not guarantee that other eigenvalues are cutoff in-
dependent. But it does provide such guarantee when all matrix elements of
the CT (many numbers) are calculated in the RG procedure and fixing just
one value of the coupling constant properly determines the entire Hamilto-
nian matrix so that the low energy eigenvalues do not depend on the cutoff Λ
(and, by construction, also do not depend on the cutoff λ). One may expect
that other matrix structures than just

√
EmEn emerge in Hλ with small λ,

but these structures must cease to depend on Λ when Λ→ ∞ once gΛ is set
according to Eq. (30).

In more detail, the argument that other eigenvalues of Hλ0
that are

much smaller than λ0 will also be independent of the cutoff Λ once one
inserts in the initial H the counterterm defined in Eq. (32), is following.
Eq. (27) is valid and the same for eigenvalues that satisfy the conditions
|E| ≪ λ0 and 1 − g0 ≫ |E|/λ0. In fact, the exact way in which all matrix
elements of H(K=N−n)(E) in the simple model depend on the initial cutoff Λ
is determined by the dependence of g(K) on the sequence of ratios E/Λ,
bE/Λ, . . . , bN−nE/Λ = E/λ and the initial value of the coupling constant,
i.e., after inclusion of the counterterm, just gΛ. For as long as these ratios are
negligible, all matrix elements of “Hamiltonians” H(K)(E) do not actually
depend on the value of E and do not depend on the cutoff Λ. Therefore,
their eigenvalues are also independent of Λ. However, one cannot claim that
all their eigenvalues are the same because the number of eigenvalues depends
on the size of the cutoff (the smaller the cutoff the smaller the number of
eigenvalues). Only the eigenvalues much smaller than the smallest cutoff λ
in the recursion are the same and independent of Λ when calculated from
all Hamiltonians Hλ in which the coupling constant changes from one value
of λ to another according to the asymptotic freedom formula.

Additional steps in evaluation of counterterms would be required in order
to obtain corrections to the leading counterterm in Eq. (32) due to the ratios
E/ΛK differing from 0 in the RG recursion. Readers interested in such steps
may consult Ref. [19]. It is not necessary to discuss these additional steps
here in order to see the problem with increasing of gλ when λ decreases.

However, before proceeding to the issue of large coupling constant at
low energies (in the next section), it should be mentioned for readers used
to thinking about RG in terms of differential equations, that the reduction
of one running cutoff on momenta to another one that is smaller, can be
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made in infinitesimally small steps (in the case of continuous momentum
variables). The corresponding changes in the Hamiltonian matrix elements
are then described by differential equations.

4.4. Difficulty with gλ that grows at small λ

Consider Eq. (25) which implies the recursion

gλ/b(E) = gλ(E)
1 − E/λ

1 − gλ(E) − E/λ
. (33)

As discussed in the previous section, this recursion simplifies enormously
when on can disregard the ratio E/λ. And when one does, one obtains the
conclusion that gλ increases when λ decreases (this is equivalent to asymp-
totic freedom which says that gλ decreases when λ increases).

The increase of gλ toward small λ causes a major difficulty because the
ratio E/λ is compared with 1−gλ in the denominator in Eq. (33). When the
initial value of gλ at some large λ is small and gλ increases when λ decreases,
at some point the effective coupling constant approaches 1. At this point,
the ratio E/λ cannot be neglected no matter how small it is. In other words,
the entire procedure can no longer be based on simplifications that rely on
smallness of the eigenvalue in comparison to cutoff.

Not only the simplifications described in the previous section no longer
apply, but also the entire procedure becomes unstable because the small ratio
occurs in the denominator. The small denominator is reminiscent of small
energy denominators that occur in perturbation theory and cause infrared
singularities. However, the simple model shows that the problem is related
to the strength of interactions that are capable of canceling kinetic energy
terms and producing negative elements on the diagonal of the Hamiltonian
matrix. Such situation can occur when bound states are formed: attractive
(negative) interactions are larger than the kinetic energies. In order to con-
trol what happens when gλ approaches 1, a different RG procedure seems
required.

5. Similarity renormalization group procedure

In the standard RG procedure, one evaluates effective Hamiltonians Hλ,
with small, running cutoffs λ, as is illustrated in the simple model in the
previous sections. One finds counterterms in the initial Hamiltonian with
cutoff Λ by demanding that all matrix elements of the effective Hλ are inde-
pendent of Λ and by fixing their finite parts by comparison with experiment
(the comparison may include conditions of symmetry [20]). Then the ef-
fective Hamiltonians can in principle be calculated for sufficiently small λ



3408 S.D. Głazek

to carry out computations of their eigenvalues (or other observables) using
computers. Unfortunately, for feasibly small cutoffs, the effective coupling
constant in asymptotically free theories may be so large that naive expec-
tations based on asymptotic freedom formulae may be inadequate. An al-
ternative approach is offered by the similarity renormalization group (SRG)
procedure [21].

In the SRG procedure, one proceeds according to similar principles as
in the standard approach described in the previous sections. One also com-
pletes two interrelated tasks. In the one task, one finds counterterms. In the
other task, one evaluates effective Hamiltonians. The new idea is that one
does not “integrate out” any degrees of freedom. Instead, one changes the
basis states by rotating them in the Hilbert space. The rotation is designed
in such a way that it guarantees the new Hamiltonian Hλ to have vanishing
matrix elements between basis states if they differ in energy by more than
λ. This means that the matrix elements of Hλ that result from the second
task in the SRG procedure, are different from 0 only within an energy band
of width λ along the diagonal. The algebra of the procedure is designed
in such a way that one never encounters small energy denominators (the
differential version of SRG procedure has the same property). Moreover,
the SRG procedure allows for direct evaluation of matrix elements of Hλ

without knowing anything about eigenvalues. The reader will easily find all
required details in the original literature.

The SRG task of evaluating Hλ with small λ aims at evaluating a near-
diagonal Hamiltonian matrix in such a way that the calculation may be
carried out in perturbation theory with a small error that can decrease when
the order of the perturbative calculation increases (perturbative approach
is required in realistic theories due to their complexity that initially cannot
be handled in any other way). One may not apply perturbation theory to
complete diagonalization, because this would involve solving also for non-
perturbative features such as bound states. However, the SRG procedure
can produce a Hamiltonian matrix of a small width λ by “rotating out”
only those interactions that involve energy changes larger than λ and can be
treated in perturbation theory. The resulting Hλ must be diagonalized on
a computer. The smaller λ, the smaller the space of states required to find
the spectrum in the range of interest. But the smaller λ, the higher order of
perturbative SRG evolution required for accuracy. A compromise must be
found, and this is not easy in QCD (see Appendix, Sec. 8.2). But there is
also a hope that already first 4 orders of the calculation will be sufficient to
identify key operator structures in Hλ.

Of course, the SRG procedure renders the same CT in the model as the
one derived in Sec. 4.3, Eq. (32). Therefore, the initial Hamiltonian with
the huge cutoff Λ is given in the SRG also by Eq. (31),



Renormalization Group and Bound States 3409

HΛmn = Emδmn − gΛ

√

Em

√

En . (34)

The remaining discussion is focused on how one can evaluate Hλ using
SRG equations in the model [1]. Next sections will describe the outcome
of these calculations and what this outcome implies regarding the role of
bound states in evaluation of effective theories with asymptotic freedom, or
limit cycles. For completeness and reader’s convenience, a perturbative SRG
scheme that can be applied in evaluation of all Poincaré generators in QFT
and used for the purpose of deriving dynamics of effective constituent quarks
and gluons in QCD, is very briefly summarized in Appendix, Sec. 8.2.

5.1. Generators of the similarity transformations

The SRG procedure is used here in its differential version. Below, prime
denotes differentiation with respect to the parameter s = 1/λ2, chosen for
convenience. s increases from 0 to ∞ when λ decreases from ∞ to 0.

The effective Hamiltonians are generated by the formula

H ′
λ = [Tλ,Hλ] , (35)

and Tλ is called the generator. The initial condition is set at λ = ∞ (corre-
sponding to s = 0),

H∞mn = HΛmn , (36)

using Eq. (34). Since all matrices in the model calculations, except for H0,
are functions of λ, the subscript λ from now on will be omitted everywhere,
unless it is needed explicitly. The key point of the calculation is to choose the
generator T in a way that can shed some light on the increase of an effective
coupling constant gλ at small λ.

One choice of T originates in the beautiful flow equation proposed by
Wegner for Hamiltonian matrices in condensed matter physics [22–24].
A whole range of applications of Wegner’s and similar equations in many-
particle physics is reviewed in Ref. [25]. T in Wegner’s equation has the
form

T0 = [D,H] , (37)

where D denotes the diagonal part of the matrix H, or Dmn = Dmδmn,
where Dm = Hmm, with the remaining, off-diagonal part of matrix H being
Vmn = Hmn (1 − δmn). An alternative equation is obtained with the choice

T1 = [H0,H] , (38)
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which is employed in the SRG studies in nuclear physics [26–28]. The cal-
culation concerning gλ in asymptotically free theories (and limit cycle) that
is reviewed here [1] is done with

T = [G,H] , (39)

where

G = fH0 + (1 − f)D . (40)

For f = 0, one has G = D, in which the diagonal part of interactions is
fully included, and T = T0 of condensed matter physics. For f = 1, one
has G = H0, in which no interaction effects are included, and T = T1

of the nuclear studies. For intermediate values of f ∈ [0, 1], G includes
interactions to an intermediate degree, correspondingly, and one can inspect
what happens in various cases by varying f .

How does Eq. (35) work? Since T is a commutator of Hermitian matri-
ces, it is anti-Hermitian and generates a unitary rotation of H, which means
that traces of all powers of H are constant. In particular

(

Tr H2
)′

=

(

N
∑

m=M

D2
m

)′

+





N
∑

m,n=M

|Vmn|2




′

= 0 . (41)

This means that the off-diagonal matrix elements decrease if diagonal matrix
elements increase, and vice versa. Eq. (35) implies

(

N
∑

m=M

D2
m

)′

= 4
∑

mn

Dm(Gm −Gn) | Vmn |2

= 2
∑

mn

(Dm −Dn)(Gm −Gn) | Vmn |2 . (42)

No negative terms appear on the right-hand side when all differences Dm−Dn

and Gm−Gn always satisfy the condition

(Gm −Gn)(Dm −Dn) ≥ 0 . (43)

Using notation ∆H0mn = Em −En and ∆HImn = HImm −HInn, this condi-
tion can be rewritten, for every pair of diagonal elements number m and n,
as

[f∆H0 + (1 − f)(∆H0 + ∆HI)](∆H0 + ∆HI) ≥ 0 . (44)
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Dividing by ∆H0 > 0 for m > n, one obtains that if v = ∆HI/∆H0 satisfies
the condition

[f + (1 − f)(1 + v)](1 + v) ≥ 0 , (45)

then the sum of squares of the diagonal matrix elements of H increases
and the off-diagonal matrix elements of H decrease. (By the way, in the
continuum limit for Hamiltonian matrices, such as b→ 1, Eq. (45) provides
a condition on a derivative of the diagonal matrix elements ofHI with respect
to diagonal matrix elements of H0.)

For f = 0, the condition (45) says that (1 + v)2 ≥ 0. This is always
true and Wegner’s generator always diagonalizes Hamiltonian matrices be-
cause the SRG evolution stops first when all |Vmn|2 are zero, except for
elements Vmn for whose subscripts Dm = Dn; these may in principle stay
constant unless they change due to coupling with other non-vanishing off-
diagonal matrix elements.

For f = 1, the condition (45) reads v ≥ −1. This means that the
diagonal part of the interaction must not decrease faster along the diagonal
than the free energy increases. Convergence of H to a diagonal matrix may
fail if

∆HI

∆H0
< −1 (46)

for some momenta. Since Em increases monotonically with m, the lack of
convergence may occur when HImm rapidly decreases with m. This happens
when a negative matrix element appears on the diagonal among positive
ones, leading to a negative eigenvalue that corresponds to a bound state.
The negative diagonal matrix elements on the diagonal do not guarantee
that the SRG transformation stops driving off-diagonal matrix elements to
zero, but it indicates that bound states may interfere with convergence of
the SRG evolution of matrices Hλ.

For intermediate values of f , two sufficient, mutually exclusive but not
necessary conditions for SRG evolution to bring H to the diagonal (outside
regions of degeneracy mentioned earlier), are

∆HI

∆H0
≤ 1

f − 1
or

∆HI

∆H0
≥ −1 . (47)

In the model, it happens that these conditions can be violated when a bound
state exists. The SRG evolution continues to bring H to the diagonal, but
the effective coupling constant may become very large. This will be explained
in the next section.
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6. Solutions for Hλ

Formula (35) produces a set of coupled nonlinear differential equations
for all matrix elements of H, which means (N −M + 1)2 functions of s,

D′
n = 2

N
∑

k=M

(Gn −Gk)VnkVkn , (48)

V ′
mn = −(Gm −Gn)(Dm −Dn)Vmn

+

N
∑

k=M

(Gm +Gn − 2Gk)VmkVkn . (49)

This is a formidable set of equations to solve. For example, if b = 2,
one needs 37 states to span the energy range between bM ∼ 1 keV and
bN ∼ 70 TeV, and this implies 703 functions of s for real symmetric matri-
ces (a complex Hermitian Hamiltonian would imply 1369 functions). The
only known way to learn precisely how the solutions to these equations look
like with the initial condition at s = 0 set by Eq. (36), is to solve them
numerically

Fortunately, the numerical analysis (it is too extensive to review here;
readers interested in the numerical analysis need to consult the original
literature) produces results that can be summarized by a very simple, qual-
itatively accurate analytic formula for Hλ,

Hλmn ∼
[

Emδmn − gλ

√

Em

√

En

]

e−(Em−En)2/λ2

, (50)

which becomes exact in the limit (Em + En)/λ → 0. This means that the
matrix elements evolve with λ in a coherent fashion and a relatively small
number of simple functions of Em and En is sufficient to reasonably well
describe the evolution of all of them. In particular, for Em and En ≪ λ, the
exponential factor is equivalent to 1 and SRG evolution of the entire low-
energy corner of the Hamiltonian matrix is described by just one function
denoted by gλ in Eq. (50). In analogy with the Thomson limit in QED, this
function can be extracted from the lowest energy diagonal matrix element
of the interaction term in Hλ, HλMM = EM − gλEM . The result is that the
following quantity is called the effective coupling constant in a Hamiltonian
with a finite SRG cutoff λ,

gλ = 1 −HλMM/EM . (51)

An alternative definition of gλ, with the same result, could be based on
the interaction matrix elements between two basis states corresponding to
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the eigenvalues EM and EM+1, in analogy with the example illustrated by
Eq. (16). Namely,

gλ = −HλMM+1/
√

EMEM+1 . (52)

6.1. Asymptotically free effective interactions for different generators

The effective coupling constant defined in Eqs. (51) or (52), is a function
of λ. The observation made in Ref. [1] is that the function one obtains
depends on the choice of the parameter f in the generator of the SRG
transformations. A generic example is shown in Fig. 1. In this example,
b = 4, N = 16, M = −25, and g∞ = gΛ ∼ 4/100, where Λ = 416 ∼ 4 × 109.
The bound-state energy, EB ≃ 8 × 10−6.

-10 -8 -6 -4

lnΛ�lnb

0

5

10

15

20

gΛ

f=0

f=0.5

f=0.75

f=0.9

f=1

Fig. 1. Rise of the asymptotically free coupling constant gλ at small λ, drawn as

a function of lnλ/ ln b for 6 values of f : f = 0, 0.5, 0.75, 0.9, and 1 (the larger f ,

the higher curve). The rapid increase of gλ for f = 1 below lnλ/ ln b ∼ −8, occurs

because λ decreases below the scale of binding energy EB. When λ → 0, gλ for

f = 1 does not actually reach ∞ but |EB|/bM ∼ 1010. For f = 0, the huge increase

of gλ is absent and instead gλ never exceeds order 1. See the text for explanation.

The mathematical mechanism of SRG transformations by which the ef-
fective coupling constant gλ increases to huge values for f = 1, or stays
near 1 for f = 0, or increases to intermediate values for intermediate values
of f , is explained in detail in Ref. [1]. The physical essence of the explana-
tion is that SRG transformations with different values of f place eigenvalues
of Hλ on the diagonal when λ → 0 in different places. A natural location
on the diagonal for an eigenvalue E would be a diagonal matrix element in
the basis state |m〉 to which H0 assigns the eigenvalue Em ∼ E.
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When f = 0, interactions are fully accounted for in the generator
through G, see Eq. (40). The reduction of λ brings Hλ nearer its diag-
onal including the interaction energy that is responsible for binding. So,
some diagonal matrix element can naturally become negative for some basis
state |m〉 with Em ∼ |E| = EB.

When f = 1, interactions are completely ignored in G, i.e., G = H0.
The diagonal matrix elements can still approach 0 from above. But at some
point, the monotonic increase of diagonal matrix elements along the diago-
nal toward large energies (the greater subscript m of a rotated basis state
the greater the diagonal matrix element) is broken and a decrease along the
diagonal (instead of increase) occurs at some state |m〉. At this place, the
SRG transformation with f = 1 stops reducing the size of the nearby off
diagonal matrix elements. Instead, their size increases and maintains the
strength required for reproduction of the bound-state eigenvalue on the di-
agonal for some state |m〉 with Em < EB. The shift of the eigenvalue −EB of
a fixed magnitude to a lower-energy basis state requires a corresponding in-
crease of the interaction strength. For f = 1, the shifting of E = −EB

toward low energies continues to the very end of the SRG evolution at
λ = 0 and places E = −EB at the state with the lowest allowed Em in the
model: the bound-state eigenvalue appears as the diagonal matrix element
〈M |Hλ|M〉 when λ ≪ bM . As a result of this cumulative shift away from
the natural momentum scale for the bound-state wave function, the coupling
constant gλ continues to increase in order to eventually produce −EB on the
diagonal through (1 − gλ)bM . Thus, gλ increases toward EB/b

M , which is
a huge number for a large negative M .

When f has an intermediate value between 0 and 1, the cumulative shift
stops at certain state |m〉, for which fEm + (1 − f)(1 − gλ)Em becomes
negative and reproduces the eigenvalue −EB. This requires gλ with λ ∼ Em

to increase only to ∼ EB/Em.
The above scenario of how the increase of gλ occurs, depending on the

value of f , is reflected in Fig. 1. Maximum of the curve with f = 0.75
occurs at −9, instead of −8.5 in the case of f = 0, and the maximal value
of gλ for f = 0.75 is 4, or b times larger than in the case with f = 0.
The maximum of the curve with f = 0.9 occurs at −10, instead of −8.5
in the case of f = 0, and the maximal gλ for f = 0.9 is 16, or b2 times
larger than in the case with f = 0, and so on. The case with f = 1 leads
to apparently indefinite and accelerating increase that smoothly continues
the inverse logarithmic growth that characterizes asymptotic freedom above
the scale of binding. The transition from an asymptotically free RG behav-
ior to the behavior dominated by bound states occurs when gλ crosses 1,
cf. Sec. 4.4.
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In summary, the model demonstrates a possibility that an unlimited
increase in the asymptotically free interaction at small energies is caused by
omission of interactions responsible for the existence of a bound state in the
generator of the SRG transformations. When the generator fully accounts
for the interactions responsible for binding, the magnitude of the coupling
constant never significantly exceeds 1.

The model example is potentially important because it suggests that the
increase of the coupling constant in asymptotically free theories that is ob-
served in perturbation theory (corresponding to G = H0 and f = 1) may
be not related to the phenomenon of confinement but to the phenomenon of
formation of bound states. The latter is in principle a simpler one to handle
in theory than the former. If it were indeed the case, application of the SRG
procedure to QCD may help theorists in penetrating the range of momentum
scales near ΛQCD and explaining hadronic states without immediate neces-
sity to solve the problem of confinement that is relevant at distances much
larger than the size of individual hadrons (see also Appendix, Sec. 8.2).

6.2. Comment on asymptotic freedom and limit cycle

An apparently very small alteration of the model introduced in Sec. 2
leads to new ways of thinking about asymptotic freedom in terms of limit
cycle. RG limit cycles were discovered in the context of strong interactions in
Ref. [16], using the nowadays standard RG procedure. The SRG approach
to limit cycle is based on Ref. [2]. The initial Hamiltonian matrix of the
altered model is

HΛmn =
√

EmEn [ δmn − gΛ − ih sgn(m− n) ] , (53)

where i =
√
−1 and the new coupling constant h can be an arbitrarily

small real number. If h is an arbitrary irrational number, the model typ-
ically exhibits chaotic RG behavior. When h = tan π

p with p an integer

greater than 2, a limit cycle occurs. Namely, repeating the same procedure
as described in the previous sections for h = 0, one finds that the coupling
constant h does not evolve with λ at all, while the coupling constant gλ that
replaces gΛ in a similar way as gλ replaced gΛ for h = 0, oscillates with λ
with a multiplicative period bp. This means that gλ1

has the same value
as gλ2

if λ1 = (bp)kλ2 with an arbitrary integer k. The periodicity (cycle) of
the coupling constant is associated with existence of infinitely many bound
states (in the limit M → −∞) whose binding energies form a geometric
series converging on zero with quotient 1/bp.

RG evolution of an asymptotically free interaction forms a part of a limit
cycle for all values of λ for which h is very small in comparison to gλ. In
this range, h does not matter and the Hamiltonians of the model defined
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by Eq. (53) evolve in the same way as in the case of Eq. (34) (see Fig. 3 in
Ref. [2]). Consider the bottom-up evolution in which λ grows and the cou-
pling constant gλ decreases as an inverse of a logarithm of λ until it becomes
comparable with h. Then, instead of gλ continuing its logarithmic falloff in-
definitely, h takes over and forces gλ to change sign and subsequently grow in
size. This continues until a new high-energy bound state is reconstructed.
When this happens, gλ switches sign to positive again and grows rapidly
above 1, its magnitude depending on the size of f < 1. The switch occurs at
the scale λ on the order of the energy (momentum) where the new bound-
state energy is located on the diagonal (the precise location depends on the
value of f < 1). Further increase of λ produces a falloff like in asymptotic
freedom again, until gλ decreases again down to the size of h.

The range of scales for which the cycle looks like asymptotic freedom is
given by the period of the cycle, characterized by the factor eπ/h, which can
be very large when h is very small. Such behavior of the simple model is
of general interest because it suggests that the hierarchy problem may stem
from continuing perturbative analysis for coupling constants gλ ≪ 1 while
overlooking formation of new generation of bound states due to very small,
and so far unknown, interactions of the type represented by the coupling
constant h. But in order to see their presence, one has to use SRG procedure
with the generator that includes interactions in G.

7. Conclusion

The simple model study shows that the SRG procedure may be a suit-
able tool to handle the increase of the coupling constant gλ in QCD when
λ→ ΛQCD. If the generator of SRG transformations does not include inter-
actions in G, f = 1 in Eq. (40), the effective coupling constant increases to
very large values quickly as soon as the SRG scale parameter λ becomes com-
parable with the momentum scale that characterizes formation of a bound
state. In QCD, the corresponding momentum scale would be much larger
than the scale associated with confinement because the size of a single hadron
is much smaller than the distances at which confinement matters. If the
generator of SRG transformations includes interactions in G, the SRG pa-
rameter λ can be brought down to the momentum scale that characterizes
bound states and the coupling constant does not increase to large values.
These model results suggest that the SRG procedure should be applied to
QCD because it may offer help in understanding the binding mechanism
for quarks and gluons, using expansion of HλQCD in powers of an effective
coupling constant, without need for prior understanding of confinement.
Interestingly enough, the SRG procedure may also help us establish a con-



Renormalization Group and Bound States 3417

nection between asymptotic freedom and limit cycle. In this respect, the
model shows that in order to handle the case of limit cycle the generator of
SRG transformations must include interactions in G.

The author would like to thank Robert Perry of the Ohio State University
for many discussions concerning RG procedures and hospitality extended to
the author during his visits to OSU. It is also the author’s pleasure to thank
Michał Praszałowicz and his colleagues at the Jagiellonian University for
organizing another excellent Cracow School of Theoretical Physics, and for
the outstanding hospitality they graciously provide.

8. Appendix

The Appendix describes examples of QFT counterparts of the concepts
concerning RG procedure and bound states that are introduced in the main
text in a simple model.

8.1. Potentials with δ-functions

When one calculates corrections to the Coulomb potential in QED, one
obtains a δ-function as the Uehling term inHI. This term contributes a small
part in the Lamb shift. The Coulomb potential, −α/r, in the Schrödinger
equation is changed to [29]

V (~r ) = −α
r
− 4α2

14m2
e

δ(3)(~r ) . (54)

The correction appears suppressed by α ∼ 1/137 in comparison to the
Coulomb potential. In first-order perturbation theory, one obtains truly tiny
corrections (∼ 10−7 eV for 2S states [29]). However, the second order correc-
tion involves multiplication of the δ-function by itself and produces infinity.
The problem is not merely due to the use of perturbation theory instead
of solving the Schrödinger equation exactly since the δ-function (or a simi-
larly singular function) leads to so strong a potential that the wave function
collapses unless the singular function is somehow replaced by a regular one.
One can attempt to derive a regular expression in perturbation theory, say,
by limiting the range of momenta in intermediate states from above by the
electron mass me times the speed of light. On the other hand, a complete
analysis should include the formation of a bound state, and bound states are
not describable in perturbation theory. Some form of an effective theory is
necessary [30] (see also Ref. [31]). In contrast with other approaches, the sin-
gular potentials that are obtained in QCD (or QED) in the SRG approach,
are always effectively regulated by form factors of width λ, the width playing
the role of a renormalization group parameter (e.g., see Ref. [32]).
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Studies of δ-function potentials by physicists have a long history [33–41]
and there exist mathematical textbooks on the subject [42, 43]. The simple
model used in this lecture can also be derived by discretizing momentum on
a logarithmic scale in the S-wave Shrödinger equation for a particle moving
on a plane in the presence of a potential proportional to a δ-function (see
the original literature).

8.2. SRG procedure in QFT

Since the model discussed in this lecture appears deceptively simple, this
section provides a telegraphic overview of how the SRG procedure applies
in QFT. The original SRG application to QCD was outlined in Ref. [44],
for calculating matrix elements of light-front (LF) effective HλQCD using
perturbation theory. A perturbative calculus for HλQCD with λ≫ ΛQCD in
terms of creation and annihilation operators, was developed in Ref. [45], and
shown in Ref. [46] to be able to produce in simple scalar theories not only
the Hamiltonian operator (the energy-momentum tensor component T+−

λ )
but also other generators of the Poincaré algebra. This calculus produced
LF QCD Hamiltonians with running coupling constant gλ and recently led
to a reasonable description of heavy-quarkonium spectra, still using crude
and as yet unverified approximations concerning terms order g4

λ [32]. The
calculus is invariant with respect to 7 independent Poincaré symmetries (in-
cluding 3 boosts), satisfies required cluster property [31], and guarantees that
the resulting Hamiltonians Hλ have form factors in the interaction vertices
of width λ in energy, the width being the SRG parameter. All these features
are required when one attempts to derive the parton model and spectroscopy
of hadrons from one and the same Hamiltonian formulation of QCD.

The point of departure is a canonical LF Hamiltonian in QFT, which
requires regularization and counterterms,

H = [Hcan +HCT]reg . (55)

In QCD, the canonical gluon field A in A+ = 0 gauge (LF in the Minkowski
space-time is defined by the condition x+ = x0 + x3 = 0 and A+ = 0
means that A0 +A3 = 0) and quark field ψ, are expanded into their Fourier
components at x+ = 0. The Fourier components correspond to canonical
creation and annihilations operators for bare quarks and gluons (or other
bare particles in other theories than QCD). These canonical operators, say
qcan, are related by a unitary transformation Uλ to their counterparts for
effective particles, say qλ,

qλ = Uλ qcan U
†
λ , (56)
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and U∞ = 1. The Hamiltonian H = H(qcan) is assumed equal to Hλ(qλ),
but the coefficients in expansion of Hλ(qλ) in powers of qλ are different from
the coefficients of expansion of H(qcan) in powers of qcan. The object of
the SRG calculation are the coefficients. One actually works in the constant
basis in the operator space and evaluates Hλ = Hλ(qcan). The SRG equation
is

d

dλ
Hλ = [Tλ,Hλ] , (57)

where

Tλ = U ′
λU†

λ , (58)

and Uλ corresponds to Uλ. Assuming the initial condition of Eq. (55),

H∞ = [Hcan +HCT]reg , (59)

one derives Hλ from the formula

Hλ = H∞ +

λ
∫

∞

dω[Tω,Hω] (60)

order by order in perturbation theory, eventually replacing qcan by qλ.
The key is Tλ. Hλ is split into a bilinear term in qcan, denoted by H1,

and the remaining terms, denoted by H2. H2 is assumed to contain the
form factors fλ in vertices (the letter f used here has nothing to do with
the letter f used in G in Sec. 5.1). Thus, H2 = fG2, and the form factor is
defined for all operators in the same way as in the following example:

G =

∫

[123] g(1, 2, 3) q†can1q
†
can2qcan3 , (61)

fG =

∫

[123] f(123) g(1, 2, 3) q†can1q
†
can2qcan3 , (62)

f(123) = exp
[

−(M2
12 −M2

3)
2/λ4

]

. (63)

Namely, when an operator G contains a product of m creation and n an-
nihilation operators, the form factor operation inserts the same function f
of the difference between invariant masses squared, M2

m = (
∑m

i=1 pi)
2 and

M2
n = (

∑n
j=1 kj)

2, that are associated with the particle momenta using
eigenvalues of G1. The SRG generator in QFT is defined by the commuta-
tor [45]

[T ,G1] = [(1 − f)G2]
′ . (64)
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This choice guarantees that the resulting interactions are connected (clus-
ter property) and perturbation theory for evaluation of Hλ never contains
small energy denominators, provided the function 1−f vanishes faster than
linearly in the difference of invariant masses (for the function adopted in
Eq. (63), 1 − f vanishes quadratically).

8.3. Questions concerning SRG and AdS/CFT in QCD

A few questions are posed here regarding the possibility that the SRG
procedure in QCD and a RG interpretation of AdS/CFT duality in the con-
text of QCD, can be related. These questions reflect how little is understood
about the SRG procedure and formation of bound states in QCD.

SRG procedure is expected to render Hamiltonians Hλ whose eigenstates
in the case of LF QCD (as a part of the standard model) can be used to
define hadrons and calculate hadronic observables. A hadron eigenstate
is a linear combination of Fock components |n〉 with various values of n,

where n denotes the number of operators q†λ in a product that is used to
create the state |n〉 from the LF vacuum state |0〉. The corresponding wave
functions ψnλ will depend on λ while the eigenvalue and the eigenstate as
a whole will not. Expansion of a hadron state into components with various
numbers of effective constituents will be very broad in energy for λ≫ ΛQCD

(corresponding to a parton model state for probes acting with large energy
transfers) and may be dominated by the lowest constituent-number com-
ponents for λ ∼ ΛQCD (corresponding to the constituent model for probes
acting with small energy transfers).

The family of Hamiltonians Hλ, all equivalent, can be imagined to be
related to a family of complex effective classical Lagrangian densities L(λ, x)
in the Minkowski space-time, all of them representing the same theory. The
parameter λ can be considered a 5th dimension in a larger theory and one
can contemplate actions of the form

S =

∫

dλd4xL(λ, x) . (65)

In such action, the coupling constant gλ can be considered a function of the
5th coordinate λ, and also a function of x. Eventually, no hadronic observ-
able will depend on λ. Nevertheless, a rich dynamics could be considered
in the 5-dimensional space, or in more dimensions, in which the family of
equivalent Lagrangians labeled by λ could emerge as describing configura-
tions that dominate appropriate path integrals.

Suppose the dependence on λ is analogous to Polyakov’s RG interpre-
tation of the 5th (Liouville) dimension in string theory [5, 6], cf. [4]. In
the SRG procedure, however, one always deals with effective quantum field
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theories in the Minkowski space. Can these effective theories explicitly in-
clude scale dependent gluonic string dynamics that could be “a shadow on
the wall” of what happens in the bulk? According to [32], one may expect
explicit formation of quantum gluonic strings in LF Hamiltonian QCD in
the Minkowski space when one considers eigenstates in which relative mo-
tion of constituents corresponds to considerably larger energies than ΛQCD

and components with n ≫ 1 for effective gluons are important. Could they
correspond in some way to a string theory in the bulk?

There is another line of thinking that leads to similar questions, based
on the observation that the LF wave functions ψnλ can be used to calcu-
late hadronic form factors employing formulae similar to the ones considered
by Brodsky and de Teramond in Refs. [9, 10], with additional factors that
will result from using the SRG procedure. Can one connect the hologra-
phy proposed by Brodsky and de Teramond with the λ-dependent hadronic
constituent distributions (densities obtained using sums of moduli squared
of the LF wave functions ψnλ), additional SRG factors, and off-energy-shell
old-fashioned scattering amplitudes for effective constituents with form fac-
tors of width λ, all of which would result from HλQCD obtained from the
SRG procedure?

Such questions will not be easily answered. For example, there is a po-
tential complication involved in QCD due to an infrared limit cycle [47]. On
the other hand, the model described here shows that the SRG procedure can
deal with limit cycles by including interactions in the generator.
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