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BPS STATES IN PERTURBATIVE N = 4 SYM
∗

Maciej Trzetrzelewski

M. Smoluchowski Institute of Physics, Jagellonian University
Reymonta 4, 30-059 Kraków, Poland

and
Department of Mathematics, Royal Institute of Technology

KTH, 100 44 Stockholm, Sweden

(Received November 12, 2008)

The partition function of 1/16 BPS states in N = 4 SYM is found
using the one loop dilatation operator. The result matches precisely the
AdS/CFT prediction, i.e. it coincides with the partition function of the gas
of supergravitons in AdS5 × S5.
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1. Introduction

AdS/CFT correspondence [1] is one of the most exciting and intensively
studied subjects in modern theoretical physics (see e.g. [2] for the reviews).
According to the conjecture a certain (N = 4 supersymmetric) Yang–Mills
theory in 4 dimensional Minksowski space is equivalent to one of the super-
string theories (type IIB) in 10 dimensional, curved background — AdS5×S5.
The conjecture is an example of the strong–weak coupling duality i.e. it
translates the difficult (nonperturbative) problems on the gauge theory side
into doable (perturbative) ones on the string theory side and vice versa.
Consequently it is a hard problem to fully verify the conjecture if one is
left entirely with perturbative expansion tools. However, there is a dis-
tinguished sector of field configurations, the BPS operators, that do not
receive quantum corrections and hence play an important role in studying
AdS/CFT correspondence nonperturbatively. These states, by definition,
preserve some fractions of supersymmetry. Since the symmetries on the
gauge theory side are exactly the symmetries of the superstring in AdS5×S5,
there is a one-to-one correspondence between BPS states in N = 4 SYM
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and superstring theory, respectively. Of particular interest are the 1/16BPS
configurations which preserve the least amount of supersymmetries. At low
energies and strong coupling the partition function of gauge theory 1/16BPS
states should correspond to the 1/16BPS supergravity configurations, while
at high energies to the 1/16BPS black holes.

Surprisingly, it was found [3] that the partition function of 1/16BPS
states in free N = 4 SYM overcounts the states as compared to the supe-
gravity prediction (both in high and low energy regimes). However, it was
also pointed out that once the gauge theory interaction is turned on, there
should be no disagreement. In this paper we focus on [4] where it was argued
that this is precisely the case, by using the complete one-loop result [5] for
the dilatation operator.

2. Preliminaries

The N = 4 SYM on-shell field are the gauge field Aa
µ, µ = 0, . . . , 3,

a = 1, . . . , N2−1, the real scalar field φa
ij , i = 1, . . . , 4 (in the antisymmetric

representation of SU(4)), and the complex fermionic field (Weyls fermions)
ψa

αi, α = 1, 2 — all in the adjoint representation of SU(N). The Lagrangian
is given by TrL where

L=−
1

4
F 2

µν−
1

2
DµφijD

µφij−g2[φij , φkl][φ
ij , φkl]−

1

2
ψ̄iDψ

i+igψ̄i[φij , ψ
j ]

and can be obtained e.g. after reducing the N = 1 SYM in 10 spacetime
dimensions to 4 spacetime dimensions. The theory has the global SU(4)
(=SO(6)) symmetry and the superconformal symmetry. Accordingly, any
state can be labeled by the appropriate quantum numbers D, (j1, j2) and
(R1, R2, R3) corresponding to the dilatation operator, Lorentz spins and
SU(4) Cartan generators, respectively.

Any gauge invariant operator in N = 4 SYM can be presented as a linear
combination of products of single-trace operators. The latter are obtained by
taking a trace over an arbitrary product of φij , ψαi, ψ̄

i
α̇, Fαβ, F̄α̇β̇ (selfdual,

anti-selfdual components of field-strength in spinor notation) and Dαβ̇ (the

covariant derivative in spinor notation).

2.1. BPS operators

Among the generators of the superconformal symmetry (which consists
of the Poincaré generators Pµ, Mµν , the special conformal transformation
Kµ, the dilatation operator H, the supersymmetry charges Qαi, Q̄α̇

i and
the special conformal supercharges Sαi, S̄

i
α̇) the Qαi’s and the Sαi’s play an

important role in the discussion of BPS operators. Let us consider a BPS
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operator O preserving the least amount of supersymmetries (the 1/16BPS
operators) i.e. [Q/Q̄,O] = [S/S̄,O] = 0 for some α, α̇, i. It follows from
superconformal algebra that

{Sαi, Q
βj} = δj

i (J1)
β
α + δβ

αR
j
i +

1

2
δj
i δ

β
αH , (1)

where (J1)
β
α are SU(2) generators in spinor notation and Rj

i are the SU(4)
generators. Therefore, a consistency condition [{Q,S}, O] = {Q, [S,O]} +
{S, [Q,O]} = 0 yields a new constraint for BPS operators.

2.2. The oscillator picture

Due to equations of motion and Bianchi identities, gauge invariant op-
erators are in general algebraically dependent. To avoid this it is helpful to

introduce a bosonic a†α, aα, b†α̇, bα̇ and fermionic c†i , ci creation/annihilation
operators which provide the Fock space representation H of the full sym-
metry of N = 4 SYM [6]. Furthermore, one can find a dictionary between
states in H and gauge invariant operators according to [5]

Dαβ̇ . . . Dγδ̇Fπσ ←→ a†αb
†

β̇
. . . a†γb

†

δ̇
a†πa

†
σ|0〉 ,

Dαβ̇ . . . Dγδ̇ψπi ←→ a†αb
†

β̇
. . . a†γb

†

δ̇
a†πc

†
i |0〉 ,

Dαβ̇ . . . Dγδ̇φij ←→ a†αb
†

β̇
. . . a†γb

†

δ̇
c†i c

†
j|0〉 ,

Dαβ̇ . . . Dγδ̇ψ̄π̇i ←→ a†αb
†

β̇
. . . a†γb

†

δ̇
b†π̇ǫ

ijklc†jc
†
kc

†
l |0〉 ,

DkF̄ ∼ Dαβ̇ . . . Dγδ̇F̄π̇σ̇ ←→ a†αb
†

β̇
. . . a†γb

†

δ̇
b†π̇b

†
σ̇ǫ

ijklc†i c
†
jc

†
kc

†
l |0〉 , (2)

where |0〉 is the Fock vacuum (corresponding to field = 1).
In the planar limit, the correlation functions involving multiple trace

operators factorizes into a product of correlation functions corresponding to
single trace operators. Therefore, it is enough to consider operators of the
form Tr(χ1 . . . χL) where χs is any, out of 5, operators listed in (2).

In the Fock space representation it is convenient to introduce the site

index s: a†α, b†α̇, c†i → a†αs, b
†
α̇s, c

†
is, H → Hs which corresponds to the

position of the operator inside the trace, s = 1, . . . , L. Now, a generic gauge
invariant single trace operator, with L sites, is simply an element of ⊗L

s=1Hs.
We note, however, that there is a constraint (the central charge constraint)
on bosonic and fermionic occupation numbers namely at each site s

C = na1
+ na2

− nb1 − nb2 + nc1 + nc2 + nc3 + nc4 − 2 = 0 ,

(where nx is the number of quanta corresponding to the operator x) which
can be seen from (2).
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2.3. The one loop dilatation operator

In conformal filed theories, a two point correlation function 〈Ō(x)O(y)〉
of an arbitrary operator O, must be proportional to |x− y|−2D. It is conve-
nient to split the dimension D of the operator O as D = D0 + γ where D0

is the bare dimension and γ is the anomalous part.
An important result in planar N = 4 SYM is the exact calculation of γ

at one loop in perturbation theory [5, 7] with

γ = λ spectrum(H1−loop) , H1−loop =
1

8π2

L
∑

s=1

Hs,s+1 , λ = g2N ,

where H1−loop is the Hamiltonian whose Fock space representation is ob-
tained in the following way. The action of Hs,s+1 introduces an interaction
between only the neighboring sites (where the last site and the first site
are assumed to be neighbors) and is the same for all s. For this reason it is
enough to consider an arbitrary pair of such sites |v〉 = |w1〉 . . . |ws〉|ws+1〉 . . .
|wL〉. In order to calculateHs,s+1|v〉 one first considers all oscillator hoppings
form |ws〉 to |ws+1〉 (and form |ws+1〉 to |ws〉) so that the resulting state has
the same central charge. Each state obtained in this way is multiplied by

cn,n12,n21
= (−1)1+n12n21

Γ
(

1
2n12 + 1

2n21

)

Γ
(

1 + 1
2n−

1
2n12 −

1
2n21

)

Γ
(

1 + 1
2n
) ,

where n12 and n21 are the numbers of oscillators hopping from |ws〉 to |ws+1〉
and form |ws+1〉 to |ws〉, respectively, n is the number of all quanta in
|ws〉|ws+1〉.

3. BPS states at zero coupling

The operator {Sαi, Q
αi} (no sum) has an important property namely

(semi)positive-definiteness. This can be seen by noting that (Qαi)† = Sαi

(which in turn follows from the condition Pµ = K†
µ that one has to impose

in quantization of conformal field theories). Let us introduce ∆ := 2{S,Q}
where S = S−1/2,1 and Q = Q−1/2,1. It is clear that ∆|s〉 = 0 if |s〉 is

the 1/16BPS state however, since Q = S† the converse is also true namely

(following the standard argument) if ∆|s〉 = 0 then 〈s|∆|s〉 = ‖Q|s〉‖2 +

‖S|s〉‖2 = 0 hence Q|s〉 = S|s〉 = 0.
Therefore, according to (1), the condition for 1/16BPS states becomes

∆ = H − 2(J1)
1
1 + (R3)

1
1 = H − 2J1 −

1

2
(3R1 + 2R2 +R3) = 0 ,
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where J1 = (J1)
1
1 and Ri are SU(4) Cartan generators (see Appendix A

in [3] for more details). The partition function of 1/16BPS states can,
therefore, be written as function of 5 variables x, z, y, v, w corresponding to
H,J1, J2, R2, R3, respectively

Z 1
16

BPS =
∑

∆=0

x2Hz2J1y2J2uR2vR3 . (3)

There exists an elegant way to evaluate Z1/16BPS in the planar, free
N = 4 SYM using only the letter partition function z(x) = zB(x)+zF(x),
x = (x, z, y, u, v) (where we made a split into fermionic and bosonic part) of
the theory [3,8,9]. The single trace partition function is given, according to
Polya theorem, by

Zs.t. = −
∞
∑

n=1

φ(n)

n
log
(

1− zB(xn)− (−1)n+1zF(xn)
)

(4)

while the multiple trace partition function is

Zm.t.(= Z 1
16

BPS) = exp

(

∞
∑

n=1

1

n

{

ZB
s.t.(x

n) + (−1)n+1ZF
s.t.(x

n)
}

)

. (5)

We note that these formulas are applicable only in the N =∞ case (more-
over, formula (4) cannot be used in the interacting theory) however, in the
case of free gauge theories there exists a possibility to obtain Zm.t. directly
from z(x) for finite N , namely

Z
(N)
m.t. =

∫

U∈SU(N)

DU exp

{

∞
∑

n=1

(

zB(xn) + (−1)n+1zF(xn)
) TrUn TrU−n

n

}

.

(6)

One can show [8,9] that in the large N limit, Z
(N)
m.t. becomes Zm.t. if the pa-

rameters x are small. However, there exists a critical value of the parameter

above which lnZ
(N)
m.t. ∼ N

2 resembling the confinement/deconfinement phase
transition [8, 9].

According to AdS/CFT conjecture Zm.t. should correspond to the parti-
tion function over the whole (including multi-particle states) Fock space in

supergravity while Z
(N)
m.t. at large energies should correspond to the partition

function of 1/16BPS black holes (at least for the special values of parameters

x considered in [3]). In [3] the partition functions Zm.t. and Z
(N)
m.t. were cal-

culated using (4)–(6) and found to be in disagreement with the supergravity
prediction.
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3.1. Back to the oscilator picture

In the next section we argue that the apparent disagreement can be
cured (at least partly) once we consider 1/16BPS operators at one-loop. It
is useful for later purposes to rewrite the Lorentz spins and Cartan generators
in terms of creation/annihilation operators discussed earlier (see Appendix A
in [3] for more details)

R1 = nc2 − nc2 , R2 = nc3 − nc2 , R3 = nc4 − nc3 ,

J1 =
1

2
(na2

− na1
) , J2 =

1

2
(nb2 − nb1) . (7)

The dilatation operator H0 in free theory also has a similar representation

H0 = na1
+ na2

+
1

2
(nc1 + nc2 + nc3 + nc4)

hence the 1/16BPS condition ∆ = 0 in free N = 4 SYM becomes

∆λ=0 = 2na1
+ 2nc1 = 0 .

Therefore, the 1/16BPS states do not have any a†1 and c†1 operators in the
Fock space representation. The partition function (3) can now be rewritten
as

Zm.t.(a2, b1, b2, c2, c3, c4) =
∑

∆=0,C=0

a
na1

1 a
na2

2 b
nb1

1 b
nb2

2 c
nc1

1 c
nc2

2 c
nc3

3 c
nc4

4

=
∑

C=0

a
na2

2 b
nb1

1 b
nb2

2 c
nc2

2 c
nc3

3 c
nc4

4 . (8)

It can be evaluated using (4), (5) and the letter partition function

z=
a2

2+c2c3+c2c4+c3c4
(1−b1a2)(1−b2a2)

+
a2(c2+c3+c4)+(b1+b2−a2b1b2)c2c3c4

(1−b1a2)(1−b2a2)
, (9)

which follows directly from the counting over the Fock space states (taking
into consideration the central charge constraint C = 0).

The functions (3) and (8) represent the same quantity and differ only by
the change of variables. Using (7) one finds that the transformation from
(a2, b1, b2, c2, c3, c4) to (x, z, y, v, w) is

a2 = x2z , b1 =
1

y
, b2 = y , c2 =

x

v
, c3 =

xv

w
, c4 = xw . (10)
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4. The one loop result

The dilatation operator at one loop takes the form H = H0 + λH1−loop

where H1−loop is described in Section 2.3. Accordingly, the 1/16BPS condi-
tion is

∆λ=0 + λH1−loop = 0 . (11)

Since (11) is supposed to be true for an arbitrary small λ one concludes
that the condition is actually ∆λ=0 = 0 and H1−loop = 0. Therefore, the
1/16BPS partition function becomes

Zm.t.(a2, b1, b2, c2, c3, c4) =
∑

H1−loop=0

a
na2

2 b
nb1

1 b
nb2

2 c
nc2

2 c
nc3

3 c
nc4

4 .

The letter partition function z is of little use at one loop, however, one can
still use Zs.t. and (5) to obtain Zm.t.. The single trace partition function is
obtained from

Zs.t. = z +

∞
∑

L=2

Z
(L)
s.t. , (12)

where Z
(L)
s.t. is the partition function of 1/16BPS states corresponding to L

sites. In order to determine Z
(L)
s.t. one can use the one-loop dilatation operator

described in Section 2.2. The condition H1−loop = 0 is satisfied only for
states which are eigenstates corresponding to 0 eigenvalue of H1−loop. In
general, a number Dna2

,nb1
,nb2

,nc2
,nc3

,nc4
,L of such states in the sector with

na2
, nb1 , nb2 , nc2 , nc3 , nc4 number of quanta and L sites respectively, could

be obtained by looking at the spectrum ofH1−loop and then finding its kernel.
With use of the computer code implementation of H1−loop, we determined
the numbers Dna2

,nb1
,nb2

,nc2
,nc3

,nc4
,L exactly for several thousands of cases.

The generating function we are looking for

Z
(L)
s.t. =

∑

na2
,nb1

,nb2
=0,...,∞

nc2
,nc3

,nc4
=0,...,L

Dna2
,nb1

,nb2
,nc2

,nc3
,nc4

,La
na2

2 b
nb1

1 b
nb2

2 c
nc2

2 c
nc3

3 c
nc4

4 ,

(the sum over fermionic variables runs from 0 to L due to the Pauli exclusion
principle) is, therefore, found up to some powers in the Taylor expansion.

It is not clear that such data can determine the whole function Z
(L)
s.t. , never-

theless our analysis shows that the Taylor expansion of Z
(L)
s.t. coincides with

the expansion of certain rational function. After some guess work we found
that (see [4] for more details)

Z
(L)
s.t. =

P

(1− a2b1)(1 − a2b2)
, (13)
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P = σL,L,0 + a2σL,L−1,0 + a2
2σL−1,L−1,0

+ (b1 + b2)
(

σL,L,1 + a2σL,L−1,1 + a2
2σL−1,L−1,1

)

+ b1b2
(

σL,L,2 + a2σL,L−1,2 + a2
2σL−1,L−1,2

)

, (14)

where σn1,n2,n3
= σn1,n2,n3

(c2, c3, c4) is the Schur polynomial.
Remarkably enough, substituting (9), (13) to (12) and then changing the

variables via (10) one recovers precisely the supergraviton partition function
obtained in [3]! The construction of Zm.t from Zs.t. is mathematically the
same in gauge theory side and in supergravity side, therefore, we obtain
a complete agreement with AdS/CFT correspondence.

5. Outlook

In this paper we discussed the BPS sector of N = 4 SYM and its rela-
tion to supergravity. According to the AdS/CFT conjecture there should be
a one-to-one correspondence between the BPS states on both sides, regard-
less of the energy regimes. It turns out that the corresponding generating
functions do not match if in the gauge theory calculation one does not con-
sider the interaction [3]. However, as argued in [4], when the interaction is
turned on one finds a complete agreement in low energy regimes. The re-
sult is obtained using the oscillator representation of the complete one loop
dilatation operator [5]. We note that a crucial step in [4] is Eq. (13) which
in turn was guessed supported by the computer analysis. Therefore, in view
of future perspectives, one would like to find a rigorous derivation of (13) or
of what follows.

Even more important is the question about the high energy regimes. This
is an outstanding problem which has not been solved so far. At high ener-
gies, the partition function of 1/16BPS configurations on the supergravity
side is presumably dominated by the 1/16BPS black hole solutions and the
corresponding free energy F = lnZblackholes scales like N2. Unfortunately
it is difficult, if at all possible, to obtain this scaling using the results from
the planar gauge theory, therefore, it seems that the non-planar analysis is
required [4].
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