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The new mechanism of an interesting phenomenon of the negative ra-
diation pressure is presented. Force exerted by radiation on the kink in
a simple toy model is calculated using perturbation scheme. The results
are compared with numerical calculations. The interaction of vortices and
radiation is discussed and possible explanation of the negative radiation
pressure is examined.

PACS numbers: 11.10.Lm, 11.27.+d

1. Introduction

Among many other features, some topological defects reveal a very in-
teresting phenomenon which we have called the negative radiation pressure
(NRP). When exposed to some kind of radiation most topological defects are
pushed by the radiation in a process which is very similar to the radiation
pressure known from electrodynamics. However, certain defects in certain
theories behave in a completely different way. They accelerate towards the
source of radiation. The importance of the negative radiation pressure is
not yet well understood, however we believe that it may be very important
in many processes including stability of systems of topological defects. The
explanation of the phenomenon is rather simple. During the scattering pro-
cess incoming wave are transformed into waves which carry more momentum
than the initial ones. The surplus of momentum is passed on the defect.

Currently we know three mechanisms responsible for the appearance of
the NRP. The first mechanism was discovered in the very well known and
studied model of φ4 scalar field [1, 2]. The theory exhibits a static kink
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solution. Linear analysis of small excitations around this kink solution shows
that the kink is transparent to the waves (this is a very rare feature of so
called reflectionlessness). However, higher order corrections show, that some
parts of the waves are transformed into waves with twice the frequency of
the initial wave. They carry away more momentum. The surplus of the
momentum must be compensated with kink’s motion. The kink experiences
a force which pulls it towards the source of radiation. This phenomenon is
purely nonlinear and the force is proportional to the forth power of amplitude
of the wave. The phenomenon was proved to be robust with respect to small
perturbation of the field-theory potential.

The second mechanism requires two interacting fields with different
masses. During scattering of more massive field over the defect some en-
ergy is transformed into waves of less massive field. These waves carry more
momentum and, in favourable conditions, again the surplus of momentum
can be observed and the motion of kink must compensate it. This can hap-
pen even in the linear approximation and the force is proportional to square
of amplitude of incoming wave. This situation does not require full trans-
parency of a defect and seems to be more common. It was numerically seen
in case of vortices in Goldstone and Abelian Higgs models.

The third process does not involve static objects but rather oscillating
in time. Our preliminary numerical results show that the negative radiation
pressure exists also for oscillons. In 1 + 1d theories oscillons can be treated
as a bound state of two kinks [3]. They are similar to breathers in integrable
model described by sine-Gordon equation. In contrary to the breathers they
radiate and finally decay to vacuum, but their lifetime is extremely long.
When a wave interacts with a localized oscillon, waves with frequencies
equal to sum and difference of an oscillon and wave frequencies are created.
Sometimes this can also lead to creation of surplus of momentum and NRP.

In the present paper we will focus on the second mechanism which in
our opinion should be the most frequent.

The paper is organized as follows. First we introduce a simple toy model
on which we show how the mechanism of NRP works. Because of its simplic-
ity it is quite easy to obtain some perturbative analytic results which can be
compared with numerical solutions of the full partial differential equation.
In the fourth section we discuss our preliminary results in case of vortices.
We point out the similarities to the toy model and present the numerical
results.

2. A toy model

As we stated in the introduction there are at least three different mech-
anisms leading to the negative radiation pressure. One of them, which we
believe is the most common, is the one involving two scalar fields with differ-
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ent masses: m1 > m2. An intuitive picture can be following. Suppose that
the object (i.e. topological defect) is hit with a wave with the larger mass.
During scattering process some part of the energy is transferred to the field
with smaller mass. Reflection always pushes the object but sometimes more
radiation goes through the defect and reflected part is negligible.

The incoming wave caries energy and momentum, flow of which can be
expressed as:

Ė1 =
1

2
A2ω

√

ω2 −m2
1 , Ṗ1 =

1

2
A2(ω2 −m2

1) . (1)

For simplicity let us assume that the whole energy goes to the field with
smaller mass, m2. After scattering the flows are following:

Ė2 =
1

2
B2ω

√

ω2 −m2
2 , Ṗ2 =

1

2
B2(ω2 −m2

2) . (2)

Because of energy conservation law Ė1 = Ė2 which gives the square of the
amplitude of the scattered wave

B2 =

√

ω2 −m2
1

ω2 −m2
2

A2 . (3)

Note that if the kink is stationary at the beginning (v = 0) we do not need

to take its kinetic energy to account Ė = d
dt

(

1
2mv

2
)

= mvv̇ = 0. Now we
can compare the momentum flow:
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1

)

A2 . (4)

If m1 > m2 then Ṗ2 > Ṗ1 and the surplus of momentum will be seen as
a force exerted on the defect. In this case the force will be pushing the
defect towards the direction from where the radiation came. This is a case
of the negative radiation pressure. If the defect would be hit with a wave
with smaller mass (in case when m1 < m2) it would be simply pushed by
radiation and ordinary positive radiation pressure could be observed.

Now let us discuss a full field-theoretic toy model example where the
above situation appears. This is a model of two interacting scalar fields in
1+1 dimensions [4]. Without interaction one of them describes the stan-
dard φ4 theory and the second is governed by Klein–Gordon equation. We
add the interaction term which couples the two fields. Lagrangian can be
written as:

L = 1
2

(

φ2
t − φ2

x

)

+ 1
2

(

ψ2
t − ψ2

x

)

− 1
2

(

(φ2−1)+κψ
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− 1
2

(

m2 − κ2
)

ψ2 , (5)
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or equivalently

L = 1
2

(

φ2
t − φ2

x − (φ2 − 1)2
)

+ 1
2

(

ψ2
t − ψ2

x −m2ψ2
)

− κ(φ2 − 1)ψ , (6)

where m is the mass of ψ field and κ is the coupling constant. For small
values of κ≪m, vacuum consists of merely two disconnected points (φ=±1,
ψ=0) revealing Z2 symmetry and domain walls (in general) or kinks (in one-
dimensional models) are possible.

The equations of motion are:

{

φtt − φxx + 2φ(φ2 − 1) + 2κφψ = 0 ,
ψtt − ψxx +m2ψ + κ(φ2 − 1) = 0 .

(7)

The φ-part of static solution with non-zero topological charge is a kink which
is very similar to the one in φ4 theory. The ψ-part is a bell-shaped function
similar to Gauss function (see Fig. 1). However, for κ 6= 0 no analytic
solutions are known.
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Fig. 1. Static solutions (numerical) for the kink for κ = 0.1 and m = 3.0.

Let us consider a process when the kink is hit with a ψ-field wave with
frequency ω coming from +∞. In order to calculate the leading contribution
to the radiation pressure we do not need to know the full kink solution. All
we need is the perturbative series in the coupling constant κ:
φ = φ(0) + κφ(1) + κ2φ(2) + · · · and ψ = ψ(0) + κψ(1) + κ2ψ(2) + · · · .



Negative Radiation Pressure in the Case of Two Interacting Fields 3453

In the order O(κ0) the equations take the form:

φ
(0)
tt − φ(0)

xx + 2φ(0)
(

φ(0)2 − 1
)

= 0 , (8a)

ψ
(0)
tt − ψ(0)

xx +m2ψ(0) = 0 . (8b)

We choose the special solution to the above equations which satisfy our
conditions: the static kink plus a travelling wave:

φ(0) = tanhx , ψ(0) = A cos(kx+ ωt) , (9)

where A is an amplitude of the wave and k =
√
ω2 −m2 is a wave number.

The first order equations are:

φ
(1)
tt − φ(1)

xx + 2
(

3φ(0)2 − 1
)

φ(1) + 2φ(0)ψ(0) = 0 , (10a)

ψ
(1)
tt − ψ(1)

xx +m2ψ(1) +
(

φ(0)2 − 1
)

= 0 . (10b)

The equation (10b) has only static inhomogeneous part so it gives only
correction to the static solution of the kink.

Since ψ(0) = 1
2e

iωt+kx + c.c. the solution to the equation (10a) can be
sought in the following form:

φ(1) = 1
2e

iωtξ+(x) + 1
2e

−iωtξ−(x) , (11)

where ξ+ is a solution to

(

d2

dx2
+ q2 +

6

cosh2 x

)

ξ+ = 2Aeikx tanhx , (12)

with q2 = ω2 − 4 and ξ− = ξ∗+. Fortunately we already know the solution ηq

to the homogeneous part of the above equation (see [2])1

ηq(x) =
3 tanh2 x− 1 − q2 − 3iq tanhx

√

(q2 + 1)(q2 + 4)
eiqx , (13)

and we can use the Green function technique to construct the solution:

ξ+(x) = −η−q

W

x
∫

−∞

dx′ ηq

(

x′
)

f
(

x′
)

− ηq

W

∞
∫

x

dx′ η−q

(

x′
)

f
(

x′
)

, (14)

1 Note that there is no reflected part proportional to e
−iqx.
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where W = −2iq is Wronskian and f(x) = Aeikx tanhx is the r.h.s. of the
equation (12). The solution for large values of x can therefore be written as:

ξ+(x→ +∞) = R(q, k)η−q(x) −
eikx

k2 − q2
, (15)

where

R(q, k) =
π

(

3k2 − q2 − 4
)

2q
√

(q2 + 1)(q2 + 4) sinh
(

q+k
2 π

) (16)

is a reflection coefficient. For x → −∞ similar procedure leads to the fol-
lowing solution

ξ+(x→ −∞) = T (q, k)η−q(x) +
eikx

k2 − q2
, (17)

where T (q, k) = R(−q, k) is a transition coefficient. One can see that for
q = k ⇔ m = 2 the transition coefficient becomes infinite. Of course, this
means that our perturbation scheme fails in the vicinity of this point.

Another important observation is that for q2 = 3k2 − 4 ⇔ ω2 = 3m2/2
the numerator vanishes and the kink becomes transparent.

2.1. The force

Having the asymptotic form of solution representing travelling wave

φ(x, t) =







1
2Aκe

iωt
(

R(q, k)η−q(x)− eikx

k2
−q2

)

+c.c. for x− → +∞
1
2Abκe

iωt
(

T (q, k)ηq(x)+
eikx

k2
−q2

)

+c.c. for x− → −∞
(18a)

ψ(x, t) =

{

A cos(ωt+ kx) for x→ +∞
Ab cos(ωt+ kx) for x→ −∞ (18b)

we can calculate the force which is exerted on the kink by this wave. In the
second equation we changed the amplitude from A to Ab. Actually as we
will shortly show b = 1 +O(κ2) so this correction is not visible at this point
of perturbation series but it is necessary to fulfil the energy conservation
law. If the kink is initially at rest, the rate of energy flowing into a large
box containing the kink is given by

〈

Ė
〉

T
= 〈φtφx + ψtψx〉T

∣

∣

∣

∣

L

−L

=
1

2
ωA2

(

−qκ2R2 + k − kb2 − qκ2T 2
)

, (19)

and since energy must be conserved (〈Ė〉 = 0) we obtain

b2 = 1 − κ2 q

k

(

R2 + T 2
)

. (20)
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This correction to the amplitude of ψ wave would be obtained after cal-
culating next step in our perturbation series but since the energy must be
conserved we obtained this result as a consistency condition. (Similar result
was discussed in more details in [2].) The force exerted on the kink can be
calculated using the momentum conservation law:

F =
〈

Ṗ
〉

T
=

1

2
A2

(

−k2 − κ2R2q2 + b2k2 + κ2T 2
)

, (21)

or using (20):

F =
1

2
A2q

(

T 2(q − k) −R2(q + k)
)

. (22)

The above force is proportional to A2 (contrary to A4 in φ4 model [2]).
Moreover, it can be positive (kink accelerates towards the source of radiation
— negative radiation pressure) or negative (the kink accelerates with the
wave due to the positive radiation pressure). Note that when q < k i.e.

m < 2 the force is always negative (or at most zero) whatever the coefficients
R and T are. When m > 2 the direction in which the kink accelerates can
be determined only after substituting the values of R and T . The negative
radiation pressure appears for all q > k > 0.

3. Numerical calculations

As we have stated before, even in this simple model we do not know the
exact analytical form of static solutions. Therefore, they have to be obtained
numerically. We have done this using collocation Chebyshev spectral method
in the variable s = tanhx. In this way we obtained the solutions φ0(x) and
ψ0(x) depicted in the Fig. 1.

The next step was to find the initial condition representing the travelling
ψ wave. Obtaining a solution satisfying all assumptions of the travelling
wave is rather cumbersome. Therefore, we have decided to use only the
approximation:

φ(x, t = 0) = φ0(x) , φ̇(x, t = 0) = 0 , (23)

and

ψ(x, t = 0) = ψ0(x) +A cos(kx) , ψ̇(x, t = 0) = −Aω sin(kx) . (24)

Disadvantage of the above initial data is that at the very beginning the kink
has a no-zero initial velocity. This is due to the fact that the above initial
conditions are combination of many eigenstates of the linearized equation
around the kink, including a translational mode. However, this type of
conditions show how robust and generic our considerations are.
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We solved our PDE equations (7) using five-point discretization of the
second spatial derivative and integrating the obtained system of ODEs with
4-th order Runge–Kutta method. The example trajectory of the kink is
presented in Fig. 2. The trajectory of the kink is very similar to parabola
(as expected) and we can fit it with a function in the formX(t) = 1

2at
2+vt+c

obtaining its initial velocity v and acceleration a.
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In Fig. 3 we have depicted the measured acceleration as a function of
mass parameter m together with theoretically predicted functions (the force
from equation (22) divided by kink mass for κ = 0: Mk = 4

3 ). This figure
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shows that analytical predictions are quite precise (outside the shaded region
— vicinity of m = 2, when our perturbation scheme fails). Except this low
frequency limit and the vicinity ofm = 2 our theory coincides with numerical
simulation with average error of a few percent which is satisfying having in
mind all the assumptions and simplifications we used. We also confirmed
that the leading term is proportional to A2κ2

4. Vortices

The toy model discussed in the previous sections showed that the nega-
tive radiation pressure appearing in the mechanism of two interacting field is
quite easy to find. In contrary to the mechanism in φ4 model, discussed in [2]
where the transparency of kinks was needed, in our toy model it was suffi-
cient that there were two interacting fields with different masses. Of course,
not all theories of two fields reveal negative radiation pressure. Sometimes
the reflection from the defect is simply too large. However, we can point
out at least two theories which are of much physical interest were the NRP
exists. Let us consider vortices in 2 + 1 Goldstone’s model of complex field

φ̈− ∆φ+ 2φ(φφ∗ − 1) = 0 . (25)

As usual the vortex solution has the form

φs(r, θ) = f(r)eiNθ , (26)

where N is a winding number. Vortices with winding number larger than 1
are unstable so we will consider only the case N = 1.

Let us consider a small perturbation δφ of the field around the static
vortex solution φs. An equation describing the small perturbation of the
vortex has the form

δ̈φ− ∆δφ+ 2
(

2f2 − 1
)

δφ+ 2f2e2iNθδφ∗ = 0 . (27)

One can seek the solution in the form:

δφ =

∞
∑

l=−∞

ei(N+l)θ
(

eiωts+l + e−iωts−l
)

. (28)

It is more convenient to introduce the following variables:

al = 1
2

(

s+l + s−∗

l

)

, (29a)

gl = 1
2

(

s+l − s−∗

l

)

. (29b)
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The equations for new functions are

[

D̂a
2Nl
r2

2Nl
r2 D̂g

] [

al

gl

]

= ω2

[

al

gl

]

, (30)

where

D̂a = −∂rr −
1

r
∂r +

N2 + l2

r2
+ 2

(

3f2 − 1
)

, (31a)

D̂g = −∂rr −
1

r
∂r +

N2 + l2

r2
+ 2

(

f2 − 1
)

. (31b)

The physical interpretation is now clear: al describes a field which far away
from the vortex core looks like a field with mass m2

a = 4 and gl describes
a massless field (the Goldstone’s mode). The massive field is responsible for
amplitude change and the Goldstone’s mode changes only the phase of the
field.

It is possible that with this conditions the negative radiation pressure
can appear. And indeed, our numerical calculations for the full 2 + 1d non-
linear equation ([5]) show that the vortex starts to move towards the source
of radiation when hit with, what we call, the amplitude wave. The phase
(Goldstone’s) wave pushes the vortex away. The initial conditions are re-
spectively:

φamp(x, y, t = 0) = f(r)(1 +A cos(ky + ωt))eiθ , (32)

∂tφamp(x, y, t = 0) = −Aωf(r) sin(ky + ωt)eiθ (33)

for the amplitude wave and

φgold(x, y, t = 0) = f(r)(1 +Ai cos(ky + ωt))eiθ , (34)

∂tφgold(x, y, t = 0) = −Aiωf(r) sin(ky + ωt)eiθ (35)

for the Goldstone’s mode.
In order to calculate the force which radiation exerts on the vortex we

first try to construct a travelling wave plus outgoing scattered wave as a com-
bination of solutions of the linearized equation for different angular mo-
menta. This procedure is very similar to finding a scattering cross-section.
However, the linearized equations behave very badly both at the origin and
in the limit of large r. Our preliminary results suggest that the partial
cross-section for small angular momenta for scattering amplitude to Gold-
stone’s mode (σag) are larger than cross-sections for scattering amplitude
to amplitude mode (σaa). This fact would support our hypothesis that the
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surplus of momentum is created due to the transfer of energy from mas-
sive field to massless Goldstone’s mode. However, for large angular mo-
menta (l > 10) the cross-sections σag tend to zero very quickly whereas σaa

decrease very slowly. This would suggest that the total cross-section for
amplitude-amplitude scaterring is dominant. For large angular momenta,
eigenfunctions are mostly flat for small values of r (similar to Bessel func-
tions with large index), therefore their influence can seen only far away from
the vortex. This gives the following picture. The vortex core experiences
the negative radiation pressure but the “asymptotic cloud” undergoes the
positive radiation pressure. This creates an extra force (or a stress). After
a while the positive part prevails and the whole vortex is pushed by radia-
tion. This is possible because the vortex in Goldstone’s model is a global one
and its field approaches vacuum very slowly, and the energy density is never
negligible. In fact the total mass of a global vortex is infinite. The situation
described above can be seen in a trajectory of topological zero of a global
vortex which is depicted in Fig. 4. One can see that at the beginning the
topological zero (and so the maximum of energy density) moves towards the
source of radiation (NRP) and after a (quite long) time the vortex core is
pushed by radiation. This is a very complicated process. The vortex does
not interact with the radiation as a rigid body.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  20  40  60  80  100  120  140  160  180  200

P
o
si

ti
o
n

 o
f 

to
p

o
lo

g
ic

a
l 

ze
ro

time t

Path of the vortex

Fig. 4. The path of topological zero for Goldstone’s model. The vortex core starts
to move towards the source of radiation. The increasing oscillations of its motion
indicate interaction between the core and the asymptotic cloud. Next the vortex
changes its direction.

Another very often studied model, also with vortices, is the Abelian
Higgs model. Here, complex scalar field is coupled to a vector field. Vortices
in this model are much more compact. They approach the vacuum expo-
nentially fast. Therefore, large angular momentum cross-sections should
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disappear quickly enough and the pure NRP should be visible. This fact
was confirmed by numerically integrating the appropriate system of partial
differential equations. The negative radiation pressure was observed when
the amplitude or vector wave hit the vortex. When the phase wave hit the
vortex positive radiation pressure was observed.

Another interesting model revealing the negative radiation pressure of
the same type is halfcompacton described by Lagrangian ([6]):

L = 1
2 φ̇

2 − 1
2φ

′2 − 1
2 |1 − φ|(φ+ 1)2 . (36)

Small perturbation around φ = −1 vacuum can be described by simple
Klein–Gordon equation with finite mass. The perturbation around the sec-
ond vacuum φ = 1 cannot be described by any linear equation. The second
derivative of the potential is infinite, and hence the mass of the field is,
formally, infinite as well [7]. The defects interpolating between these two
vacua are called halfcompactons since they approach vacuum φ = 1 at finite
distance.

If a wave from the strange vacuum hits the halfcompacton it transforms
into waves with finite mass on the other side of the defect. This is very
similar to the mechanism described upon our toy model. In this model
the interaction is not symmetric and when the halfcompacton is hit with
the wave coming from the normal vacuum there is only positive radiation
pressure. This asymmetry leads to the fact that radiation can push the
halfcompacton quite easily only towards the strange vacuum.

5. Conclusions

In the present paper we have shown the mechanism responsible for the
negative radiation pressure in the case of two interacting fields. When
a topological defect is hit with the more massive field, in favourably condi-
tions, the scattered wave can carry away more momentum the initial wave
brought in. We have introduced a simple toy model where we could study
this phenomenon both analytically and numerically. The mechanism is more
general and can be present in many other field theories. Two such exam-
ples are Goldstone’s model and Abelian Higgs model. We have performed
the numerical calculations for the full partial differential equations and we
have found NRP in both cases. However, the Goldstone’s model, although
described by simpler equations has one difficulty. The vortices described by
this model approach vacuum very slowly and they possess infinite energy.
This results in a complicated interaction between the vortex and the radi-
ation. The vortex core experiences the NRP while the “asymptotic cloud”
feels the positive radiation pressure. This creates an extra force and after
a while the positive radiation pressure becomes dominant and the whole
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vortex is pushed by the radiation. Abelian Higgs vortices are much more
localized objects and in certain conditions they experience a simple negative
radiation pressure.

The presented mechanism of the NRP should be quite general and if only
the reflections from the defect is not too large, should be observed in many
physical systems.
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