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In this paper we investigate the cut-off effects at tree-level of perturba-
tion theory for three different lattice regularizations of fermions — maxi-
mally twisted mass Wilson, overlap and Creutz fermions. We show that all
three kinds of fermions exhibit the expected O(a2) scaling behaviour in the
lattice spacing. Moreover, the size of these cut-off effects for the considered
quantities i.e. the pseudoscalar correlation function CPS, the mass mPS

and the decay constant fPS is comparable for all of them.

PACS numbers: 11.15.Ha, 12.38.Gc

1. Introduction

The main goal of Lattice Field Theory is to study the non-perturbative
aspects of quantum field theories, in particular Quantum Chromodynamics
(QCD). For example, Lattice QCD is a regularization of QCD which con-
sists in putting the theory on a four dimensional lattice (discretization) with
lattice spacing a, whose inverse is the ultraviolet cutoff of the theory. The
discretization of bosons is relatively straightforward, but when one tries to
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discretize fermions in the naive way, the notorious fermion doubling problem
emerges — instead of one fermion in the continuum limit, one has as many
as 2d fermions, where d is the space-time dimensionality. As it was originally
proposed by Wilson [1], the doubling problem can be solved if a different
fermionic discretization is chosen, the so called Wilson fermions. After Wil-
son’s proposal, many alternative fermion discretizations which remove the
doubling problem have been suggested and are still appearing. However,
as stated by the Nielsen–Ninomiya theorem [2], new problems will always
appear when removing the doublers; in order to eliminate the fermion dou-
bling problem one has to pay the price of either explicitly breaking chiral
symmetry (even in the massless limit), or giving up locality or translational
invariance.

Much of the effort of lattice QCD goes into finding a lattice theory with-
out doublers which keeps the largest possible number of symmetries, and
at the same time reaches the continuum limit as fast as possible (the de-
pendence on the inverse cutoff, a, is as small as possible e.g. O(a2) leading
cut-off dependence is better than O(a)).

In this paper, we investigate the cut-off effects at tree-level of pertur-
bation theory of three different discretizations of fermions — twisted mass
Wilson fermions at maximal twist (MTM), overlap fermions and Creutz
fermions, at a fixed value of the physical quark mass. We have presented
a similar analysis for a different value of the quark mass in [3]. Here we
compare the results.

The MTM fermions [4, 5] are relatively cheap to simulate and they are
by now a widely used fermion discretization. Although similar to Wilson
fermions, they retain a subgroup of chiral symmetry which guarantees au-
tomatic O(a) improvement, i.e. O(a2) leading cut-off effects. The price to
pay to have a residual chiral symmetry, is to break a subgroup of the isospin
symmetry transformation1.

It has been shown by Ginsparg and Wilson [7] that there is a way to
preserve chiral symmetry on the lattice, even without the doubler modes, if
the corresponding Dirac operator obeys a relation now called the Ginsparg–
Wilson relation. It is a non-standard realisation of chiral symmetry [8],
because the Dirac operator no longer anticommutes with γ5 at non-zero
lattice spacing, but it only anticommutes with a lattice modified version of γ5.
A particularly simple form of a Dirac operator that obeys the Ginsparg–
Wilson relation has been found by Neuberger [9]. The main disadvantage of
overlap fermions is that they are much more costly to simulate — by a factor
of 30–120 in comparison with MTM fermions2.

1 For a recent review of twisted mass fermions see [6].
2 For a review of overlap fermions see e.g. [10]. For a comparison with twisted mass

fermions see [11].
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The recently proposed Creutz fermions [12] represent the class of minimally-
doubled fermions3. They describe two flavours of quarks and preserve exact
chiral symmetry. However, they break a number of discrete symmetries and
isospin symmetry and this would make their simulation very difficult4.

2. Setup

2.1. Correlation functions

In order to investigate the cut-off dependence of the pseudoscalar meson
mass and decay constant we have to first calculate the correlation function
corresponding to this meson5. Despite the fact that we work at tree-level of
perturbation theory, we will refer to the pseudoscalar meson as the “pion”.

The charged pions are described by the following interpolating operator:

P±(x) ≡ P1(x) ∓ iP2(x) , (1)

where the pseudoscalar density Pa(x) = ψ̄(x)γ5(τ
a/2)ψ(x) (for a = 1, 2, 3)

and τa are the Pauli matrices.
The time dependence of the correlation function CPS(t) is thus given by:

CPS(t) = −
∑

~x

〈0|P+(x)P−(0)|0〉 . (2)

Performing all the possible Wick’s contractions, one obtains the dependence
of the pion correlation function on the quark propagator, Sµ(p), given by

CPS(t) =
NcND

L3T 2

∑

p4

∑

p′
4

∑

~p

∑

µ

ei(p4−p′
4
)t Sµ(~p, p4)S

∗
µ(~p, p′4) . (3)

Nc denotes the number of colours and ND the number of Dirac components.
L = aN is the physical extent of the lattice in the spatial directions (N is
the number of lattice sites in all spatial directions) and T = aN4 the physical
extent in the temporal direction (N4 the number of lattice points in the time
direction). The possible choices of the index µ will be explained below (see
Eq. (10)). The numerical computation of correlation functions consists in
directly evaluating the expression (3).

3 Other examples of minimally-doubled fermions were given by Karsten [13] and
Wilczek [14].

4 For a discussion of this aspect of Creutz fermions see [15].
5 For a pedagogical introduction to the methods we have used in this work see [16].



3466 K. Cichy, J. Gonzalez Lopez, A. Kujawa

2.2. Quark propagators

We present in this section the analytical expressions of the quark propa-
gators, in momentum space and at tree-level of perturbation theory, for the
three kinds of lattice fermions considered in our analysis.

Wilson twisted mass fermions

Stm(p) =
−ip̊µγµ1f +M(p)11f − iµq γ5τ3

∑

µ p̊
2
µ +M(p)2 + µ2

q

, (4)

where

p̊µ =
1

a
sin(apµ) , p̂µ =

2

a
sin
(apµ

2

)

, M(p) = m0+
a

2

∑

µ

p̂2
µ , (5)1 and 1f are the identity matrices in Dirac and flavour space, respectively.

µq is the twisted quark mass and m0 the untwisted quark mass. The max-
imal twist setup consists in setting the untwisted mass to zero6 such that
the quark mass is only given by the twisted mass.

Overlap fermions

Sov(p) =
−i
(

1 − ma

2

)

F (p)−1/2p̊µγµ + M(p)1
(

1 − ma

2

)2
F (p)−1

∑

µ p̊
2
µ + M(p)2

, (6)

where

F (p) = 1 +
a4

2

∑

µ<ν

p̂2
µp̂

2
ν ,

M(p) =
1

a

(

1 +
ma

2
−
(

1 − ma

2

)

F (p)−1/2
(

1 − a2

2

∑

µ

p̂2
µ

)

)

, (7)

m is the bare overlap quark mass.

Creutz fermions

SC(p) =
−i∑µ pµγ̄µ +m01

∑

µ

∑

ρ pµpµāρµāρµ +
∑

µ6=ν

∑

ρ pµpν āρµāρν +m2
0

, (8)

6 This can be done exactly only at tree-level. A fine tuning is required in the interacting
theory.
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where

ā =
1

R









1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

−3
√

1−C2

C −3
√

1−C2

C −3
√

1−C2

C −3
√

1−C2

C









,

γ̄ = āTγ, m0 — bare quark mass, C — lattice geometry parameter, R —
C-dependent normalisation factor needed to obtain the correct continuum
limit. We consider two values of C: C = 3/

√
10 (R = 2)7 and C = 3/

√
14

(R = 2
√

2)8.

We also consider a modification of Creutz’s action suggested by Borici
[17]. We call the corresponding fermions the “Borici fermions” and the quark
propagator for them is

SB(p) =
−i∑µGµ(ap)γµ +m0 1
∑

µGµ(ap)2 +m2
0

, (9)

where the functions Gµ(ap) are

G1(ap) = p̊1 −
a

4

[

p̂2
1 + p̂2

2 − p̂2
3 − p̂2

4

]

,

G2(ap) = p̊2 −
a

4

[

−p̂2
1 + p̂2

2 − p̂2
3 − p̂2

4

]

,

G3(ap) = p̊3 −
a

4

[

−p̂2
1 − p̂2

2 + p̂2
3 − p̂2

4

]

,

G4(ap) = p̊4 −
a

4

[

−p̂2
1 − p̂2

2 − p̂2
3 + p̂2

4

]

.

Quark propagator decomposition. All of the quark propagators are
matrix expressions that can be decomposed in terms of the gamma matrices
and the identity matrix:

S(p) = SU(p)1+
∑

µ

Sµ(p)γµ , (10)

where µ = 1, 2, 3, 4 for overlap and Creutz fermions and µ = 1, 2, 3, 4, 5 for
twisted mass fermions.

7 This value corresponds to the hypercubic lattice.
8 This value corresponds to a highly symmetric lattice geometry, which is the 4-dimen-

sional analogue of graphene structure.
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3. Scaling tests

In this section we present the scaling tests performed on the pseudoscalar
correlation functions, masses and decay constants. We employ the following
strategy; we fix Nm = 0.8 (where m is the bare quark mass in lattice units)
and calculate the correlators towards the continuum limit (a → 0). At tree
level of perturbation theory this is equivalent to the limit N → ∞. The time
extent is always set to be larger than and an integer multiple of the spatial
extent.
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Fig. 1. Cut-off effects and continuum limit of the pseudoscalar correlation function.

In Fig. 1 we show the correlation function at a fixed physical time t/N=
4, which is large enough to allow for a reliable extraction of the ground
state contribution. To compare different fermion discretizations, we extract
the coefficients, Table I, of the fitting curves shown in Fig. 1. We use the
following form of the fitting function:

N3CPS = a+ b
1

N2
+ c

1

N4
. (11)

TABLE I
Fit coefficients for the pseudoscalar correlation function.

N3CPS(t/N = 4) a b c

MTM 0.00996934 0.00170143 0.00002268
OVERLAP 0.00996934 −0.00021268 −0.00006924
BORICI 0.00996934 0.00329653 −0.00116956

CREUTZ — C = 3/
√

10 0.00996934 0.00499799 0.000201048
CREUTZ — C = 3/

√
14 0.00996934 0.00412066 −0.00143986
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Fig. 2 shows the pseudoscalar mass and in Table II we have gathered
the coefficients of the following fit:

NmPS = a+ b
1

N2
+ c

1

N4
. (12)
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Fig. 2. Cut-off effects and continuum limit of the pseudoscalar mass.

Fig. 3 presents the pseudoscalar decay constant and Table III the coef-
ficients of the following fit:

NfPS = a+ b
1

N2
+ c

1

N4
. (13)
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Fig. 3. Cut-off effects and continuum limit of the pion decay constant.
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TABLE II
Fit coefficients for the pseudoscalar mass.

NmPS a b c
MTM 1.6 −0.042667 0.003045
OVERLAP 1.6 0.085333 0.008182
BORICI 1.6 −0.202667 0.058999
CREUTZ — C = 3/

√
10 1.6 −0.032000 −0.106063

CREUTZ — C = 3/
√

14 1.6 −0.200000 0.029668

TABLE III
Fit coefficients for the pseudoscalar decay constant.

NfPS a b c
MTM 2.73861 0.109545 −0.004307
OVERLAP 2.73861 0.219089 0.028606
BORICI 2.73861 −0.136931 −0.027123
CREUTZ — C = 3/

√
10 2.73861 0.593370 −0.388244

CREUTZ — C = 3/
√

14 2.73861 −0.015977 −0.195636

All types of fermions show the expected behaviour in the lattice spacing
— O(a2) scaling violations. This is due to the exact chiral symmetry for
overlap and Creutz fermions, and to the residual chiral symmetry for MTM.

The continuum limit for each observable is always the same for every
discretization (and the expected one for the mass at tree-level of perturba-
tion theory), thus providing a first check of consistency of the corresponding
lattice regularizations here analyzed. The magnitude of the O(a2) effects
is, however, very different for different discretizations and depends on the
observable under consideration. For example, for the correlation function at
a fixed physical time, the smallest effects are exhibited by overlap fermions
and the largest by Creutz fermions with C = 3/

√
10. For the pion mass,

however, the O(a2) scaling violations are the smallest for Creutz fermions
with C = 3/

√
10 and the largest for Borici fermions. Therefore, there are

no definite conclusions, from this scaling test at tree-level, of which fermions
exhibit the smallest O(a2) effects. The only clear regularity that we ob-
serve is that the discretization errors for twisted mass fermions at maximal
twist are rather small for all observables that we have considered. Even the
recently proposed Creutz fermions and their modification by Borici, which
break a number of important discrete symmetries, do not suffer from very
large O(a2) scaling violations at tree-level of perturbation theory and thus
cannot be excluded from this point of view.

We have compared the results for the scaling behaviour here presented
with the ones discussed in [3], where the same study for a different value of
the quark mass (Nm= 0.5) was performed. We observe that, as expected,
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for all the quantities which have a well-defined continuum limit, the relative
discretization errors (ratio of the coefficient of the O(a2) effects with respect
to the continuum value) decrease when decreasing the quark mass indepen-
dently of the action considered, while the difference of the relative discretiza-
tion errors can vary between the actions considered here when changing the
quark mass.

4. Conclusion

We have performed a scaling test of three different lattice fermion reg-
ularisations at tree-level of perturbation theory; the widely used twisted
mass and overlap fermions and also the recently proposed minimally-doubled
Creutz fermions. All these discretizations lead to the same continuum limit
and are O(a)-improved, but the relative sizes of the O(a2) effects depend
strongly on the observable we choose for the analysis. Therefore, we cannot
exclude or put a preference, from the tree-level study of the lattice artifacts,
on any particular fermion discretization of the three here considered. Itwill,
therefore, be interesting to test these discretizations in the interacting theory
in practical simulations.

We want to thank very much K. Jansen and A. Shindler for their constant
support, guidance and many interesting discussions and comments. And
because without them this work would not have been possible.
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