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ON NUCLEAR STATES OF STRANGE MESONS
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The search for nuclear states of K-mesons and η-mesons is presented.
Methods of theoretical descriptions and the related difficulties: off shell
extrapolation of meson–nucleon scattering amplitudes, behavior of hadronic
resonances in nuclei and extrapolation to high density nuclear regions are
discussed. Variational calculations for the binding energies in light nuclei
are described.
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1. Introduction

States involving mesons bound in nuclei have a long history. The first ex-
amples were µ and π atomic states. The muons were a valuable instrument to
study the nuclear shape and nuclear dynamics. The pions gave information
on πN interactions, the behavior of π’s in a nuclear medium and, in partic-
ular, on the question of chiral symmetry restoration (see ref. [1]). Beginning
with loosely bound atomic states, studied by X-ray measurements, one has
now reached deeply bound states formed by the combination of Coulomb
and strong interactions. This history has been repeated with K-mesons.
In addition to atomic states, recent experiments have indicated that there
could be systems where K-mesons are deeply bound by nuclear forces. Such
systems are likely to be strongly compressed opening a way to study new
physics involving multi-quark configurations. Another mechanism to form
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such states is connected to excitations of nuclear resonances. This along with
the η-nucleus bound states are the topics discussed in this report. These
systems of open-strangeness, in the K case, and hidden-strangeness in the
η case have a common mechanism for the nuclear attraction. It is related
to baryon resonant states: the strange Λ(1405) and non-strange N(1535),
respectively.

1.1. Nuclear states of the η-meson

The first experimental attempts to find an η bound to a nucleus [2]
were unsuccessful apparently due to large experimental backgrounds or large
widths of such states. The first signal came from light nuclei. In the forma-
tion reaction pd→3He η a strong enhancement of the amplitude is observed
close to the η production threshold [3]. A similar, although weaker effect
is seen in the pn →2D η reaction, [4]. The information obtained from these
reactions is rather indirect and based on final state interactions of the η.
Roughly, such interactions are described by a factor

| Tη |2=
∣

∣

∣

Fη

1 − iqηAη

∣

∣

∣

2

, (1)

where Fη is a formation amplitude, qη is the momentum and Aη is the scat-
tering length of η on the residual nucleus. Strong threshold enhancements
happen when scattering lengths are large, and this signals states of small
binding. Measurements of cross sections permit one to determine the mod-
ulus of Tη and also to extract the modulus of Aη. The 3He η experiments
yield | Aη |≃ 5 fm [5]. Such a length is large compared to the size of the
nucleus and indicates a quasi-bound (if Re Aη < 0) or a quasi-virtual state
(if ReAη > 0). The first case presents an analog of the deuteron, the second
case represents an anti-bound state known in the np spin singlet system in
“ordinary” nuclear physics. In terms of Eq. (1) these cases correspond to
different locations of the singularity in Tη . More detailed information on the
nature of the bound state may be obtained from inelastic π+ and π0 produc-
tion reactions which require a multichannel K-matrix description instead of
Eq. (1). Along this line, the value Aη = 4.24(29)+i0.72(81) fm was obtained
in Ref. [6]. It indicates the existence of a virtual state in the 3He η system
and also tells that the absorption due to η → π conversion is rather weak.
Lengths of this order are within the range of the contemporary understand-
ing of ηN interactions based on the dominance of N(1535), and suggest the
existence of bound states in heavier nuclei. Recently, a new and dramatic
evidence has been given by a (preliminary) Juelich result which determines
cross sections much closer to the threshold [7]. The length now becomes
Aη = ±10.7(0.8) + i1.5(2.6) fm. Such a result, if confirmed, indicates a very



On Nuclear States of Strange Mesons 335

narrow state, only a fraction of an MeV away from the threshold. In order
to generate it in terms of an optical potential one would need very strong
blocking of the main η → π decay process. Such a mechanism is indicated
in the next section.

1.2. Nuclear states of the K-meson

It has been known since the first measurements of X-rays from K− atoms
that the optical potential used to describe atomic levels is attractive. The
dominant term

UK(r) =
2π

µKN
fKNρ(r) (2)

is parameterized by an effective scattering length fKN . Here ρ denotes
the nuclear density, µKN the reduced mass. It was soon realized that the
attraction is related to the Λ(1405), isospin 0, baryon located some 28MeV
below the KN threshold. This baryon may be a KN quasi-bound state,
which decays into the πΣ channel, or to some extent a genuine quark state.
The K atoms are tested only in states of large atomic angular momenta.
The meson barely grazes the nucleus and the energy of an average KN pair
stays negative. The fKN which is needed involves the subthreshold energy
region

fKN = fKN(−EB − Erecoil) , (3)

where EB is the KN separation energy and Erecoil the recoil energy of the
KN pair relative to the rest of the system. In atomic states the energies
in Eq. (3) span the region from a few to about 50MeV. There the Λ(1405)
dominated amplitude is roughly

fKp(E) ≃
γ2

E − E∗
, (4)

where γ is a coupling constant and E∗ = Er−iΓr/2 is the complex resonance
energy. Below the resonance energy Er this amplitude is negative and the
optical potential becomes attractive. This kind of attractive mechanism is
operating also in the η case. The difference is that the resonance N(1535) is
of a quark nature and is located above the ηN threshold. Such a mechanism
of attraction is the usual “level repulsion rule”, found in atomic physics. The
baryon resonance states are external to the meson nucleon scattering states.
For energies below E < Er the resonant states generate attraction while for
E > Er the effect is repulsive.

The optical potential for K-mesons is well tested only on the nuclear
surface, optical potentials for η so far have not been tested by real exper-
iments. However, there exist many theoretical or semi-phenomenological
calculations. Two problems are met in such calculations: (1) Which way
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the resonances behave in nuclear matter; (2) How to extrapolate to central
nuclear densities.
A phenomenological approach is to expand the effective amplitude fKN in
terms of nuclear density, fit the parameters to atomic level data and extrap-
olate to the nuclear center. Such a method simulates the energy dependence
inherent in fKN(E) and turns it into an effective density dependence [8].
It yields deep potentials ReUK(0) ∼ −180MeV which could support bound
states. This calculation is confirmed in a RMF study by the same group [9].
Another method uses the effective amplitude calculated in terms of the chi-
ral meson–nucleon interaction embedded into a nuclear medium [10]. Some
parameters have to be fitted to the atomic data. This leads to a shallow po-
tential of ReUK(0) ∼ −50MeV. With both methods based on atomic data
the absorptive parts ImUK(0) are large about ∼ 50–100MeV. Thus deep po-
tentials could generate bound but very broad states, the shallow potentials
are unlikely to form bound states. A somewhat different approach was used
in the calculations of Ref. [11]. There, a multichannel, phenomenological
potential U , which yields reasonable atomic levels is used to calculate the
energy levels of K-mesons in nuclear matter. The method solves multichan-
nel scattering equations in the nuclear medium

f̂(E) = V̂ + V̂
Qex

E − Eint
f̂(E) , (5)

where Qex is the Pauli exclusion operator. Intermediate state energies Eint =
EN +UK +MK +Ekinetic

K include complex energies determined by the self-
consistent value of UK . The on-shell energies are E = E′

N +MK −BK . This
yields a value ReUK(0) ∼ −90MeV consistent with the recent extraction
of ReUK(0) = −80MeV obtained from heavy ion collisions [12]. Another
result obtained from Eq. (5) is a 20MeV upward shift of the Λ(1405) in
the nuclear surface region. The latter is supported by the nuclear emulsion
data [13]. However, it has to be stressed that the extrapolation to central
densities is model unstable and depends strongly on the form of Eint and
the on-shell E introduced into Eq. (5). This problem is also related to the
widths of nuclear states. It was pointed out in Ref. [11] that Kaon states
may be narrow, since the main decay channel πΣ is closed in the deeply
bound states in large nuclei. The main decay mode becomes KNN → ΣN
which was estimated to yield ∼ 20MeV widths. This question is still open
and requires further study.

In recent years, the existence of deeply bound states has been very ac-
tively discussed. It followed the discovery at KEK of 30MeV wide peaks
in the nucleon spectra following K− absorption in 4He, [14, 15]. Additional
evidence was given by the FINUDA measurement of the invariant Λp mass
distribution obtained in K− absorption in light nuclei [16]. The existence
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of such bound states could have been expected in view of the kaonic atom
experience. However, the KEK and FINUDA experiments indicate unex-
pectedly strong bindings of the order of 100–200MeV in the lightest KNN
and KNNN systems. These experiments require confirmation, and the in-
terpretation of the observed peaks has been disputed [17, 19]. On the other
hand, calculations indicate that such states are expected, although they
might be very broad and difficult to detect.

The first calculations performed by Akaishi and Yamazaki in Ref. [18]
exploited the S-wave resonant attraction due to the Λ(1405) state. With an
optical model type of approach it was shown that ReUK(0) at the center
of small nuclei can be as strong as 500MeV generating very strong bindings
of the K-meson and strong contraction of the few-nucleon systems. To
reproduce the KEK data, these calculations had to relax the NN repulsion
at short distances which, only then, would allow the existence of strongly
bound and very dense systems. The central part of such a system would
now be better represented as a multi-quark state. These calculations raise
an important question of how to implement the proper short range NN
repulsion in the kaonic systems.

Another open question is related to the strength and range of KN inter-
actions. The mathematical description of few body systems requires knowl-
edge of NN and KN off-shell scattering amplitudes. Those related to NN
interactions are controlled fairly well in terms of modern NN potentials.
But for bound K-mesons the required amplitudes involve distant subthresh-
old energy regions. If the separation energy is as strong as 100MeV, meson
momenta become ≈ 250MeV/c and Erecoil may be as large as 40MeV. The
energies of interest (−EB −Erecoil) are then located well below the Λ(1405)
state. The amplitudes there are not well known.

This paper uses a variational model to elucidate some of the problems
in this field. The basic ingredients are:

1. To account properly for the KN force range and NN repulsion, a two
step calculation is performed. First a wave function involving strongly
correlated K–N subsystems is found in a fixed nucleon approximation.
This step enables one to find potentials due to the K-meson which tend
to contract the nucleons. Next, these correlated wave functions and
contracting potentials are used as input in variational calculations for
K-few-nucleon binding.

2. While the dominant mechanism of attraction is related to the Λ(1405)
state, it is found that another resonant state Σ(1385) also contributes
to the binding in KNNN , KNNNN systems [23]. The latter state
generates an additional branch of K-few-nucleon spectroscopy.
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2. Variational approach

This section presents an introduction to the method. In the first step the
meson binding energy and wave function is found with the nucleons fixed
at coordinates xi(i = 1, 2, . . . , n). In the next step this solution is used as
an input to a variational calculation of the binding energy of the meson and
n-nucleons. The method is presented in detail for a single KNN channel.
It may be extended to a multichannel description in few-nucleon systems
and with some changes it is applicable to the η-meson case.

Consider the scattering of a light meson on two identical, heavy nucleons
fixed at coordinates xi(i = 1, 2). The wave function is assumed to be of the
form

Ψ(x, x1, x2) = ψK(x, x1, x2)χNN (x1, x2) , (6)

where x is the meson coordinate. The meson wave function ψK is given by
the solution of the multiple scattering equation

ψK(x, x1, x2) = ψK(x)0 −Σi

∫

dy
exp [ip | x − y |]

4π | x − y |
UKN (y, xi)ψK(y, x1, x2)

(7)
obtained with fixed positions of the nucleons. A related procedure with
a zero range meson–nucleon pseudo-potential U was used by Brueckner [20]
to calculate the scattering length of a meson on two nucleons. At high
energies this equation was extensively discussed by Foldy and Walecka [21]
with separable interactions U . Here, the method is extended to the bound
state problem. In the K-meson case one looks for solutions of Eq. (7) with
no incident wave ψK(x)0. The momentum p → p(xi) becomes a complex
eigenvalue which determines the energy and width of the system for givenxi.

Eq. (7) is written in terms of the Klein–Gordon propagator. This reflects
on the normalization of the interaction UKN = 2µKNV . The potential V
for an S-wave interaction is chosen in a separable form

V (x − xi,x
′
−xi)=λSvS(x−xi)vS(x′

−xi) , (8)

where vS is the Yamaguchi form-factor and λS is a strength parameter. The
eigenvalue equation now becomes

ψK(x)=−ΣjλS

∫

dy
exp [ip | x−y |]

4π | x−y |
vS(y−xj)

∫

dy′vS(y′
−xj)ψK(y′) .

(9)
Eq. (9) may be reduced to a matrix equation for wave amplitudes ψi defined
at each scatterer i

ψi =

∫

dx vS(x − xi)ψK(x, x1, x2) . (10)



On Nuclear States of Strange Mesons 339

A few steps, described in some detail in Ref. [21], are necessary to bring
Eq. (9) into standard multiple scattering equations for ψi. These are:
(1) Integration over the i-th form-factor as in Eq. (10); (2) Selecting the
i-th term from the right-hand side which has the form −λG; (3) Inverting
the diagonal in the i term of 1 + λG. In this way the kernel of the multiple
scattering equation can be expressed in terms of the S-wave scattering am-
plitudes f s at each nucleon i and propagators describing the passage from
nucleon i to the other nucleon j. The latter are given by

Gi,j =

∫

dydx v(x − xi)
exp(ik | x − y |)

4π | x − y |
v(y − xj) . (11)

And so one arrives at a set of linear equations

ψi +Σj 6=iGi,jfjψj = 0 , (12)

which may be solved numerically. For the sake of illustration we present
the KNN case in some detail. The condition for a bound state with two
amplitudes ψi is a 2 × 2 equation

ψ1 + f sGssψ2 = 0 , ψ2 + f sGssψ1 = 0 . (13)

When the determinant D = 1 − (f sGss)2 is set to zero, the binding “mo-
menta” p(xi) may be obtained numerically. Two different solutions corre-
sponding to 1 + f sGss = 0 or 1 − f sGss = 0 may exist. The first solution
is symmetric ψ2 = ψ1 and describes the meson in the S-wave state with
respect to the NN center of mass. The second solution is antisymmetric
ψ2 = −ψ1 and, if it exists, describes a P -wave solution.

Eigenvalues corresponding to unstable quasi-bound states are obtained
in the second quadrant of the complex p(xi) = pR + ipI plane. In this
quadrant the kernel

f sGss = f s
KN(p)[exp(−pIr) exp(ipRr) − exp(−κr) − r

κ2 − p2

2κ
exp(−κr)]/r

(14)
is exponentially damped at large distances as required by the asymptotic
form of the bound meson wave function. At short distances Gss is regularized
by the KN form-factor. It is essential for the stability of the method that
the KN interaction range is very short. Therefore, uncertainties related to
the actual value of κ are largely eliminated by the short range repulsion in
NN systems.

In the specific case, where the scattering amplitude in the Λ(1405) is
dominated by the fKp of Eq. (4), the solution 1 + f sGss = 0 for the S-state
becomes

E = E∗ − γ2Gss(r, p(E)) . (15)
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Since Gss(r, p(E)) close to resonance is positive, this solution results in bind-
ing stronger than the ≈ 28MeV binding in Λ(1405). Asymptotically, for
r 7→ ∞ one obtains E = E∗, i.e. a kaon bound to a proton to give the
Λ(1405). At short NN distances the binding energy reaches ∼ 300MeV.

With symmetrized nucleon states, this type of asymptotic behavior is
characteristic for all solutions in few nucleon cases of interest. Eq. (15)
also allows one to determine some broadening of Λ(1405) in the NN sys-
tem or more precisely the width of the KNN state. This effect becomes
more transparent in the two channel KN,πΣ formulation where ψi has two
components and Eq. (12) becomes a 4 × 4 multichannel equation. Close to
resonance the scattering amplitude is given by

fa,b ≈
γaγb

E − E0 + iΓ/2
. (16)

Consistency requires the width to be Γ/2 = pπ(γb)
2 where pπ is the momen-

tum in the decay channel. The singular term in Eq. (16) permits one to find
an eigenvalue solution in a fairly simple form. It is presented below in the
limit of zero range KN (and Σπ) force. The binding energy

ReE = E0 − (γK)2
cos(pRr)

r
exp(−pIr) − (γπ)2

cos(pπr)

r
(17)

becomes larger than the binding of the resonance but the effect of the decay
channel indicates oscillations. This oscillatory behavior is also seen in the
width of the system

ImE = −Γ/2

[

1 +
sin(pπr)

pπr

]

+ (γK)2
sin(pRr)

r
exp(−pIr) . (18)

The effect of KN scattering represented by the second term enlarges the
width as pR is negative. In practice, this term describing the collision broad-
ening is small. The contribution from multiple scattering in the decay chan-
nel oscillates and may under some conditions reduce the total width. That
is an effect of destructive interference in the decay channel, known to exist in
multichannel systems. In practice this effect is negligible in the KNN case
but may be of significance in heavier systems. In particular it may reduce
the widths of the mesonic state in K–NNNN and η–NNNN systems.

The parametrization of separable interactions is adjusted to reproduce
the resonances in the KN center of mass system. For consistency, the me-
son propagator in Eq. (7) is chosen to make this equation equivalent to
a differential equation

(Ec2µKN +∆x − UKN )ψK(x, xi) = 0 . (19)
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With nucleons fixed at some distance, the energy Ec = p(xi)
2/2µKN gen-

erates the potential contracting the NN system to a smaller radius. This
effect is discussed now in terms of the Schrödinger equation.

The solution of the full KNN bound state problem is given by

(

E −
∆x

2m
−
∆1

2M
−
∆2

2M
− VKN − VNN

)

Ψ = 0 , (20)

wherem,M are the masses of the meson and nucleon. To find the solution we
assume the wave function to be given by Eq. (6) i.e. ψK(x, x1, x2)χNN (r).

Multiplying Eq. (20) on the left by ψK and integrating over the meson
coordinate x one obtains the Schrödinger equation for the NN wave function

χNN (r) =

∫

dxψK(x, xi)Ψ(x, xi) (21)

in the form
(

E − Ec(r) +
∆1

2M
+
∆2

2M
− VNN

)

χ+∆Ekinχ = 0 , (22)

where the last term ∆Ekin is a correction to the nucleon kinetic energies.
It is given by

∆Ekinχ = −
1

M
Σi

∫

dx ∂iψK∂iΨ +∆δχ . (23)

The first term turns out to be very small due to angular averaging and
sign changes in both derivatives. The second comes from the δ-function in
∆ψK from Eq. (9) and is small but not negligible. These corrections may
be calculated as perturbations. The generalization to few nucleons is in
principle straightforward but the corresponding Schrödinger equation has
to be solved by the variational method.

The actual binding energy is determined by the repulsive core in the NN
interactions. With the Argonne [24] NN potential this method yields the
lowest state of the KNN to be bound by about 40MeV. Similar numbers are
obtained with different calculations based on the same NN repulsion [25,26].
On the other hand, full three body calculations in Ref. [27] based on a limited
separable description of the NN repulsion generate 50–70MeV binding.

The corresponding KNNN state is bound by about 90MeV. In the
KNN system the effect of the Σ(1385) is small, but in the KNNN state it
adds some 15MeV contribution to the binding. Another effect of Σ(1385)
is the existence of a new branch of P -wave states bound by 50–60MeV.
These states are very broad with Γ ∼ 40–50MeV. However, the analogous
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KNNNN state seems to be of greater interest as now the binding is large
enough to block the main two body decay channels and to reduce strongly
the three body decay mode.
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