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The decay of 2-gluon colour singlets in quarks: 2g → qq̄+2q2q̄ has been
simulated with the Monte-Carlo method, taking into account an effective
1-gluon exchange interaction between the emitted quarks, which was folded
with a 2-gluon density determined self-consistently. 2-gluon densities were
found with different radii, which correspond to 0++ glueballs of the size of
light qq̄, ss̄, cc̄, bb̄ and heavier qq̄ systems. Binding potentials between the
two gluons have been deduced, which are consistent with the confinement
potential from lattice results. However, self-consistency for the deduction
of 2-gluon densities requires massless (or very light) quarks for all flavours.
The masses are given by the binding energies of quarks and gluons, yielding
excitation spectra of 0++ glueballs and Φ, J/Ψ and Υ states consistent
with observation. The sum of q–q potentials yields a strong coupling αs

consistent with the available data up to large momenta.
The nucleon is described by a gluonium state coupled to 3 valence quarks,
yielding ground state and radial excitations consistent with experiment.
Finally, we discuss the compressibility of the nucleon and relate it to that
of nuclear matter.

PACS numbers: 12.38.Aw, 12.39.Mk, 14.20.Dh, 14.40.–n

1. Introduction

The two key problems in the understanding of the strong interaction
are the confinement of quarks and gluons and the origin of mass, both re-
lated to the non-perturbative structure of quantum chromodynamics (QCD).
A linearly rising confinement potential between quarks has been derived in
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potential models [1, 2] and lattice QCD simulations [3, 4], but its origin is
not well understood. The mass term in the QCD Lagrangian is also not un-
derstood, but for the generation of mass a coupling of the quarks to a scalar
Higgs background field has been proposed. Finite quark masses give rise to
the axion problem, which has not been solved.

For the description of QCD in the non-perturbative regime mainly two
non-perturbative methods have been applied, solutions of Dyson–Schwinger
equations [5] and lattice QCD [6], which solves the QCD equations by path
integral methods on a space-time lattice.

2. Deduction of 2-gluon densities

In this paper a new phenomenological method is presented, which starts
from the conjecture that the non-Abelian structure of QCD may generate
bound 2-gluon systems, which decay into qq̄ pairs. For the description of
such bound states Φ we write the radial wave functions in the form ψΦ(~r =
~r1 − ~r2) = [ψ1(~r1) ψ2(~r2)], where ψj(~rj) are the radial wave functions of the
two gluons. To investigate the properties of such 2-gluon systems we studied
the decay 2g → qq̄+2q2q̄ with an attractive interaction between the emitted
quarks.

Assuming an effective 1-gluon exchange interaction V1g(R) = −αs/R
between the emitted quarks with relative distance R = |~ri − ~rj|, the decay
from a 2-gluon system 2g → (qq̄)n requires a modification of the free q–q
interaction by the density of the 2-gluon system, which may be expressed
by a folding integral

Vqq(R) =

∫

d~r ρΦ(~r ) V1g(~R− ~r ) , (1)

where ρΦ(~r ) is the 2-gluon density ρΦ(~r ) = |ψΦ(~r )|2.
It is interesting to note, that for a spherical density the Fourier transform

of Eq. (1) to momentum (Q) space yields

Vqq(Q) = −
4παs

Q2
ρΦ(Q) , (2)

where ρΦ(Q) = 4π
∫

r2dr j0(Qr) ρΦ(r). Comparing this with the stan-
dard 1-gluon exchange force yields a Q-dependent strong coupling αs(Q) =
αs ρΦ(Q), which is qualitatively consistent with the known fact of a “running”
of αs(Q) and the condition αs(Q)→ 0 for Q→∞ (asymptotic freedom).

Further, finite size of the decaying 2-gluon system have been taken into
account, as well as the fact that the decay into 2q2q̄ favours relative angular
momentum L = 0 between the emitted quarks, whereas for the decay in qq̄
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the outgoing quarks are in a relative p-state (L = 1). Details are given in
Ref. [7]. By relativistic Fourier transformation [8] the effective interaction (1)
can be transformed to momentum space

Vqq(Q
′) = 4π

∫

R2dR j0(Q
′R) Vqq(R) , (3)

with Q′ = Q
√

1 + [Q2/4m2
Φ] and mΦ being the mass of the 2-gluon system.

Monte-Carlo simulations of gluon–gluon scattering have been performed
in fully relativistic kinematics, in which the 2 gluons in the final state can
decay in qq̄ and 2q2q̄ (using massless quarks). The potential Vqq(∆p) (3)
has been used as a weight function between the outgoing quarks (with the
relative momenta ∆~p = ~pi − ~pj). Resulting gluon momentum distributions
dqq̄(Q) and d2q2q̄(Q) for decay into qq̄ and 2q2q̄ were generated. Their sum
DΦ(Q′) = dqq̄(Q

′) + d2q2q̄(Q
′) can be related to the radial density ρΦ(r) of

the 2-gluon system

DΦ(Q′) = 4π

∫

r2dr j0(Q
′r) ρΦ(r) , (4)

with Q′ as in Eq. (3).
The condition that ρΦ(r) in the interaction (3) and in Eq. (4) should

be the same allowed us to determine this density. Resulting momentum
distributions dqq̄(Q) and d2q2q̄(Q) for a self-consistent solution with 〈r2〉 ≈
0.5 fm2 are given in the upper part of Fig. 1. We see that the sum DΦ(Q)
is in reasonable agreement with ρΦ(Q) from the Fourier transformation of
ρΦ(r) inserted in Eq. (3) (dot-dashed line), which is quite well approximated
by a radial dependence ψΦ(r) = ψ0 exp[−(r/a)κ] with values of κ of about
1.5. The resulting density is given in the lower part of Fig. 1, which indi-
cates clearly that a self-stabilized 2-gluon field is generated. The mass mΦ

in the relation between Q and Q′ has been used as a fit parameter; for a 2-
gluon system with a mean square radius of about 0.5 fm2 this yields mΦ ∼
0.68 GeV. This is consistent with the gluon pole mass of 0.64 ± 0.14 GeV
deduced in Ref. [9]. We shall see, that the extracted mass can be under-
stood as binding energy of the 2-gluon system including relativistic mass
corrections.

The extracted 2-gluon density should give a significant contribution to
the gluon 2-point functions extracted from lattice QCD simulations in form
of gluon field correlators [10,11] and the QCD gluon propagator (see eg. [12]).
In the upper part of Fig. 2 we make a comparison of our results with the
2-gluon field correlator C⊥(r) of Di Giacomo et al. [11], in the lower part
with the gluon propagator of Bowman et al. [13].
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Fig. 1. Upper part: Resulting 2-gluon momentum distributions (multiplied by Q2)

for decay in qq̄ and 2q2q̄ and sum. Lower part: Deduced 2-gluon density with

estimated error band.

We get a good agreement with the lattice data (note that in Fig. 2 the
gluon propagator is multiplied by Q2) but we have to add a second 2-gluon
component of smaller size, given by the dot-dashed lines.

3. Bindung potential of gluons and 0++ glueball states

A finite 2-gluon density, as shown in Fig. 1, may be interpreted as
a bound state of the two gluons (glueball). Therefore, from the 2-gluon
density the binding potential of the 2-gluon system can be obtained by solv-
ing a three-dimensional reduction of the Bethe–Salpeter equation in form of
a relativistic Schrödinger equation

−

(

~
2

2µΦ

[

d2

dr2
+

2

r

d

dr

]

− VΦ(r)

)

ψΦ(r) = EiψΦ(r) , (5)

where ψΦ(r) is the 2-gluon wave function and µΦ a relativistic mass param-
eter which is related to mΦ by µΦ = 1

4
mΦ + δm, where δm is a relativistic

correction.
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Fig. 2. Gluon field correlator log(C⊥) from Ref. [11] (upper part) and gluon prop-

agator from Ref. [13] (lower part) from lattice QCD simulations in comparison

with our results. The lower solid lines correspond to the density ρΦ(r) and its

Fourier transform ρΦ(Q), respectively, and the dot-dashed lines to an additional

vector component. The sum of both contributions yields a good description of both

lattice data.

Slightly different solutions of the binding potential were obtained, which
are given by the dot-dashed and dashed lines in the upper part of Fig. 3.
Because of the relation 2g → (qq̄)n this potential can also be considered as
confinement potential between the emitted quarks. This is in a surprising
agreement with the 1/r+ linear form expected from potential models [1, 2]
and consistent with the confinement potential from lattice QCD [4]. It is
important to note that our potential reproduces the 1/r+ linear form with-
out any assumption on its distance behavior; this is entirely a consequence
of the deduced radial form of the 2-gluon wave function.

Bound state energies Ei = 0.68± 0.10 GeV, 1.70± 0.15 GeV, and 2.58±
0.20 GeV have been extracted. Further, in the q–q potential (3) we find one
bound state with an energy in the order of −10 MeV. This very low binding
energy indicates clearly that the glueball states must have a large width,



374 H.P. Morsch, P. Zupranski

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

Fig. 3. Upper part: Deduced 2-gluon binding potentials (dot-dashed and dashed

lines) in comparison with the confinement potential from lattice gauge calcula-

tions [4] (upper part). The solid line corresponds to the binding potential for the

nucleon discussed below. Lower part: Potentials deduced for heavy vector (ss̄, cc̄,

and bb̄) systems discussed below in comparison with lattice QCD results [3].

since we expect Γ ∼ 1/E0. This is consistent with the general expectation
for the width of glueball states (Γ ≥ 500 MeV). From these results we may
conclude that the glueball ground state with E0 = 0.68± 0.10 GeV and
a large width may be identified with the scalar σ(600).

Glueball masses have been deduced also from lattice simulations [3, 14]
in which a glueball mass below 1 GeV has not been found. However, in
these simulations 0++ glueball masses have been extracted at about 1.7
and 2.6 GeV which correspond very nicely to the first and second radial
excitation. Our evidence for a low lying glueball is supported by QCD sum
rule estimates [15] which also require the existence of a low lying gluonium
state below 1 GeV.
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4. Heavy flavour neutral systems and αs(Q)

Self-consistent 2-gluon densities have been deduced also for smaller sys-
tems corresponding to the size of ss̄, cc̄, and bb̄ mesons. Resulting momen-
tum distributions and the corresponding Fourier transformed densities are
given in Fig. 4, which are in a good agreement.
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Fig. 4. Momentum distributions (histograms) and Fourier transforms of the 2-gluon

density (dot-dashed lines) for 4 different densities investigated, corresponding to

light qq̄ system (a), ss̄ (b), cc̄ (c), and bb̄ (d). The dot-dashed histograms are

simulations assuming c and b quark masses of 1.4 and 4.5 GeV, respectively.

It is interesting to investigate the effect of quark masses in our simula-
tions. Using quark masses of 1.24 and 4.5 GeV for c and b quarks respec-
tively, yields the lower dot-dashed histograms indicating that self-consistent
solutions are not possible. Thus, for all systems the intrinsic quark masses
have to be zero (or very small). The 2-gluon binding potential is given in
the lower part of Fig. 3 in a good agreement with the confinement potential
from the lattice QCD [3].
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Since all intrinsic quark masses have to be small in our approach, the
masses of the different systems have to be explained in a different way.
Whereas the binding potential (of 2-gluons) gives rise to binding energies in
the order of 1 GeV, the binding potential of quarks (1) depends strongly on
the size of the 2-gluon densities. Therefore, the binding of quarks can be
much larger. This is shown for the different systems in Fig. 5. For the heavy
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Fig. 5. Folding potential (1) for the four different cases (a)–(d) corresponding to

light glueballs, ss̄, cc̄ and bb̄ with the binding energies indicated.

systems (which are of small size) the binding energies are in the order of 2.4
and 9.0 GeV respectively, which shows that indeed the masses of all systems
can be explained by the binding of quarks and gluons. The resulting energies
of ground and radial Φ, Ψ and Υ states are in a good agreement with the
experimental spectra. Details of these calculations will be given elsewhere.

The Fourier transformed potential (2) is directly related to the strong
coupling αs(Q). Using the different 2-gluon density distributions ρi(Q) de-
duced from Fig. 4 we obtain αs = Σi aiρΦi

(Q). This gives a quantitative
description of αs up to large momenta, see Fig. 6.
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Fig. 6. Strong coupling αs from lattice QCD [16] and experiment [17] (triangles)

in comparison with our results, given by the solid line. The contributions of the

different 2-gluon densities ρΦi
(Q) are also given.

5. Nucleon structure

Baryons may be described in our approach assuming the decay 4g →
5(qq̄) → (3q qq̄) + (3q̄ qq̄), which means 4g → (baryon + antibaryon).
Thus, we describe the nucleon by 3 valence quarks coupled to a 2-gluon field
yielding ρN (r) = 4π

∫

ρ3q(r
′)ρΦ(r−r′)dr′. The resulting binding potential is

given in the upper part of Fig. 3 by the solid line, which is more shallow than
the confinement potential but the attraction between the emerging quarks
is increased by a factor 9. The binding energies of the nucleon g.s. and
radial excitations are 0.94 GeV, 1.42± 0.07 GeV, and 1.82± 0.12 GeV in
good agreement with experiment.

5.1. Compressibility: from nucleon to nuclear matter

Finally, we discuss the nucleon compressibility which may be linked
to that of nuclear matter. From the excitation of the first radial state,
the “breathing mode” of the nucleon, the compressibility KN has been ex-
tracted by operator sum rules [18, 19] yielding values of about 1.3 GeV.
The breathing mode has also been investigated in high energy p–p and
π–p scattering [20]. From a comparison of transition densities deduced
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from inelastic p–p and e–p scattering strong multi-gluon contributions were
extracted which were about a factor 4 stronger than those of the valence
quarks. This is in a good agreement with the present results. From the
multi-gluon potentials deduced in Ref. [20] we may derive the nucleon com-
pressibility directly. Calculating a potential density for the nucleon given
by V ρN (r) = 1

2
VNN

∫

ρN (rN )tNN (r− rN )drN and adding a kinetic energy
term T we obtain the energy density EρN (r) = −(V + T ) · ρN (r). The
compressibility is then given by

KN = r2
d2EρN (r)

dr2
|r=r0

. (6)

From the analysis of high energy p–p scattering [20] the multi-gluon potential
is well determined. So, we can determine the compressibility. This is given
on the left side of Fig. 7. Indeed, we obtain a compressibility of about
1.3 GeV consistent with the value obtained from sum rules [19].
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Fig. 7. Left: Nucleon potential density (solid line) and derived compressibility

function (6) (dot-dashed lines). Right: The same for the scalar nucleon potential,

important for nuclear matter.

For the case of nuclear matter we assume that the dominant contribution
is due to compressibility of the nucleons (the compressibility due to the
binding of nucleons should not be much larger than their binding energy).
Then the compressibility is related to the central (scalar) nucleon potential
which has a mean square radius ≥ 1.5 fm2. Using the corresponding density
the derived compressibility is in the order of 160–170 MeV, this is shown on
the right side of Fig. 7. This value is rather close to the compressibility of
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nuclear matter K∞ of about 220–250 MeV deduced from the study of the
giant monopole resonance in heavy nuclei.

6. Conclusion

The present solution of the confinement problem based on our phe-
nomenological description of 2-gluon fields differs entirely from earlier sug-
gestions that confinement could arise from complicated non-perturbative
field configurations (magnetic monopoles, flux tubes, vortices or strings) in
the Abelian projection of QCD which had severe problems, eg. with Casimir
scaling. Further, none of these models could explain the generation of mass
and the complex Yang–Mills gluon structure found in lattice QCD calcula-
tions. In our description all these problems are tied together and are well
described. The masses of hadrons are explained by binding effects, and all
intrinsic quark masses have to be consistent with zero. Thus, a scalar Higgs
field in which the quark masses are generated is not needed. Also the axion
problem does not exist when quark masses are zero.

It is of large interest that in our approach in which many of the prop-
erties of hadrons are well described, including the problem of the light pion
mass and the non-existence of chiral symmetry, quarks arise only from the
decay of multi-gluon systems. This has important consequences for our un-
derstanding of the origin of our universe and of baryogenesis.

Finally, by the discussion of the compressibility a first example is given
which shows that the properties of hadrons are strongly tied to those of
nuclear systems.
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