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1. Introduction

Atomic nuclei form a network of coupled systems communicating with
each other through decays and captures [1]. If continuum states are ne-
glected, this communication is broken and each system becomes an isolated
closed quantum system (CQS). It is obvious, that the CQS description of
atomic nuclei (e.g. the nuclear shell model (SM)) becomes self-contradictory
for weakly-bound or unbound states.

A classic example of a continuum coupling is the Thomas–Ehrmann
shift [2] which manifests itself in the asymmetry in the energy spectra be-
tween mirror nuclei having different particle emission thresholds. A consis-
tent description of the interplay between scattering states, resonances, and
bound state requires an open quantum system (OQS) formulation. Com-
prehensive many-body theory of weakly bound/unbound states has been
advanced recently in the time-asymmetric quantum mechanics using the
complete ensemble of single-particle states consisting of resonant (Gamow)
states and the complex-energy, non-resonant continuum of scattering states
from which the complete many-body basis of OQSs can be obtained [3]. An-
other formulation of the continuum shell model is obtained by embedding
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standard SM in the continuum of decay channels. This approach provides
a unified description of nuclear structure and nuclear reaction aspects [4–7].

In this paper, we study the effect of the continuum coupling on spectra of
36Ca and 36S mirror nuclei. We show that the continuum coupling explains
naturally not only the appearance of the asymmetry in spectra but also
provides a major part of the Thomas–Ehrmann shift. We shall also discuss
salient effects of a continuum coupling in the binding energy systematics, in
particular the anti-odd–even staggering (anti-OES) and the effective range
of energies in which various decay channels are correlated with each other
with the discrete many-body states changing significantly their energy and
wave function.

2. Shell model embedded in the continuum

In the shell model embedded in the continuum (SMEC), nucleus is
described as an OQS [8]. The total function space consists of the set of
L2-functions, as in the standard SM, and the set of scattering states (decay
channels). These two sets are obtained by solving the Schrödinger equa-
tion for discrete states of the closed subsystem (closed quantum system

(CQS)): HSMΦi = E
(SM)
i Φi , and for scattering states of the external en-

vironment:
∑

c′(E − Hcc′)ξ
c′(+)
E = 0 , where HSM is the SM Hamiltonian,

and Hcc′ = H0 + Vcc′ is the coupled-channel (CC) Hamiltonian. Channels:

c ≡ [JA−1
i ; (l, j)]J

A
k , are determined by the motion of an unbound particle

with orbital angular momentum l and total angular momentum j relative to

the residual nucleus with A − 1 bound particles in a SM state ΦA−1
j . ξ

c(+)
E

are channel projected scattering states with outgoing asymptotics. States of
the daughter nucleus are assumed to be stable with respect to the particle

emission. By means of two functions sets: Q ≡ {ΦA
i }, P ≡ {ζ

c(+)
E }, one can

define the corresponding projection operators and the projected Hamiltoni-
ans: Q̂HQ̂ ≡ HQQ and P̂HP̂ ≡ HPP [4,8]. HSM is identified with the CQS
Hamiltonian HQQ and Hcc with HPP . The coupling term HPQ is given by
the two-body residual interaction [8].

Schrödinger equation in the total function space splits into the two equa-
tions for projected operators HQQ, HPP . Assuming Q + P = Id, one can

determine a third wave function ω
(+)
i which is a continuation of SM wave

function ΦA
i in the scattering continuum. ω

(+)
i is obtained by solving the

CC equations with the source term [8]. Using the three function sets: {ΦA
i },

{ζ
c(+)
E } and {ω

(+)
i }, one obtains a solution in the total function space:

Ψc
E = ζc

E +
∑

i,k

(ΦA
i + ω

(+)
i (E))〈ΦA

i |(E −HQQ(E))−1|ΦA
k 〉〈Φ

A
k |HQP |ζ

c
E〉 , (1)
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where E is the total energy and HQQ(E) is the energy-dependent effective
Hamiltonian in Q subspace:

HQQ(E) = HQQ + HQP G
(+)
P (E)HPQ , (2)

where G
(+)
P (E) in (2) is the Green function in P. HQQ takes into account

a modification of the CQS Hamiltonian (HQQ) by couplings to the envi-
ronment of decay channels. HQQ is a complex-symmetric matrix above the

particle-emission threshold E(thr) and Hermitian below it. Diagonalisation
of HQQ by an orthogonal and, in general, non-unitary transformation yields

complex eigenvalues Ẽi −
1
2 iΓ̃i, which depend on the energy E of the par-

ticle in the continuum. Energies and widths of the resonance states follow
from: Ei = Ẽi(E = Ei), Γi = Γ̃i(E = Ei), where Ẽi(E) and Γ̃i(E) are the
eigenvalues of HQQ(E). Details of the SMEC calculations can be found in
Refs. [4, 8].

3. Features of the continuum-coupling energy correction

to eigenvalues of the closed quantum system

In this chapter, we shall discuss salient features of the continuum-coupling

energy correction: E
(corr)
i (E) = 〈Φi|HQP G

(+)
P (E)HPQ|Φi〉, for the ground

state (g.s.) of neutron-rich oxygen and fluorine isotopes. Details of the
SMEC calculations for continuum-coupling energy correction to binding en-
ergies can be found in Ref. [6]. In these calculations, all possible couplings
of the g.s. of A nucleus to the states of A− 1 nucleus are taken into account
incoherently.

3.1. Binding systematics in neutron-rich nuclei

For T = 1 couplings, the average behaviour of E
(corr)
g.s. is determined by

the strong dependence on E
(thr)
n (c.f. Fig. 1a of Ref. [6] for oxygen isotopes)1.

Close to the neutron drip line, this leads to an effective enhancement of nn

continuum-coupling strength which cannot be compensated by theE
(thr)
n -in

-dependent correction of monopole terms. On the top of this behavior, one

can see the odd–even staggering (OES) of E
(corr)
g.s. (N). Blocking of the virtual

scattering to continuum states by an unpaired nucleon diminishes the nn

continuum-coupling energy correction in odd-N nuclei. For a fixed E
(thr)
n ,

the coupling of [N = 2k,Z] system to [N = 2k − 1, Z] ⊗ n decay channels
is enhanced and the coupling of [N = 2k + 1, Z] system to [N = 2k,Z] ⊗ n
decay channels becomes weaker with respect to an averaged behavior.

1 In the chosen sdfp model space, np continuum couplings are absent in oxygen isotopes.
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This drip-line effect is seen only in a narrow range of excitation energies

around E
(thr)
n (N) ≃ 0 and vanishes for E

(thr)
n (N) ≥ 4 MeV. For more realistic

values of separation energies, as given by nuclear SM [6], E
(thr)
n exhibits the

pairing induced OES which becomes partially compensated close to a drip
line by the anti-OES effect induced by couplings to decay channels, both
opened and closed.

In fluorine isotopes (c.f. Fig. 2a of Ref. [6]), E
(corr)
g.s. is dominated by np

continuum couplings (T = 0, 1). The strength of np continuum coupling
can be deduced by comparing SMEC results for binding energies with ex-

perimental data [6]. An optimal value of V
(np)
0 /V

(nn)
0 close to the neutron

drip line is V
(np)
0 ≃ (1/2)V

(nn)
0 , whereas for nuclei close to the valley of

beta-stability a standard choice is: V
(np)
0 ≃ 2V

(nn)
0 . Since the np couplings

provide a major part of this correction, therefore the gradual reduction of

V
(np)
0 /V

(nn)
0 toward the neutron drip line leads to a non-linear dependence

of the E
(corr)
g.s. and, hence, to the dependence of two-body monopole terms

on the neutron number. A similar dependence is expected if effective three-
body interactions are included in the two-body framework of the SM [9].

The np continuum coupling in odd–odd ([N =2k+1, Z =2m+1]) fluorine
isotopes is increased as compared to the neighboring even–odd ([N =2k+2,
Z =2m+1] and [N = 2k,Z = 2m + 1]) nuclei. Contrary to the continuum-
coupling correction for like particles (nn or pp couplings), the characteristic

anti-OES of E
(corr)
g.s. persists even for E

(thr)
n > 4MeV. This effect is further

enhanced by the OES of one-neutron (1n) emission thresholds which yields

lower E
(thr)
n and, hence, larger continuum-coupling correction for odd-N

systems. The np continuum-coupling energy correction attenuates the OES

and can even wash it out close to drip lines if the ratio V
(np)
0 /V

(nn)
0 would

not be strongly reduced from its accepted value ≃ 2 in well-bound nuclei.
In BCS formalism, the OES is associated with the blocking of a quasi-

particle state close to the Fermi energy by an unpaired neutron (proton, re-
spectively) what weakens nn (pp, respectively) pairing correlation in odd-N
(odd-Z, respectively) isotopes. The proximity of continuum states in weakly-
bound nuclei makes the blocking mechanism less effective, reducing the OES
of one-nucleon separation energies. This reduction appears even though the
strength of nn (pp) pairing correlations is essentially unchanged.

3.2. Anatomy of the continuum-coupling correction

A typical behaviour of the total continuum-coupling correction E
(corr)
g.s.

to the g.s. SM energy (the CQS eigenvalue) for different oxygen isotopes
is presented in Fig. 1 as a function of the neutron energy. This correction
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is an incoherent sum of contributions from couplings to all SM states in
the daughter nucleus. E = 0 corresponds to a position of the first 1n
emission threshold. Rapid change of Ecorr related to opening of next 1n
emission threshold can be seen for 27O at E ≃ 3MeV. The continuum-
coupling energy correction rises with number of valence neutrons and in
general is bigger in even-N isotopes. Few notable exceptions can be seen
right after the closure of the sd shell (c.f. 29O in Fig. 1) and at the begining
of the sd shell. Behavior of the continuum-coupling correction depends on

l of the neutron wave involved in a decay channel [Jπ;A−1
i ; (l, j)]J

π;A
g.s. . This

correction is largest exactly at the threshold of a channel [Jπ;A−1
i ; (l, j)]J

π;A
g.s.

only for l = 0 neutrons. For higher l-values or for protons, the centrifugal
barrier and/or the Coulomb barrier shift the maximum of energy correction
above the threshold. This can be seen for 28O, where l = 2 neutron wave
dominates in the g.s. to g.s. coupling.
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rr
 [M

eV
]

Fig. 1. The continuum-coupling energy correction to the SM g.s. energy for differ-

ent oxygen isotopes is plotted as a function of the neutron energy. Contributions

from couplings to all available states in the daughter nucleus are added incoherently.

Couplings to excited states in A−1 nucleus are less important in even-N
isotopes. On the contrary, in odd-N isotopes they dominate. The distribu-

tion of contributions to E
(corr)
g.s. as a function of the energy of corresponding

states in A − 1 nucleus, reflects the nature of pairing correlations in odd-N
and even-N isotopes. Strong dissimilarity of g.s. to g.s. couplings between
odd-N and even-N oxygen isotopes is attenuated if couplings to decay chan-
nels involving excited states in A − 1 nucleus are taken into account. The

fraction of E
(corr)
g.s. coming from coupling to the g.s. of daughter nucleus is

shown in Figs. 2 and 3 for oxygen and fluorine isotopes, respectively.
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Fig. 2. The fraction of the total continuum-coupling energy correction E
(corr)
g.s. in

oxygen isotopes, coming from a coupling to the g.s. of a daughter nucleus. SMEC

calculations are performed for fixed 1n-threshold energies: E
(thr)
n = 0, 4 MeV.
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Fig. 3. The same as in Fig. 2 but for fluorine isotopes.

In oxygen isotopes (T = 1 couplings), one can see a strong OES following
the staggering of neutron pairing correlations in these isotopes. In general,
strong nn pairing correlations in even-N isotopes increase the weight of a g.s.
to g.s. contribution. On top of this effect, one sees different values of the
g.s. fraction at the beginning of the shell (filling of d5/2 subshell) and at
the end of the shell (filling of s1/2 and d3/2 subshells). This picture changes
qualitatively in fluorine isotopes (c.f. Fig. 3). As pointed out in Sec. 3,
np continuum coupling dominates in this isotopic chain, removing most of
the OES due to the nn correlations. As in oxygen isotopes, the fraction of

E
(corr)
g.s. coming from coupling to the g.s. of A − 1 nucleus is smaller in d5/2
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subshell than in s1/2 and d3/2 subshells. Maximal value of this fraction is

less than ∼ 20% in fluorine isotopes, whereas for 24O, 26O and 28O the g.s.
fraction is > 60%.

4. Mirror-symmetry breaking effect of a continuum coupling:

Example of 2
+

1 states in 36Ca and 36S

Symmetry breaking effects in spectra of mirror nuclei are directly or
indirectly related to the Coulomb interaction. Direct effects (the Thomas–
Ehrmann effect) have been extensively discussed in the literature. Much
less known indirect effects of the Coulomb interaction result from different
positions of n/p thresholds which modify continuum couplings effects and,
hence, change spectra in mirror systems [8]. Recently, the energy of 2+

1 state
has been measured in a weakly-bound 36Ca [10]. An excitation energy of this
proton-unbound state differs by ∼ 240 keV from an energy of the well-bound
mirror state in 36S. In this section, we will discuss in SMEC the mirror-
symmetry breaking continuum-coupling effects for these states. Details of
SMEC calculations and the choice of an effective interaction are the same
as described in Sect. 3 and in Ref. [6].

SMEC excitation energies of 2+
1 states in 36Ca and 36S are presented in

the third column of Table I. The difference of excitation energies in those
mirror states is close to the experimental value (c.f. the first column of
Table I), but absolute excitation energies are ∼ 0.5MeV bigger than exper-
imental ones and ∼ 1MeV bigger than a SM value (c.f. the second column
of Table I). One should notice that proton continuum couplings for 36Ca
and neutron continuum couplings for 36S result in a small difference of 2+

1
excitation energies in 36Ca and 36S. Almost a whole difference of 2+

1 ex-
citation energies is due to the neutron-continuum couplings for 36Ca and

TABLE I

Excitation energy of 2+
1 states in 36Ca and 36S nuclei. Column labelled ‘SM’

contains the SM results. The following three columns present SMEC results with
different couplings. The third column shows results with both neutron and proton
continua included. The next columns give the 2+

1 energy with only proton or
neutron continuum couplings included. All energies are in MeV.

Exp.(36Ca) SM(36Ca) SMEC(36Ca) 36Ca[35K + p] 36Ca[35Ca + n]

3.05 ± 0.05 2.641 3.403 3.019 3.514

Exp.(36S) SM(36S) SMEC(36S) 36S[35S + n] 36S[35P + p]

3.2909 2.641 3.690 3.024 3.822
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proton-continuum couplings for 36S. This is due to the same structure of
protons in 36Ca and neutrons in 36S for both 0+

1 g.s. and 2+
1 excited states

(the shell closure).
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Fig. 4. The states Jπ;A−1
i

in channel wave-functions [Jπ;A−1
i

; (l, j)]J
π;A

(Jπ;A =

0+
1 , 2+

1 ) which contribute most to the continuum-coupling correction from neutron

continuum in 36Ca (35Ca states — red narrow boxes) and proton continuum in 36S

(35P states — green wide boxes). The upper (lower) panel is for 0+
1 (2+

1 ) state.

Let us take a closer look at the individual contributions from couplings
via continuum to different states in A − 1 nuclei. In Fig. 4, contributions
to the continuum-coupling energy corrections for 0+

1 and 2+
1 states in 36Ca

and 36S are shown for selected daughter states. For 0+
1 state, the dominant

energy contributions from couplings to the g.s. 1/2+
1 and the second excited

state 5/2+
1 of A− 1 nucleus are almost equal2. The dominant component of

SMEC g.s. wave function is:

2 The balance of E
(corr)
g.s. in 36Ca and 36S is a direct consequence of the separation

energies in these nuclei: Sp(
36Ca) = 2.56 MeV, Sn(36S) = 9.89 MeV.
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[(d5/2)
6(s1/2)

2] +
[

[(d5/2)
6(s1/2)

1]1/2+ ⊗ (s)1(c)

]

+
[

[(d5/2)
5(s1/2)

2]5/2+

]

⊗ (d)1(c)] + · · · , (3)

where index c denotes continuum state. Important contributions to E
(corr)

2+
1

are spread over six states in daughter nuclei. Contributions from couplings
to the two lowest states (1/2+

1 and 3/2+
1 ) favour 36Ca state, whereas all

contributions from couplings to higher excited states (7/2+
1 , 3/2+

2 , 5/2+
2 and

9/2+
1 ) favour 36S state. As a result, the 2+

1 state in 36Ca is shifted down with
respect to 36S. The dominant component of the SMEC 2+

1 wave function is:

[(d5/2)
6(s1/2)

1(d3/2)
1] +

[

[(d5/2)
6(s1/2)

1]1/2+ ⊗ (d)1(c)

]

+
[

[(d5/2)
6(d3/2)

1]3/2+ ⊗ (s)1(c)

]

+
[

[(d5/2)
5(s1/2)

1(d3/2)
1]9/2+ ⊗ (d)1(c)

]

+
[

[(d5/2)
5(s1/2)

1(d3/2)
1]7/2+ ⊗ (d)1(c)

]

+
[

[(d5/2)
5(s1/2)

2]5/2+ ⊗ (s)1(c)

]

+
[

[(d5/2)
5(s1/2)

1(d3/2)
1]3/2+ ⊗ (s)1(c)

]

+ · · · . (4)

If one looks to the 2+
1 − 0+

1 energy difference in 36Ca and 36S, one may
notice that a contribution to the energy of 0+

1 from a coupling to 1/2+
1 in

A−1 nuclei is almost exactly compensated by contributions to the energy of
2+
1 from couplings to 1/2+

1 and 3/2+
1 states. The asymmetry in the position

of 2+
1 states in 36Ca and 36S comes from the balance between the contribution

of the 5/2+
1 in the g.s. and contributions of higher lying states 7/2+

1 , 3/2+
2 ,

5/2+
2 and 9/2+

1 in the 2+
1 state. These two sets of couplings act differently

in the g.s. and in the first excited state. It is interesting to notice that the
effect is produced by continuum couplings which practically do not involve
s-wave neutron/proton components. These components, which are present
both in the 0+

1 state and in the 2+
1 state (c.f. Eq. (4)), mutually cancel

out and do not contribute to the Thomas–Ehrmann shift in 36Ca–36S mirror
systems.

The proximity of fp shell leads to important excitations from sd to fp
across the N = 20, Z = 20 shell closure. As a consequence, many new chan-

nels [Jπ;A−1
i ; (l, j)]J

π;A
g.s. become involved in the continuum coupling, leading

to an enhanced spreading of contributions to the continuum-coupling energy
correction. In general, an increased spreading of couplings leads to an in-
creased fractionation of continuum-coupling contributions and the reduction
of E(corr) due to an enhanced interference of large number of channels.

Full SMEC calculations in sdfp shells for 36Ca and 36S are beyond actual
possibilities so we proceed by introducing the quenching factor Qf in the
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continuum-coupling energy correction [5]. SM calculations using WBT [12]
and IOKIN [13] effective Hamiltonians, which include fp shell and allow
for 2~ω excitations, revealed that an appropriate quenching factor should
be used to account for admixture of intruder configurations (c.f. Fig. 2).
Almost identical ad-mixtures of intruder configurations have been found
both in parent nuclei and in all important states of A − 1 nuclei.

The value of the quenching factor depends on different extensions of
sd-shell effective interaction into a larger model space (c.f. Table II). It turns
out that the excitation energies of 2+

1 states in 36Ca and 36S are sensitive
to the value of the quenching factor (see Fig. 5). Both absolute excitation
energies and their difference diminish as the quenching factor decreases. For
Qf = 0.651, the SMEC excitation energy of 2+

1 state reproduces exactly the
experimental value in well-bound 36S. This value for the quenching factor
is close to the value found for WBT Hamiltonian (c.f. Table II) in psdfp
shells.

TABLE II

Fraction of 0~ω configurations in 2~ω SM calculations for 36Ca/36S (A = 36) and
corresponding daughter nuclei (A = 35). Results correspond to 0+

1 , 2+
1 states of

the parent nucleus (A = 36) and to averages over 7 (respectively 8) most important
states in Tz = 5/2 (respectively Tz = 3/2) daughter nuclei, respectively.

Hamiltonian space 0+
1 (A = 36) 2+

1 (A = 36) 〈Tz = 5/2〉av 〈Tz = 3/2〉av
IOKIN sdfp 0.769 0.768 0.772 0.782
WBT sdfp 0.787 0.789 0.795 0.796
WBT psdfp 0.687 0.684 0.683 0.685

3
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0.5 0.6 0.7 0.8 0.9 1

E
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+
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M
eV

]

quenching factor

Fig. 5. SMEC excitation energies of 2+
1 states in 36Ca and 36S are plotted as

a function of the quenching factor. Experimental excitation energies of 2+
1 state in

36S and 36Ca are depicted as diamond and circle, respectively.



Continuum Coupling Effects in Spectra of Mirror Nuclei and . . . 399

For IOKIN and WBT Hamiltonians in sdfp shells, one obtains higher
values for Qf . For those values, SMEC reproduces well an experimental
difference of 2+

1 energies in 36Ca and 36S nuclei, but the absolute values of
2+
1 energies are too high. The latter problem could be easily resolved by

mirror-symmetry conserving correction of the V T=1
0d5/2;1s1/2

monopole.

5. Conclusions

In this paper, we attempted to address two problems pertaining to the
physics with exotic, weakly-bound nuclei: (i) What are the generic features
of the continuum coupling in binding systematics of neutron-rich nuclei?
(ii) Can one explain mirror-symmetry breaking effects in spectra by the
asymmetry of threshold energies in mirror nuclei?

The answers to these questions are not simple and require further inves-
tigations. Studies in long chains of oxygen and fluorine isotopes revealed
that the np residual coupling to the scattering continuum becomes strongly
reduced with respect to the nn coupling in the vicinity of the neutron drip
line. The np coupling is essential for an understanding of the anti-OES ef-
fect which is seen in odd-Z fluorine chain and leads to an apparent reduction
of the gap parameter for neutrons. Hence, in weakly-bound nuclei close to
the drip lines, the OES has three components: the first one originates from
nucleonic pairing, the second one is the deformed mean-field effect [14], and
the third one originates from the np coupling via scattering continuum. One
should stress that the latter component is of a completely different nature
than the singular behaviour of binding energies originating from the np cor-
relations near N = Z line [15].

Asymmetry in the spectra of mirror systems is another playground for
the continuum shell model. In the mirror couple 36Ca–36S, a relative shift of
2+
1 excitation energies can be to a large extent directly related to the effect of

the continuum coupling. However, in contrast to neutron-rich nuclei, the low
one-proton separation energy in 36Ca has little influence on the difference of
excitation energies of 2+

1 states in 36Ca and 36S. This is due to the Coulomb
barrier which suppresses continuum-coupling effects in weakly-bound sys-
tems close to the proton drip line. In that respect, weakly-bound/unbound
systems at the proton drip line are radically different from those at the neu-
tron drip line. To understand dissimilarity of nuclear systems at the proton
and neutron drip lines is a challenge for the nuclear structure theory.

One of us (M.P.) wish to thank F. Azaiez for stimulating discussions.
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