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The nuclear level-density parameters obtained in the Yukawa folded
potential approach are presented. The particle-number averaging (N av-
eraging) Strutinsky shell-correction method is used to extract the shell-
correction energy and its change with temperature and the macroscopic
nuclear energy for 130 spherical even-even nuclei. A liquid-drop type
expression is proposed for the level-density parameter. The best agree-
ment is achieved between our results and the phenomenological formula of
von Egidy based on a back-shifted Fermi gas model.
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Nuclear level densities are very useful to understand properties of ex-
cited nuclei and to describe fission dynamics, but are also relevant in trans-
port theories and in astrophysical applications. Since the Bethe model [1]
of 1936 some more or less successful phenomenological expressions based
e.g. on the Fermi-gas or the so-called back shifted Fermi-gas model were
proposed to reproduce the existing data and predict the not yet measured
cases. Theoretical calculations within the shell model [2] and the Monte
Carlo [3] methods, which generally include pairing correlations, and take
the influence of spin and parity into account, have been quite successful in
this context. The agreement of theoretical predictions with the experimental
data constitutes in general a stringent test of nuclear forces as well as of the
parameters used in the calculations. We have performed such an investiga-
tion in the framework of the macroscopic–microscopic model searching to
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establish an analytical expression of the level-density parameter depending
on mass number A, isospin parameter I = (N −Z)/A and nuclear deforma-
tion like in Ref. [4]. The deformation dependence has been analysed using
the Yukawa folded (YF) [5] single-particle (s.p.) potential. In a previous
study the self-consistent mean-field method with the Skm* Skyrme inter-
action [6] was used [7], another [8] was based on the relativistic mean-field
theory (RMFT) [9] with the NL3 parameter set [10]. These mean fields give
access to s.p. levels of nuclei at zero temperature (nuclear ground state).
Using the N -averaging [11] Strutinsky shell-correction method we have re-
moved the shell effects from the nuclear ground-state energies. Then an
N -averaging was used to evaluate the shell correction energy at finite tem-
perature [12]. Both self-consistent approaches yield too small level densities.
The results obtained for spherical nuclei with the Yukawa folded mean-field
potential are, however, much closer to the experimental data. They are
quite close to the phenomenological Thomas–Fermi formula [13], but agree,
in fact, very nicely with the estimates of the back-shifted Fermi-gas formula
of von Egidy and collaborators [14] based on most recent experimental data
as demonstrated in Fig. 1.
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Fig. 1. Level-density parameters a as function of mass number A obtained with the
Yukawa folded mean field (solid line) and the experimental data analysed in terms
of a Thomas Fermi (dashed line) [13], and Fermi gas model(dotted line) [14].

The nuclear shell structure is washed out with increasing excitation en-
ergy. The total s.p. energy of an N fermion system at finite temperature is

E(N , T ) = 2
∑

ν

eνnν , (1)



Nuclear Level Density Parameter 419

with Fermi-function s.p. level occupation numbers of energy eν in the form

nν =

[
1 + exp

(
eν − λ

T

)]−1

(2)

and Fermi energy λ determined by the particle-number condition 2
∑

ν nν =
N where in the nuclear case N stands for the proton or neutron number. In
a grand-canonical description the variational quantity is the Helmholtz free
energy

F (N , T ) = E(N , T ) − S(N , T ) · T , (3)

where E is the intrinsic energy of an nucleus and the entropy S is given by

S(N , T ) =

∞∑

ν=1

[−nν ln(nν) − (1 − nν)ln(1 − nν)] . (4)

For a nucleus with N neutrons and Z protons the Helmholtz free energy F
needs to be determined separately for neutrons and protons. In each case the

average free energy F̃ (N , T ) can be determined through the N -averaging [11]
Strutinsky shell-correction method as

F̃ (N ;T ) =

Nmax∑

N=Nmin

2

3N2/3
F (N ;T ) j

(
N 1/3 − N1/3

γ

)
, (5)

where j is the 6th order correctional polynomial

j(u) =
1

γ
√

π
e−u2

(
35

16
− 35

8
u2 +

7

4
u4 − 1

6
u6

)
. (6)

The limits in Eq. (5) are
(
N 1/3 ± 3γ

)3
which guarantees that a large enough

number of s.p. levels is included to evaluate the smooth part of the en-
ergy with the accuracy of the order of 0.01MeV. The total nuclear average

free energy F̃tot(N,Z, T ) is then the sum of the neutron and proton con-

tributions. Having determined F̃tot(N,Z, T ) for each nucleus for tempera-
tures T = 1, 2, 3, 4, 5MeV, it turns out that its temperature dependence is
quadratic

F̃tot(N,Z, T ) ≈ F̃tot(N,Z, 0) − aT 2 , (7)

which allows through the knowledge of F̃tot(N,Z, T ) to determine the level
density parameter a(Z,A) for each nucleus. The sample of a(Z,A) values is
then fitted to the following liquid-drop (LD) type expression

a(Z,A) = avol (1 + kvol I
2)A + asur (1 + ksur I2)A2/3 + aCoul Z

2 A−1/3 , (8)
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where the values of the LD volume, surface and Coulomb coefficients (in
units MeV−1) are displayed in Fig. 1. The level density parameters obtained
in this way for 130 spherical even-even nuclei from our Yukawa folded s.p.
potential turn out to be in very good agreement with the most recent experi-
mental data interpreted by von Egidy [14] in terms of a so-called back-shifted
Fermi-gas model. We would like to insist, however, on the fact that the ana-
lytical form proposed in Ref. [14] and displayed in Fig. 1, does not allow any
straightforward generalisation to deformed nuclei. The above presented LD
type approach, on the contrary, is very easily generalised to deformed nuclei,
simply through shape functions Bsur and BCoul of surface and Coulomb term
as demonstrated in Ref. [4].
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