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A new method is proposed to describe masses of nuclei belonging to
single a major shell. It is based on a global formula for the macroscopic
part of the nuclear mass while the remaining (shell + deformation) part is
considered in the context of the interacting boson model. The framework
enables a simultaneous calculation of spectra and binding energies.
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1. Introduction

Over the years many different approaches have been developed to calcu-
late masses of atomic nuclei. These fall into two classes. The first comprises
global approaches in the sense that a single formula or algorithm is used to
reproduce as closely as possible all known nuclear masses. Once parameters
have been fixed from known nuclei, it is then possible to attempt extrapola-
tions to regions away from stability. There exist now three standard global
procedures which are complementary since each starts from a different pic-
ture of the nucleus. The first is the finite-range droplet model (FRDM) [1]
which can be viewed as a sophisticated liquid-drop formula. The second
global mass formula is based on the mean-field ansatz of Hartree–Fock–
Bogolyubov (HFB) in its different versions, the latest of which is reported
in Ref. [2]. The third is a shell-model based mass formula developed by
Duflo and Zuker (DZ) [3] which yields the most accurate results in terms of
root-mean-square deviation from the measured nuclear masses.

Local formulas are based on a different philosophy by focusing on a par-
ticular region of the nuclear mass table or, alternatively, by “predicting” the
mass of a nucleus through the systematic use of the masses of its neighbors.
Local mass formulas obviously have less predictive power but usually attain
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greater accuracy in a limited region of the nuclear chart. Over the years
many local formulas have been proposed some of which are discussed in the
review of Lunney et al. [4]. The Garvey–Kelson (GK) relations [5] consti-
tute a particularly useful example of a local approach by proposing a linear
combination of six nuclear masses which should vanish. As a result the GK
relations can be used to ‘predict’ the mass of one nucleus from those of five of
its neighbors. It is clear that this is not a theoretical prediction since much
experimental input is needed to calculate one single nuclear mass. Neverthe-
less, by defining a suitable averaging procedure of several (up to twelve) GK
relations [6], the deviation from it can be reduced down to less than 100 keV,
much lower than what can be obtained with a global mass formula. This
procedure has been used by Barea et al. [6] to show that a random compo-
nent to the nuclear masses, if it exists at all, must be smaller than 100 keV
on average — a result which came in handy in the discussion related to the
presence (or not) of a chaotic component in nuclear masses [7, 8]. The GK
relations can also be used to check the consistency of a global mass formula.
It is in fact found that, while the three standard approaches are consistent
with the GK relations (to the extent that the data are) in known regions of
the nuclear chart, this is not the case for the extrapolated masses calculated
with FRDM or HFB [9].

In this contribution the combination of global and local mass formulas
is explored from a different angle. The essential idea is to use a global,
macroscopic formula in order to “unfold” the mass data, that is, to subtract
a macroscopic part from the experimental binding energies, and to describe
the remainder with a realistic nuclear model, namely the interacting boson
model (IBM) [10]. The full Hamiltonian of the IBM should be able to
account for shell and deformation effects that remain after a global unfolding.
A simultaneous description of the excitation spectra of all nuclei in the data
set is sought. Because the IBM is a valence-nucleon model which assumes
an inert core, the calculation is restricted to a single major shell and in that
sense it is local.

An outline of the method as well as preliminary results of a first appli-
cation are presented. Since the approach is based on a global unfolding of
the mass data, let us begin with a brief reminder of the latter.

2. The liquid-drop nuclear mass formula

We begin by recalling that the binding energy B(N,Z) of a nucleus with
N neutrons and Z protons is defined through

M(N,Z)c2 = Nmnc2 + Zmpc
2 − B(N,Z) , (1)
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where M(N,Z) is the mass of the nucleus and mn (mp) the mass of the
neutron (proton). The binding energy B(N,Z) thus represents the energy
needed to pull a nucleus into its N+Z separate nucleons. Note that M(N,Z)
here refers to the mass of the nucleus only and not to that of the atom; so
the binding energy B(N,Z) is that of the neutrons and the protons and does
not include contributions from the electrons.

A simple, yet surprisingly accurate formula for the binding energy of an
atomic nucleus is given by

B(N,Z) = avA − asA
2/3 − ac

Z(Z − 1)

A1/3

− Sv

1 + ysA−1/3

4T (T + r)

A
+ ap

∆(N,Z)

A1/3
, (2)

where A = N + Z is the total number of nucleons and T = |N − Z|/2.
Equation (2) is known as the liquid-drop mass formula [11, 12]. The first
three terms appearing in the formula are referred to as volume, surface and
Coulomb, and have a macroscopic origin that can be understood intuitively
by viewing the nucleus as a dense, charged liquid drop. The fourth so-called
symmetry term is a consequence of the Pauli principle and its (N − Z)-
dependence can be understood from the analysis of a Fermi gas [13]. The for-
mula (2) uses a somewhat sophisticated form of the symmetry energy where
surface and so-called Wigner effects are considered via the inclusion of ys

and r, respectively. The last term represents a simple parametrization of the
most important correlation in nuclei, pairing, by assuming ∆(N,Z) = +2,
+1 and 0 in even–even, odd-mass and odd–odd nuclei, respectively. In the
convention of positive binding energies, the volume and pairing contribu-
tions are positive while others are negative; as a result all a coefficients in
the formula (2) are positive. In Fig. 1 are shown the differences between
the formula (2) with r = 1 and parameters given in Table I, and the mea-
sured nuclear binding energies taken from the 2003 atomic mass evaluation
AME03 [14]. Immediately obvious from the figure are the large deviations
that occur for doubly magic nuclei such as 100Sn, 132Sn or 208Pb which have
a diamond-like appearance. This suggests the use of a term linear in nν +nπ

where nρ is the number of valence neutrons (ρ = ν) or protons (ρ = π)

TABLE I

Summary of coefficients in the liquid-drop mass formula (in MeV).

Eq. av as ac Sv ys ap −a1 a2

(2) 15.706 18.060 0.704 33.661 2.91 5.962 — —
(2)+(3) 15.757 17.728 0.712 34.588 2.94 5.496 0.853 0.0163
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which are taken particle- or hole-like and counted from the nearest closed
shell. Furthermore, the ellipse-like deviations in mid-shell regions suggest
another term which is quadratic in nν + nπ. This simple visual inspection
of the deviations thus suggests to add to the liquid-drop mass formula (2)
the two-parameter term [15]

Bshell(N,Z) = a1(nν + nπ) + a2(nν + nπ)2 . (3)

The corrections (3) can be considered as a basic version of the successful
DZ mass formula [3]. Several modifications can be considered such as, for
example, a correction for the average value of Bshell(N,Z) [16].

Fig. 1. Differences between measured and calculated binding energies for nuclei
with N, Z ≥ 8. The binding energies are calculated with the mass formula (2).

The prescription (3) requires pre-defined magic numbers in the nuclear
shell model, for which the standard values are 8, 20, 28, 50, 82, 126 and 184.
It turns out, in fact, that a lower root-mean-square (rms) deviation (1.201
instead of 1.397MeV) is found if the shell closure at N,Z = 20 is replaced by
N,Z = 14 [16]. Furthermore, several microscopic nuclear mass calculations
(see, e.g. the review of Oganessian [17]) indicate a proton shell closure
at Z = 114 and it is indeed found here that the currently known masses
are better described if this magic number is considered, the rms deviation
further reducing from 1.201 to 1.161MeV. (If the magic number Z = 114 is
included, results become independent of higher proton magic numbers since
the compilation AME03 does not go beyond element Z = 108.) As yet no
empirical evidence exists for a neutron shell closure at N = 184 which is
taken here on the basis of microscopic mass calculations. There are very
few nuclei in AME03 with more than 155 neutrons (mid-shell between 126
and 184) and thus the existence of the magic number at N = 184 can at
present not be probed on the basis of mass data.



Global and Local Nuclear Mass Formulas 425

The use of these two simple corrections with the appropriate magic num-
bers reduces the rms deviation for more than 2000 nuclear masses from 2.479
to 1.161MeV with the coefficients as shown in Table I. The shell corrections
themselves are shown in Fig. 2 for the parameters a1 and a2 as obtained from
the fit and they indeed reveal a pattern similar to that in Fig. 1. A large
fraction of the remaining rms deviation of 1.161 MeV is due to nuclei lighter
than 56Ni which is also obvious from a comparison of the two figures.

Fig. 2. The shell correction (3) for nuclei with N, Z ≥ 8 calculated with a1 =

−0.853408 and a2 = 0.016283 (in units of MeV).

3. Mass calculations with the interacting boson model

In the previous section it was shown that the deviations of the liquid-
drop mass formula from the measured nuclear masses can be parametrized
in a simple fashion in terms of the number of nucleons in the valence shell.
The proposed shell correction (3) can, for even–even nuclei, be rewritten as

Bshell(N,Z) = a′1(Nν + Nπ) + a′2(Nν + Nπ)2 , (4)

with a′1 = 2a1 and a′2 = 4a2. In Eq. (4) Nρ is the number of neutron (ρ = ν)
or proton (ρ = π) bosons which are identified with pairs of valence nucleon
particles or holes [10]. Note that Nν + Nπ coincides with the total number
of bosons of the IBM. The usual notation N for this number is not used here
in order to avoid confusion with neutron number.

Given that the two terms (4) are part of the IBM Hamiltonian, this
suggests the possibility of using the latter model in a simultaneous calcula-
tion of nuclear masses and spectra, an idea that is explored in this section.
To keep matters simple in this exploratory calculation, the simplest version
of the IBM of even–even nuclei is used where no distinction is made between
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neutron and proton bosons, the so-called IBM-1. For an introduction to the
IBM the reader is referred to the monograph of Iachello and Arima [10].
Suffice it to say here that the model aims at a description of low-lying col-
lective states of even–even nuclei in terms of interactions between s and d
bosons which can be thought of as approximated correlated fermion pairs
coupled to angular momentum zero and two, respectively.

If one limits the Hamiltonian of the IBM-1 to interactions that are at
most of two-body nature between the bosons, the total number of parameters
is ten. Six of the parameters determine the energy spectrum of individual
nuclei while the four remaining ones exclusively contribute to the binding
energy. The parameter systematics of the former is by now well established
through phenomenological studies with input from microscopic theory (for
references, see [10]). Surprisingly little has been done with IBM concerning
absolute binding energies and in most cases only two-nucleon separation en-
ergies have been considered, such as in the recent detailed studies of García-
Ramos et al. [18] and Fossion et al. [19]. The work reported here is most
closely related to that of Davis et al. [20].

To make to above discussion more explicit, note that the most gen-
eral IBM-1 Hamiltonian up to second order in the interactions between the
bosons can be written as

Ĥ = E0 + Ĥ1 + Ĥ2 , (5)

where the index refers to the order of the interaction. The first term E0 is
a constant. The second term is the one-body part

Ĥ1 = εs

[

s† × s̃
](0)

+ εd

√
5
[

d† × d̃
](0)

≡ εsn̂s + εdn̂d , (6)

where × refers to coupling in angular momentum (shown as an upper-script

in round brackets), b̃ℓm ≡ (−)ℓ−mbℓ,−m and the coefficients εs and εd are
the energies of the s and d bosons. The third term in the Hamiltonian (5)
represents the two-body interaction

Ĥ2 =
∑

ℓ1≤ℓ2,ℓ′
1
≤ℓ′

2
,L

ṽL
ℓ1ℓ2ℓ′

1
ℓ′
2

[

[

b†ℓ1 × b†ℓ2

](L)
×
[

b̃ℓ′
2
× b̃ℓ′

1

](L)
](0)

0

, (7)

where the coefficients ṽ are related to the interaction matrix elements be-
tween normalized two-boson states,

vL
ℓ1ℓ2ℓ′

1
ℓ′
2

≡
〈

ℓ1ℓ2;LM |Ĥ2|ℓ′1ℓ′2;LM
〉

=

√

(1 + δℓ1ℓ2)(1 + δℓ′
1
ℓ′
2
)

2L + 1
ṽL
ℓ1ℓ2ℓ′

1
ℓ′
2

.

(8)
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Since the bosons are necessarily symmetrically coupled, allowed two-boson
states are s2 (L = 0), sd (L = 2) and d2 (L = 0, 2, 4). Since for n states
with a given angular momentum one has n(n + 1)/2 interactions, seven
independent two-body interactions v are found: three for L = 0, three for
L = 2 and one for L = 4. This, together with the two boson energies εs and
εd and the constant E0, leads to the ten parameters quoted above.

The Hamiltonian (5) by itself cannot provide an adequate description of
the total binding energy of the nucleus. The method proposed here consists
of subtracting a global liquid-drop contribution (without shell or deformation
effects) from the nuclear binding energy and modeling the remainder with
the IBM-1 Hamiltonian. In summary, the Hamiltonian

Ĥ ′ = −B(N,Z) + E0 + Ĥ1 + Ĥ2 , (9)

contains all terms up to second order, including a contribution from the
core inspired by the liquid-drop model. Note the minus sign in front of
B(N,Z) which is needed to convert from positive binding energies to neg-
ative absolute energies. All two-body interactions between the bosons are
assumed constant throughout the entire shell; only three-body interactions
can represent (Nν + Nπ)-dependent two-body interactions.

The Hamiltonian (9) can be applied to a set of nuclei belonging to a single
major shell which, by way of example, is chosen here to be all even–even
nuclei with 82 < N < 126 and 50 < Z < 82. Semi-magic nuclei are
excluded because they are known to exhibit a seniority spectrum which
does not allow an interpretation in terms of IBM. Since a simultaneous
fit of many nuclei is attempted with spectra that vary from vibrational to
rotational, there exists no obvious ansatz for the correct parameter set and
an efficient fitting procedure is needed. The method followed here is based
on the diagonalization of the error matrix which establishes a hierarchy of
the most relevant parameter combinations. The approach is identical to that
of the determination of shell-model matrix elements in the sd shell [21].

The Hamiltonian (9) is first written in a simplified notation as

Ĥ ′ =

P
∑

i=1

υiÔi , (10)

where υi are the P parameters that need to be determined and Ôi are
the P operators in the Hamiltonian (9). In the present application the
parameters ai in B(N,Z) have been determined first from a fit to all masses
of nuclei with N,Z ≥ 8. These parameters are kept fixed in the subsequent
adjustment of the υi to the data set in the shell with 82 < N < 126 and
50 < Z < 82. More sophisticated procedures can be envisaged involving
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iterative or even simultaneous adjustments of ai and υi. If both pieces of
the Hamiltonian are treated consistently, it will then probably be possible
to absorb the constant E0 into the liquid-drop expression for B(N,Z).

The parameters υi are fitted to a data set consisting of M experimental
energies Ek

expt, k = 1, . . . ,M . In the shell with 82 < N < 126 and 50 < Z
< 82, the available data set comprises 128 ground-state and 1019 excited-
state energies. One of the main difficulties in carrying out the analysis is
the selection of relevant data. As the IBM is a model of collective behavior
of nuclei, only excited states of such character should be included, and this
selection is far from obvious in many cases. Nevertheless, a selection of this
kind has to be carried out and for each selected level a theoretical counterpart
is proposed with an energy

λk ≡ 〈Φk|Ĥ|Φk〉 =

P
∑

i=1

υi〈Φk|Ĉi|Φk〉 ≡
P
∑

i=1

υiβ
k
i . (11)

The wave functions |Φk〉 are obtained by diagonalizing Ĥ for an initial choice
of parameters {υ0

i } and are iteratively improved in the manner explained
below.

The optimal set of parameters is obtained by minimization of the rms
deviation

χ2 =
M
∑

k=1

(

Ek
expt − λk

σk
expt

)2

, (12)

where σk
expt is the error on the experimental energy. Minimization with

respect to {υi}, under the assumption of υi-independent matrix elements
βk

i , leads to a set of linear equations of the form

P
∑

i=1

Gijυi = ej , or υi =

P
∑

j=1

(G−1)jiej , (13)

where G and e are P × P and P × 1 matrices, respectively, defined as

Gij =

M
∑

k=1

βk
i βk

j
(

σk
expt

)2 , ei =

M
∑

k=1

Ek
exptβ

k
i

(

σk
expt

)2 . (14)

The inverse matrix G
−1 is known as the error matrix and contains all

information on correlations between parameters. In particular, diagonal-
ization of G (or G

−1) yields a hierarchy of parameters. The diagonal-
ization of G amounts to finding a unitary transformation A such that
D = AGA

T is diagonal, Dij = Diδij , or, equivalently, D
−1 = AG

−1
A

T
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with (D−1)ij = diδij = (1/Di)δij . The transformation A defines a set of
uncorrelated parameters νi =

∑

j Aijυj with associated errors given by di.
Consequently, the parameter νi can be considered as well determined if the
corresponding eigenvalue di is small; the ordering of di in increasing size
thus provides a hierarchy of parameters νi. This enables one to use the full
Hamiltonian (9) with all P Casimir operators but to fit only p ≤ P parame-
ter combinations νi. For a given number of parameters p ≤ P the following
fitting procedure can, therefore, be defined [21]. From an initial choice of
parameters {ν0

i } a subsequent set is defined according to

ν1
i =











P
∑

j=1

Aijυj =

P
∑

j,j′=1

Aij(G
−1)j′jej′ , if i ≤ p ,

ν0
i , if i > p ,

(15)

where it is assumed that A is the unitary matrix which diagonalizes D
−1

into eigenvalues di that are ordered in increasing value. With this set of
parameters {ν1

i } new wave functions |Φk〉, matrix elements βk
i , and matrices

G and e are obtained with which the next set of parameters {ν2
i } can be

calculated, and so on, until convergence is reached.
Two additional points should be mentioned. The first is that, although

ultimately one would like to treat ground and excited states on the same
footing, this is not done at present. The absolute energies of the 128 ground
states are fitted while for excited states the fitted quantity is the excitation
energy, that is, the energy relative to the ground state. The second point
is that the use of the experimental error σk

expt on its own is unsatisfactory
since in many cases (e.g., most excitation energies) this error is negligible
compared to the theoretical error. The proper way to deal with this issue is
to consider instead for each experimental data point the error

√

(

σk
expt

)2
+ (σth)2 , (16)

where σth is an intrinsic model error. An estimate of σth can be obtained via
the maximum-likelihood method following the discussion in Ref. [1] (which
can be applied here with µth = 0). It is clear that the consideration of the
experimental error becomes important only when it is larger than or of the
same order as σth. In the present calculation σth is still relatively large and
hence close to but somewhat smaller (about 10 keV) than the rms deviation.

Fig. 3 shows the rms deviation for masses and for excitation energies
as a function of the number of parameters up to p = 10. In spite of the
sophisticated fitting procedure explained in the preceding paragraphs, con-
vergence towards the optimal parameter set is not guaranteed. In fact, the
final parameters, obtained by gradually increasing p starting from p = 2,
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Fig. 3. The rms deviation in units of keV for masses (left) and for excitation energies
(right) as a function of the number of parameters p.

may depend on the choice of the initial set {υ0
i }. The rms deviations shown

in Fig. 3 for p = 10, rms (masses) = 896 keV, rms (spectra) = 259 keV,
rms (total) = 386 keV and σth = 376 keV are those found after a preliminary
exploration of the parameter space. The corresponding boson parameters
are shown in Table II in terms of the boson energies and boson–boson in-
teractions defined in Eqs. (6) and (8). It should be emphasized once more
that the corresponding rms deviation is not necessarily the lowest that can
be obtained with the full one- plus two-body IBM-1 Hamiltonian.

TABLE II

Parameters in the IBM-1 Hamiltonian for rare-earth nuclei (in keV).

E0 εs εd v0
dddd

v2
dddd

v4
dddd

v2
ddds

v0
ddss

v2
dsds

v0
ssss

−6101 277 611 −233 −121 −60 29 −162 −11 −5

4. Conclusion

To summarize, a strategy has been outlined for merging the calcula-
tions of ground- and excited-state energies and preliminary results have been
presented for even–even nuclei in the major shell with 82 < N < 126 and
50 < Z < 82. No definitive results for the one- and two-body parameters are
available yet. A further possible improvement is to include three-body inter-
actions between the bosons which would allow for boson-number-dependent
two-body interactions. The overall purpose of the present approach is that
once a reliable parameter set can be determined from known nuclei, it might
be of use for the prediction of spectral properties of nuclei far from the line
of stability.
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