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After a brief summary of the geometry of static multiply warped pro-
duct spacetimes, inequalities are given relating the Gaussian curvature of
spacelike two-surfaces in these spacetimes with some principal sectional
curvatures of the embedding space. Extremal and geodesic surfaces are
respectively characterized if equality holds in an appropriate inequality.

PACS numbers: 02.40.–k, 04.20.–q

1. Introduction

Warped product manifolds appear frequently in general relativity as the
model space for spacetime [1–3]. From the cosmological viewpoint, the
Robertson–Walker spaces and their generalizations are well-known exam-
ples. Properties of geodesics and surfaces in these spacetimes were studied
in e.g. [4, 5].

On the other hand it was shown that every static spacetime is isometric
to a warped product manifold M ×f R, with warping function f : M → R

and were R has the negative definite metric −dt2 (see e.g. [6]). The clas-
sical examples are the Schwarzschild and Reissner–Nordström spacetimes.
However, these particular spaces not only are a warped product, but can be
seen as a multiply warped product of two intervals with a two-dimensional
Riemannian manifold. The geometry of general multiply warped product
manifolds was studied in [7–9]. There, attention was mainly focused on the
non-static multiply warped product spacetimes which are considered to be
extensions of Kasner spaces or the interior Schwarzschild metric.

In the following we will focus on the static multiply warped product
spacetimes which can be viewed as generalizations of the Schwarzschild space
(see Remark 2.1). In Section 2 we recall basic notions on static multiply
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warped product spacetimes and give some examples. In Section 3 spacelike
two-surfaces in these spacetimes are studied and we obtain several inequal-
ities relating the Gaussian curvature of the surface to some principal sec-
tional curvatures of the static multiply warped product spacetime. Equality
in these inequalities characterizes either geodesic or extremal surfaces. We
recall that a spacelike two-surface which is contained in a time-symmetric
Cauchy hypersurface is extremal if and only if the outgoing light rays are
marginally converging, i.e., the trace of the shape operator corresponding
with the future normal null direction vanishes. These extremal surfaces are
called marginally outer trapped and play an important role in general rel-
ativity, where they are considered to be apparent horizons. The Penrose
inequality, which was proved in the Riemannian case in [10] and [11], can
then be seen as an inequality between the area of the extremal surface and
the ADM mass.

2. Static multiply warped product spacetimes

We start with a smooth manifold M = B1 × B2 × F , where B1 and
B2 are (possibly infinite) open intervals of R and F is a connected two-
dimensional manifold. Let π1, π2 and σ be the projections onto B1, B2 and
F , respectively. The vector field X = ∂r is taken to be the lift to M of the
standard vector field d/dr on B1 ⊂ R and U = ∂t is analogously taken to be
the lift of the standard vector field d/dt on B2 ⊂ R. While X is spacelike,
i.e., g(X,X) = 1, the vector field U is timelike, i.e., g(U,U) < 0. Holding r
and t constant gives the slice

F (r, t) = {r} × {t} × F = {(r, t, p) | p ∈ F} .

We further denote the fibers by F (r) = {r}×B2×F and F (t) = B1×{t}×F .
As usual, the lift φ ◦ π1 of a function φ ∈ F(B1) is again denoted by φ and
we write φ′ for X(φ).

Definition 2.1 Let f, h > 0 be smooth functions on an open interval B1 ⊂
R, B2 an open interval of R with negative definite metric and let F be a
connected two-dimensional Riemannian manifold. Then, the multiply warped
product

M = B1 ×f B2 ×h F ,

is called a static multiply warped product spacetime.

Explicitly, the manifold M = B1 × B2 × F has a line element

ds2 = dr2 − f2(r)dt2 + h2(r)ds2
F , (1)
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with ds2
F the line element of F lifted to M . The metric tensor of the two-

dimensional slice F will be denoted by gF , its Levi–Civita connection by
F∇ and Gaussian curvature by KF = gF ( FR(A1, A2)A2, A1), with {A1, A2}
a gF -orthonormal basis of the tangent space to the two-dimensional mani-
fold F . The Levi–Civita connection on the static multiply warped product
spacetime will be denoted by D and its corresponding curvature tensor by R.

Remark 2.1 The metric of the Reissner–Nordström spacetime can be writ-
ten as

ds2 =
dr2

1 − 2m
r + e2

r2

−
(

1 − 2m

r
+

e2

r2

)
dt2 + r2

(
dθ2 + sin(θ)2dφ2

)
,

with mass m and electric charge e. Using a transformation similar as in [12]
this metric can be written as,

ds2 = dµ2 −
(

1 − 2m

P−1(µ)
+

e2

P−1(µ)2

)
dt2 + P−1(µ)2

(
dθ2 + sin(θ)2dφ2

)
,

with µ = P (r) =
√

r2 − 2mr + e2 +m ln
(
r−m+

√
r2 − 2mr + e2

)
. Hence,

the Reissner–Nordström and Schwarzschild metric (e = 0) are both what
we call static multiply warped product spacetimes. Perhaps generalized
Schwarzschild or generalized Reissner–Nordström spacetime would be more
appropriate, but these names refer already to other types of spacetimes (see
e.g. [13–15]).

After a conformal transformation of a static multiply warped product
metric g, with conformal function φ ∈ F(B1), i.e., g̃ = eφg, the metric g̃
remains a static multiply warped product metric. Moreover, every static
multiply warped product metric (1) can be written as

ds2 = f(r)2
{
− dt2 + f(r)−2dr2 + h(r)2f(r)−2ds2

F

}
.

Hence, the metric ds2 is conformal to the product metric

ds2
p = −dt2 + du2 +

h(u)2

f(u)2
ds2

F ,

with u =
∫

f(r)−1dr. By an analogous reasoning as in [5], we find that t
is a time function such that (M,ds2

p) is stably causal. Further, (M,ds2
p)

is globally hyperbolic if and only if ds2
F is complete. Because the causal

structure is invariant under conformal transformations, these properties also
hold for (M,ds2).
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We can express the connection and curvature of a static multiply warped
product spacetime using the results on multiply warped products [7]. As
usual, we denote by L(F ) the set of all lifts to M of vector fields on F .
Thus, A ∈ L(F ) if and only if dσ(A) ∈ X(F ) and dπi(A) = 0, i = 1, 2.

Proposition 2.1 Let A,B ∈ L(F ) on M . Then,

(a) DXX = 0,

(b) DXU = DUX = (f ′/f)U ,

(c) DXA = DAX = (h′/h)A,

(d) DUU = ff ′X,

(e) DUA = DAU = 0,

(f) DAB = σ⋆( F∇AB) − g(A,B)(h′/h)X,

with σ⋆( F∇AB) the lift of F∇AB on F to M .

If we denote by IIF the second fundamental form of the slice F (r, t), it
follows that

IIF (A,B) = −h′

h
g(A,B)X . (2)

Corollary 2.1 The slices F (r, t) are non-trapped extrinsic spheres in M ,
i.e., totally umbilical spacelike surfaces with constant mean curvature and
a spacelike mean curvature vector.

Using the expressions for the covariant derivatives, the following result
is straightforward.

Proposition 2.2 Let (M,g) be a static multiply warped product spacetime.
If ξ ∈ L(F ) is a Killing vector of gF , then ξ is also a Killing vector of g.

Because U is a timelike Killing vector, there holds the following result.

Corollary 2.2 Let (M,g) be a static multiply warped product spacetime with
F a two-dimensional manifold of constant Gaussian curvature. Then, (M,g)
admits a group G4 of motions.

The components of the Riemann–Christoffel curvature tensor, given by

R(V1, V2)V3 =
(
DV1

DV2
− DV2

DV1
− D[V1,V2]

)
V3, are as follows.
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Proposition 2.3 Let A,B,C ∈ L(F ) on M . Then,

(a) R(U,X)X = −(f ′′/f)U ,

(b) R(A,X)X = −(h′′/h)A,

(c) R(A,U)U = (ff ′h′/h)A,

(d) R(A,B)C = σ⋆( FR(A,B)C) + (h′/h)2{g(A,C)B − g(B,C)A},
(e) R(A,B)U = R(A,B)X = R(X,U)A = R(U,A)X = 0.

It follows that the plane spanned by X and U has sectional curvature
−f ′′/f and a plane tangent to a slice F (r, t) has sectional curvature (KF −
h′2)/h2. A plane spanned by X and a vector tangent to a slice F (r, t) has
curvature −h′′/h, while a plane spanned by U and a vector tangent to F (r, t)
has curvature −(f ′h′)/(fh).

The only non-vanishing components of the Ricci tensor of a static mul-
tiply warped product spacetime are

Ric(X,X) = −f ′′

f
− 2h′′

h
, Ric(U,U) = ff ′′ + 2ff ′h

′

h
,

and

Ric(A,B) = −
{

h′′

h
+

(
h′

h

)2

+
(f ′h′)

(fh)
− KF

h2

}
g(A,B) .

Hence, if the static multiply warped product spacetime is non-vacuum, one
can always find a real orthonormal basis with respect to which the Ricci
tensor can be diagonalized.

Corollary 2.3 Let (M,g) be a static multiply warped product spacetime.
Then, (M,g) cannot be a solution of the Einstein field equations with source
a null electromagnetic field.

By the Einstein field equations we understand the equations

Ric(X,Y ) − 1
2R g(X,Y ) = κ0T (X,Y ) ,

with κ0 Einstein’s gravitational constant and T the (0,2) energy-momentum
tensor.

Instead of an orthonormal basis, we now consider a null tetrad adapted
to the warped product structure, i.e., we take as null vectors

K =
1√
2

(
1

f
U+X

)
, L =

1√
2

(
1

f
U−X

)
and M =

1√
2h

(A1 + iA2) ,

(3)
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with {A1, A2} a gF -orthonormal basis of F such that g(K,L) = −1 and
g(M,M ) = 1. Using the expressions for the covariant derivatives, the spin
coefficients of the null tetrad are

κ = σ = τ = ν = λ = π = 0 , ρ = µ = − h′
√

2h
,

ε = γ =
f ′

2
√

2f
,

α =
1

2
√

2h

{
gF

(
F∇A2

A2, A1

)
− i gF

(
F∇A1

A1, A2

)}
,

and

β = − 1

2
√

2h

{
gF

(
F∇A2

A2, A1

)
+ i gF

(
F∇A1

A1, A2

)}
.

Hence, every static multiply warped product spacetime contains two geodesic,
shearfree and non-diverging null congruences. The Ricci scalars are

Φ01 = Φ02 = Φ12 = 0 , Φ00 = Φ22 =
f ′h′

2fh
− h′′

2h
,

4Φ11 =
f ′′

f
−

(
h′

h

)2

+
KF

h2
,

and the scalar curvature is

R = −2f ′′

f
− 4h′′

h
− 2

(
h′

h

)2

− 4f ′h′

fh
+

2KF

h2
.

The Weyl scalars are Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 and

6Ψ2 =
f ′′

f
− h′′

h
+

(
h′

h

)2

− f ′

f

h′

h
− KF

h2
.

Theorem 2.1 Every static multiply warped product spacetime is either of
Petrov type D or O. Moreover, a static multiply warped product spacetime
is conformally flat if and only if the warping functions satisfy the condition

−h′′

h
− f ′h′

fh
= −f ′′

f
+

KF

h2
−

(
h′

h

)2

.

If follows that a conformally flat static multiply warped product spacetime
has KF = constant.
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Theorem 2.2 A static multiply warped product spacetime is a solution
of Einstein’s field equations with as source a cosmological constant, i.e.,
Ric(X,Y ) = R

4 g(X,Y ), if and only if f = c h′, with c ∈ R0, and

h′′′

h′ −
(

h′

h

)2

+
KF

h2
= 0 .

Note that this last condition can be geometrically interpreted as saying that
the sectional curvature of a plane tangent to the slice F (r, t) must be equal
to the sectional curvature of a plane spanned by the vectors X and U .

Example 2.1 Let KF = 1 and h(r) = cos(r). The spacetime (M,ds2),
with

ds2 = dr2 − sin2(r)dt2 + cos2(r)
(
dθ2 + cos2(θ)dφ2

)
,

is a conformally flat, static multiply warped product spacetime with source
a cosmological constant Λ = 3.

Corollary 2.4 A static multiply warped product spacetime is vacuum if and
only if f = c h′, with c ∈ R0, and

2
h′′

h
+

(
h′

h

)2

− KF

h2
= 0 .

Example 2.2 Let KF = 0 and h(r) = r2/3. The spacetime (M,ds2), with

ds2 = dr2 − r−2/3dt2 + r4/3
(
dx2 + dy2

)
,

is a vacuum, Petrov type D static multiply warped product spacetime and
belongs to the class of special Kasner metrics [16].

Theorem 2.3 A static multiply warped product spacetime is a solution of
Einstein’s field equations with source a perfect fluid with 4-velocity U if and
only if

f ′′

f
+

h′′

h
− f ′h′

fh
−

(
h′

h

)2

+
KF

h2
= 0 .

Example 2.3 Let KF = 0, f(r) = ra and h(r) = ra(a−1)/(a+1) , with
a ∈ R − {±1,−1/3}. The spacetime (M,ds2), with

ds2 = dr2 − f2(r)dt2 + h2(r)
(
dx2 + dy2

)
,

is a Petrov type D, perfect fluid, static multiply warped product spacetime.
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Example 2.4 Let KF = −1, f(r) = r1+
√

3 and h(r) = r. The spacetime
(M,ds2), with

ds2 = dr2 − r2+2
√

3dt2 + r2
(
du2 + e2udφ2

)
,

is a Petrov type D, perfect fluid, static multiply warped product spacetime.

The previous examples are contained in the complete list of Petrov type D
and O static perfect fluid solutions obtained in [17].

A spacetime (M,g) is called pseudo-symmetric if there exists a function
L : M → R, called the double sectional curvature, such that the condition

R · R = LQ(g,R) ,

holds for all points p ∈ M with Q(g,R)p 6= 0, where the (0, 6) Tachibana
tensor Q(g,R) is defined as

Q(g,R)(X1,X2,X3,X4;X,Y ) := −
(
(X ∧ Y ) · R

)
(X1,X2,X3,X4)

= R
(
(X ∧ Y )X1,X2,X3,X4

)

+R
(
X1, (X ∧ Y )X2,X3,X4

)

+R
(
X1,X2, (X ∧ Y )X3,X4

)

+R
(
X1,X2,X3(X ∧ Y )X4

)
,

and the (0, 6)-tensor R ·R is defined similarly by letting the curvature oper-
ator R(X,Y ) act as a derivation on the curvature tensor R. The canonical
metrical endomorphism X ∧ Y is defined by

(X ∧ Y )Z = g(Y,Z)X − g(X,Z)Y .

For further details on pseudo-symmetric manifolds and spacetimes, see e.g.
[18–21].

Theorem 2.4 A static multiply warped product spacetime is pseudo-sym-
metric if and only if h′ = c f , with c ∈ R0. The double sectional curvature
function then is L = h′′/h. If h′ = 0, the static multiply warped product
spacetime is semi-symmetric.

Proof: From the classification in [20] it follows that a Petrov type D space-
time is pseudo-symmetric if and only if the Ricci scalars Φ0i = Φ2i = 0,
i = 0, 1, 2. The double sectional curvature function L is then given by
L = −(Ψ2 + R/12). 3
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3. Characterizations of extremal and geodesic two-surfaces

We first recall some of the basic formulas of surface theory we will use
in this section. Let S be a spacelike two-surface isometrically embedded in
a static multiply warped product spacetime. Denote by ξ a normal vector
field to the surface S and let {e1, e2} be an orthonormal tangent basis to S.
The Gauss and Weingarten formulas are

Dei
ej = ∇ei

ej + II(ei, ej) , (4)

and

Dei
ξ = −Aξ(ei) + ∇⊥

ei
ξ , (5)

with ∇ the induced connection on the surface, II the second fundamental
form, Aξ the shape operator with respect to the normal direction ξ and ∇⊥

the normal connection in the normal bundle. The second fundamental form
and the shape operator are related by

g(II(ei, ej), ξ) = g(Aξ(ei), ej) .

A surface is called totally geodesic if II = 0. Congruences of these kind of
surfaces in a spacetime were studied in [22]. Let {ξ1, ξ2} be a basis of the
normal bundle, with g(ξ1, ξ1) = −g(ξ2, ξ2) = 1. The mean curvature vector
of the surface is defined as

2H = Tr(Aξ1)ξ1 − Tr(Aξ2)ξ2 .

If H = 0 the surface is called extremal. Further, if H is a timelike vector
everywhere on the surface, the surface is called trapped, if it is a null vector
everywhere and non-vanishing in at least one point, the surface is called
marginally trapped. If the mean curvature vector is spacelike in every point,
the surface is called non-trapped.

The Gaussian curvature K of the surface is related to the curvature of
the static multiply warped product spacetime through the Gauss equation,

K = R(e1, e2, e2, e1) + g(II(e1, e1), II(e2, e2)) − g(II(e1, e2), II(e1, e2)) ,

or

K = R(e1, e2, e2, e1) + det(Aξ1) − det(Aξ2) .

3.1. Two-surfaces in fibers F (t)

Let S be a spacelike two-surface which is isometrically embedded in a
static multiply warped product spacetime such that it lies entirely in a fiber
F (t0) = B1 × {t0} × F . Hence, U is a timelike normal to S. Denote by N
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a spacelike unit normal to the surface. Then, the vector field X ∈ X(M)
can be decomposed as

X = XT + cos(θ)N ,

with XT the tangent part of X to S and cos(θ) = g(X,N). Let {e1, e2}
be an orthonormal basis of the tangent space to S at (r, t0, p). Each basis
vector can be written as

ei = g(ei,X)X + eF
i , i = 1, 2 , (6)

with eF
i the projection onto the fiber F (r, t0).

From the Weingarten formula (5) and Proposition 2.1 it follows that
AU = 0. Hence, every spacelike surface lying entirely in the fiber F (t0) is
non-trapped. Further, from (4) it readily follows that

div(XT ) =
h′

h

(
1 + cos(θ)2

)
+ 2cos(θ)H ,

with H the length of the mean curvature vector H .

Proposition 3.1 Let S be a compact, spacelike two-surface in a static mul-
tiply warped product spacetime, which lies entirely in a fiber F (t0). Then,

∫

S

{
h′

h

(
1 + cos(θ)2

)
+ 2cos(θ)H

}
dV = 0 . (7)

Corollary 3.1 Let M be a static multiply warped product spacetime. Then,
M admits a compact extremal spacelike two-surface lying entirely in F (t0) if
and only if it admits a totally geodesic spacelike slice F (r, t0).

Proof: From (7) it follows that

∫

S

h′

h

(
1 + cos(θ)2

)
dV = 0 .

Thus, there must exist a r0 ∈ I such that h′(r0) = 0. Then, from (2) we see
that F (r0, t0) defines a totally geodesic spacelike slice. 3

Using the expressions of the curvature tensor R of the static multiply
warped product spacetime from Proposition 2.3 and the decomposition (6),
it is a straightforward computation to show that
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R(e1, e2, e2, e1) = g
(

FR
(
eF
1 , eF

2

)
eF
2 , eF

1

)

+

(
h′

h

)2 (
g

(
eF
1 , eF

2

)2

−g
(
eF
1 , eF

1

)
g

(
eF
2 , eF

2

) )

+
h′′

h

(
2g (e1,X) g(e2,X)g

(
eF
1 , eF

2

)

−g (e1,X)2 g
(
eF
2 , eF

2

)

−g (e2,X)2 g
(
eF
1 , eF

1

) )
.

Because g(eF
i , eF

j ) = δij − g(ei,X)g(ej ,X) and using that g(XT ,XT ) =

sin(θ)2, we obtain

R(e1, e2, e2, e1) = h2gF

(
FR(eF

1 , eF
2 )eF

2 , eF
1

)
−

(
h′

h

)2

cos(θ)2 − h′′

h
sin(θ)2 .

There holds that

KF =
gF

(
FR(eF

1 , eF
2 )eF

2 , eF
1

)

gF (eF
1 , eF

1 )gF

(
eF
2 , eF

2

)
− gF

(
eF
1 , eF

2

)2

=
h4

cos(θ)2
gF

(
FR(eF

1 , eF
2 )eF

2 , eF
1

)
.

Using the characteristic equation for 2 × 2 matrices, A2
N − Tr(AN )AN +

det(AN )I2 = 0, there holds the following.

Proposition 3.2 Let S be a spacelike two-surface in a static multiply warped
product spacetime, which lies entirely in a fiber F (t0). Then,

K +
h′′

h
sin(θ)2 +

[(
h′

h

)2

− KF

h2

]
cos(θ)2 − 2H2 ≤ 0 .

Equality holds in every point of the surface if and only if the surface is totally
geodesic.

Let χ(S) denote the Euler–Poincaré characteristic of the surface. Using the
theorem of Gauss–Bonnet we obtain the following integral inequality.
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Corollary 3.2 Let S be a compact spacelike two-surface in a static multiply
warped product spacetime, lying entirely in a fiber F (t0). Then,

χ(S) ≤ 1

2π

∫

S

{[
KF

h2
−

(
h′

h

)2
]

cos(θ)2 + 2H2 − h′′

h
sin(θ)2

}
dV ,

and equality holds if and only if the surface is totally geodesic.

3.2. Two-surfaces in fibers F (r)

Let now S be a spacelike two-surface which lies entirely in a fiber F (r0).
Hence, X is a unit spacelike normal to S. Denote by ξ a timelike unit
normal. Then,

U = UT − f(r0) sinh(φ) ξ ,

with sinh(φ) = g(U, ξ)/f and UT is the tangent part of U to S. A tangent
basis {e1, e2} to S at (r0, t, p) can be decomposed as

ei = − 1

f2
g(ei, U)U + eF

i .

From the Weingarten formula if follows that

det(AX) =
f ′h

fh
cosh(φ)2 −

(
h′

h

)2

sinh(φ)2 .

Using this in the Gauss equation gives

K = R(e1, e2, e2, e1) +
f ′h′

fh
cosh(φ)2 −

(
h′

h

)2

sinh(φ)2 − det(Aξ) .

By a calculation, similar as in the previous section, we obtain

K = −KF

h2
sinh(φ)2 − det(Aξ) .

From the definition of the mean curvature vector, there holds that

Tr(Aξ)
2 =

[
f ′

f
cosh(φ)2 +

h′

h

(
2 − cosh(φ)2

)]2

− 4H2 .

Collecting these results gives the following.
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Proposition 3.3 Let S be a spacelike two-surface in a static multiply warped
product spacetime, which lies entirely in a fiber F (r0). If S is assumed to be
non-trapped, then

K +
KF

h2
sinh(φ)2 +

1

2

[
f ′

f
cosh(φ)2 +

h′

h

(
2 − cosh(φ)2

)]2

≥ 0 .

Equality holds in every point of the surface if and only if the surface is
extremal in M and geodesically in the fiber F (r0).

From [23] it follows that assuming the surface is non-trapped is natural
since there do not exist compact trapped or marginally trapped surfaces
in a static multiply warped product spacetime. Using the Gauss–Bonnet
theorem we obtain an integral inequality on a compact non-trapped surface.

Corollary 3.3 Let S be a compact, non-trapped surface in a static multiply
warped product spacetime, which lies entirely in a fiber F (r0). Then,

χ(S) ≥ 1

2π

∫

S

{
−KF

h2
sinh(φ)2− 1

2

[
f ′

f
cosh(φ)2+

h′

h

(
2 − cosh(φ)2

)]2
}

dV ,

and equality holds if and only if the surface is extremal.

3.3. Spacelike two-surfaces in a general position

Let S be a general spacelike two-surface in a static multiply warped
product spacetime M . At a point q ∈ S we can consider an orthonormal
frame of TqM , {ξ1, ξ2, e1, e2}, such that e1 and e2 are tangent to S at q and
ξ1 and ξ2 are a spacelike and timelike normal respectively to TqS. A null
tetrad associated with this basis is

K̂ = 1√
2
(ξ1 + ξ2) , L̂ = 1√

2
(ξ2 − ξ1) , M̂ = 1√

2
(e1 + ie2) .

This null tetrad is related to the null tetrad (3) in q through successive
Lorentz transformations, i.e., up to rescaling, the null vectors {K,L} can

be brought in the direction of {K̂, L̂} as follows:

K̂ = K + EM + EM + EEL ,

M̂ = M + EL + B(K + EM + EM + EEL) ,

L̂ = (1 + BE + +BE + BBEE)L + BBK + B(1 + BE)M

+B(1 + BE)M , (8)

with E and B complex functions.
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The second fundamental form II of the surface can be written as

II(ei, ej) = −g(II(ei, ej), L̂)K̂ − g(II(ei, ej), K̂)L̂ .

In particular, in terms of the Newman–Penrose spin coefficients, we find

II(e1, e1) = 1
2(λ̂ + λ̂ + µ̂ + µ̂)K̂ − 1

2(σ̂ + σ̂ + ρ̂ + ρ̂)L̂ ,

II(e2, e2) = −1
2(λ̂ + λ̂ − µ̂ − µ̂)K̂ + 1

2(σ̂ + σ̂ − ρ̂ − ρ̂)L̂ ,

II(e1, e2) = i
2(λ̂ − λ̂ + µ̂ − µ̂)K̂ + i

2(σ̂ − σ̂ + ρ̂ − ρ̂)L̂ .

The mean curvature vector then reads

H = 1
2(µ̂ + µ̂)K̂ − 1

2 (ρ̂ + ρ̂)L̂ .

Note that the second fundamental form of a spacelike surface in a spacetime
is completely determined by the shear, expansion and vorticity of the two
null congruences orthogonal to the surface.

The spin coefficients ρ̂, µ̂, σ̂ and λ̂ can be related to the corresponding
spin coefficients of the null tetrad {K,L,M,M} by means of the transfor-
mation (8),

ρ̂ = ρ + 2Eα + E2σ + 2EEε − EL(E) − M(E)

+B
(
E(1 + EE)(2ε + ρ) + Eσ + 2E2α − 2EEα + E3σ

−K(E) + EM(E) − E M (E) − EEL(E)
)

,

σ̂ = σ − 2Eα + E2(ρ + 2ε) − EL(E) − M (E)

+B
(
E(1 + EE)(ρ + 2ε) + Eσ + 2E2α − 2EEα + E3σ

−K(E) − EM(E) − E M (E) − EEL(E)
)

,

µ̂ = µ + 2B
(
E(ρ + ε) − α

)
+ B

(
Eσ + Eρ

)

+B
2
(
σ − 2Eα + E2(ρ + 2ε) − EL(E) − M(E)

)

+2BB
(
ε − Eα + Eα + EE(ρ + ε) + E2σ

)

+BB
2
(
E(1 + EE)(ρ + 2ε) + Eσ + 2E2α − 2EEα + E3σ

−K(E) − EM(E) − E M (E) − EEL(E)
)

+B
(
K(B) + EM (B) + EM(B) + EEL(B)

)
+ M(B) + EL(B) ,
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λ̂ = σ + B
(
3Eσ + E(ρ + 2ε) + 2α

)

+B
2
(
ρ + 2ε + 4Eα + 3E2σ + 2EE(ρ + 2ε) − 2Eα − EL(E) − M(E)

)

+B
3
(
E(1 + EE)(ρ + 2ε) + Eσ + 2E2α − 2EEα + E3σ

−K(E) − EM(E) − E M (E) − EEL(E)
)

+B
(
K(B) + EM (B) + EM(B) + EEL(B)

)
+ M(B) + EL(B) .

Proposition 3.4 Let S be a spacelike two-surface in a static multiply warped
product spacetime.

1. The surface S is totally geodesic if and only if λ̂ = −λ̂ = −µ̂ and
σ̂ = −σ̂ = −ρ̂.

2. The surface S is extremal if and only if µ̂ + µ̂ = ρ̂ + ρ̂ = 0.

3. The surface S is trapped if and only if µ̂ + µ̂ = −(ρ̂ + ρ̂) 6= 0.

4. The surface S is marginally trapped if and only if µ̂ + µ̂ = 0 and
ρ̂ + ρ̂ 6= 0, or ρ̂ + ρ̂ = 0 and µ̂ + µ̂ 6= 0.

5. The surface is totally umbilical if and only if σ̂ = −σ̂ = 1
2(ρ̂ − ρ̂) and

λ̂ = −λ̂ = 1
2(µ̂ − µ̂).

We finally give some necessary and sufficient conditions for a compact
spacelike surface to be part of a fiber F (r) or F (t). The vectors X and U
can be decomposed into parts tangent and normal to the surface S as

X = XT + XN and U = UT + UN .

Denote by {e1, e2} an orthonormal tangent basis to the surface as above.
These vectors can be written as

ei = g(ei,X)X − 1

f2
g(ei, U)U + eF

i ,

for i = 1, 2 and where eF
i is the part tangent to the slice F (r, t). Using the

Gauss and Weingarten formulas we find

Dei
XT = − f ′

f3
g(ei, U)U +

h′

h
eF
i + AXN (ei) −∇⊥

ei
XN ,
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such that

div(XT ) = − f ′

f3
g

(
UT , UT

)

+
h′

h

(
2 − g

(
XT ,XT

)
+

1

f2
g

(
UT , UT

))
+ Tr (AXN ) .

Because g(UN , UN ) = −f2 − g(UT , UT ) < 0, the vector UN is a timelike,
normal vector to the surface. Denote by ξ the unitary, spacelike normal to
the surface and to UN . Then,

Tr (AXN ) = g
(
XN , ξ

)
Tr(Aξ) +

g
(
XN , UN

)

g (UN , UN )
Tr(AUN )

= 2g(X,H) .

Proposition 3.5 Let S be a compact spacelike two-surface in a static mul-
tiply warped product spacetime. Then,

∫

S

{
− f ′

f3
g(UT , UT )

+
h′

h

(
2 − g(XT ,XT ) +

1

f2
g(UT , UT )

)
+ 2g(X,H)

}
dV = 0 .

If the static multiply warped product spacetime is pseudo-symmetric,
then h′ is signed.

Corollary 3.4 Let S be a compact spacelike two-surface in a pseudo-sym-
metric, static multiply warped product spacetime with h′ > 0. Then,

∫

S

{
− f ′

f3
g(UT , UT ) +

h′

h

(
2 − g(XT ,XT )

)
+ 2g(X,H)

}
dV ≤ 0 ,

and equality holds if and only if the surface S lies in a fiber F (t).

Corollary 3.5 Let S be a compact spacelike surface in a pseudo-symmetric,
static multiply warped product spacetime with h′ > 0. Then,

∫

S

{
− f ′

f3
g(UT , UT ) +

h′

h

(
2 +

1

f2
g(UT , UT )

)
+ 2g(X,H)

}
dV ≥ 0 ,

and equality holds if and only if the surface S lies in a fiber F (r).

Analogous results hold if we assume that h′ < 0, now with opposite inequal-
ity signs.
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