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We consider the successive measurement of position and momentum
of a single particle. Let P be the conditional probability to measure the
momentum k with precision ∆k, given a previously successful position mea-
surement q with precision ∆q. Several upper bounds for the probability P
are derived. For arbitrary, but given precisions ∆q and ∆k, these bounds
refer to the variation of q, k, and the state vector ψ of the particle. The
first bound is given by the inequality P ≤ ∆k∆q/h, where h is Planck’s
quantum of action. It is nontrivial for all measurements with ∆k∆q < h.
A sharper bound is obtained by applying the Hilbert–Schmidt norm. As
our main result, the least upper bound of P is determined. All bounds are
independent of the order with which the measuring of the position and
momentum is made.

PACS numbers: 03.65.Ta, 04.80.Nn, 03.67.–a

The measurement process in quantum mechanics plays a dual role. On
one hand, it describes the way in which the state of a quantum system
changes if a measurement is performed on it, thereby influencing the pre-
dictions on the future behavior of the system. On the other hand, it gives
a unique prescription for the preparation of a quantum system in a definite
state. The most generally known case of this phenomenon is the comple-
mentarity between position and momentum, as expressed quantitatively in
the Heisenberg uncertainty principle. Let us begin with the ordinary case of
a single particle passing through a slit in a diaphragm of some experimental
arrangement. Even if the momentum of the particle is completely known
before it impinges on the diaphragm, the diffraction by the slit of the plane
wave will imply an uncertainty in the momentum of the particle, after it
has passed the diaphragm, which is the greater the narrower the slit. Now
the width of the slit may be taken as the uncertainty ∆x of the position of
the particle relative to the diaphragm, in a direction perpendicular to the
slit. It is simply seen from de Broglie’s relation between momentum and
wave-length that the uncertainty ∆p of the momentum of the particle in
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this direction is correlated to ∆x by means of Heisenberg’s general principle
∆x∆p ∼ h. In his celebrated paper [1] published in 1927, Heisenberg at-
tempted to establish this quantitative expression as the minimum amount of
unavoidable momentum disturbance caused by any position measurement.
In [1] he did not give an unique definition for the ‘uncertainties’ ∆x and
∆p, but estimated them by some plausible measure in each case separately.
In [2] he emphasized his principle by the formal refinement

∆x∆p & h . (1)

However, it was Kennard [3] in 1927 who proved the well-known inequality

σxσp ≥
~

2
, (2)

with ~ = h/2π, and σx, σp are the ordinary standard deviations of posi-
tion and momentum. Heisenberg himself proved relation (2) for Gaussian
states [2]. It should be mentioned, that Kennard was the first to choose the
standard deviation as a quantitative measure of uncertainty, and neither he
nor Heisenberg explicitly explained why this choice should be appropriate.
Thus the choice for the standard deviation was made at a very early stage
in the development of quantum theory without any explicit discussion. For
uncertainties represented by standard deviations, conditions ensuring their
existence are less easily established, and the concept of variance is to be
applied with some care. It has been pointed out that, in fact, inequality (2)
fails to express adequately the physical contents of the uncertainty principle,
as summarized by expression (1), in case of the single-slit diffraction [4–7].
Alternative characterizations of the ‘width’ of a probability distribution may
be defined as the length of the smallest interval which yields a given level
of total probability (confidence). This concept was considered long ago in
signal theory [8] and took some time until it was recognized in a wider con-
text [6, 9]. It is known to entail the ordinary case of variances.

Typically such measures analyze the degree of localizability of position
and momentum distributions and refer to two separate experiments, in the
sense that to each single particle either a position or a momentum measure-
ment is applied, and the preparation is the same in both cases. Instead,
Heisenberg discusses measurement processes, in which the initial prepara-
tion of the particle plays no important role. According to (1), position and
momentum are both measured for the same particle and the key observa-
tion is that the measurement of position necessarily disturbs the particle, so
that the momentum is changed by the measurement. A novel and general
way expressing this degree of disturbance in a sequential measurement was
recently presented by Werner [10]. Werner defines ‘uncertainty’ by a certain
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distance between probability distributions of ideal and approximate mea-
surements. Applied to a consecutive position and momentum measurement,
these uncertainties become the precision of the position measurement, and
the perturbation of the conjugate variable. These precisions satisfy a mea-
surement uncertainty relation for the trade-off between the accuracy of the
position measurement and the necessary disturbance of the momentum [10].

In the following we propose a similar but alternative approach. We con-
sider the conditional probability of consecutive measurements of position and
momentum. For instance, let us briefly discuss the single-slit diffraction in
more detail. The slit of width ∆q provides the precision of the position mea-
surement, and the diffraction pattern in the far-field reveal the momentum
distribution. A single particle initially in a plane-wave state ϕ(x) = 1/

√
∆x,

of width ∆x > ∆q, will acquire a momentum spread on passing through the
slit in accordance to the distribution

|ϕ(p)|2 =
2~

π∆q

∣

∣

∣
sin(∆q

2~
p)

∣

∣

∣

2

p2
. (3)

Then, for any precision ∆k, the conditional probability to measure the par-
ticle with momentum p ∈ [−∆k

2 ,
∆k
2 ] is simply computed by integrating the

density (3). We obtain

P (ξ) =
2

π

[

Si(πξ) − 2

π

sin(πξ2 )2

ξ

]

, (4)

ξ =
∆k∆q

h
, (5)

where h is Planck’s quantum of action1. The conditional probability (4)
is explicitly dependent on the product of the precisions ∆k and ∆q (or ξ),
ensuring the trade-off between the complementary observables. The func-
tion P (ξ) is monotonically increasing, with P (0) = 0 and P (ξ) → 1 for
ξ → ∞, see Fig. 1. For small ξ, the asymptotic behavior of the probabil-
ity is P (ξ) ∼ ξ, indicating the increasing disturbance of the particle by the
measurement apparatus. In the actual experiment [12–14], the momentum
precision ∆k is sometimes chosen twice the value of the first interference
minimum (FIM), or equal to the full width at the half maximum (FWHM).
According to (3), the momentum precision corresponding to the FIM is
obtained by ∆k = 2h/∆q, which entails a probability P (2) ≈ 0.9. Less
significant is the probability of P (0.89) ≈ 0.72 corresponding to the case of
the FWHM with higher precision ∆k = 0.89h/∆q.

1 The sine-integral is Si(x) =
R x

0

sin(t)
t

dt, [11].
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Fig. 1. Possible and impossible measurement probabilities (6). The vertical line is

the dividing line of Heisenberg according to (1). Measuring processes with condi-

tional probabilities above λ0(ξ) do not exist (see theorem).

In the following, we apply the concept of the ‘measurement precision’
in [7,15,16], and consider the general conditional probability Pk,q(∆k |∆q;ψ)
to measure the momentum k of a particle with precision ∆k, after having
made a position selection at q with the precision ∆q. For every given mea-
surement precisions ∆q and ∆k we will determine the least upper bound of
Pk,q(∆k |∆q;ψ) by considering a variation problem in Hilbert space.

To start with, we consider a single particle in one spatial dimension
described by a state vector, or wave function ψ which is an element of the
Hilbert space H = L2(R), the space of square integrable functions on R. We
write ρ̂ = |ψ〉〈ψ| for the pure state in question. The scalar product in Hilbert
space will be denoted by angular brackets, that is to write 〈φ|ψ〉 for the scalar
product of two state vectors φ,ψ ∈ H. Accordingly, the norm of φ is given
by ||ψ|| ≡

√

〈ψ|ψ〉. Position and momentum of the system are represented
as the Schrödinger pair of operators x̂, p̂, where (x̂ ψ)(x) = xψ(x) and
(p̂ ψ)(x) = −i~ψ′(x).

Let the vicinity Aq ⊂ R of a position value q be defined by the half-open

interval Aq =
(

q − ∆q
2 , q + ∆q

2

]

, and let the vicinity Bk ⊂ R of a mo-

mentum value k be defined by Bk =
(

k − ∆k
2 , k + ∆k

2

]

. Under a pro-

jective position measurement [7, 15], performed on a state ρ̂, the proba-
bility to measure the position x ∈ Aq with precision ∆q has the form:
Tr[ρ̂Ex̂(Aq)] = ||Ex̂(Aq)ψ||2 =

∫

Aq
|ψ(x)|2dx, where Ex̂(Aq) is the value
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of the spectral measure or the positive operator-valued measure Ex̂ on
the vicinity Aq ⊂ R of q. Similar, the probability of p ∈ Bk with the
precision ∆k is given by Tr[ρ̂Ep̂(Bk)] where Ep̂(Bk) is the value of the
spectral measure Ep̂ on the vicinity Bk ⊂ R of k. In this case we have

Tr[ρ̂Ep̂(Bk)] = ||Ep̂(Bk)ψ||2 =
∫

Bk
|ψ̃(p)|2dp where ψ̃ is the Fourier trans-

form of ψ.
Furthermore, the formalism for conditional probabilities under quantum

measurements is very well developed [7,15,16]. In the initial measurement of
the position, one may suppose either that the particle is absorbed during the
measurement, or that it emerges in a state perturbed by the measurement. In
the second case the uncertainty principle suggests that the more accurately
the position is measured the greater is the perturbation of the momentum
of the outgoing state, and there is no canonical instrument appropriate to
this situation. A conventional way of treating this problem is to partition
the position space into a countable number of disjoint sets, i.e. in the case
considered above, {Aqi}, qi = i∆q, i ∈ Z and to take the outgoing state
to be ρ′ = Ex̂(Aqi) ρEx̂(Aqi). By introducing another countable number
of disjoint sets {Bkj

}, kj = j∆k, j ∈ Z, corresponding to the momentum
measurement, the above mentioned conditional probability Pk,q(∆k |∆q;ψ)
of a successful momentum measurement p ∈ Bk, given a previous position
selection x ∈ Aq, is

Pk,q(∆k|∆q;ψ) =
||Ep̂(Bk)Ex̂(Aq)ψ||2

||Ex̂(Aq)ψ||2
. (6)

For simplicity we suppressed the indices i and j. Now, our main statement
is the following:

Theorem 1. Let ∆q and ∆k be fixed. For every q, k and ψ ∈ H, the least

upper bound of the measurement probability is given by the inequality

Pk,q(∆k|∆q;ψ) ≤ ξ
[

R
(1)
00 (πξ/2, 1)

]2
, (7)

with ξ = ∆k∆q
h , and R

(1)
mn(c, x) is the radial prolate spheroidal function of the

first kind 2.

Proof. We reformulate (6) in order to be able to apply the subspace Hq =
Ex̂(Aq)H ⊂ H, equipped with the scalar product

〈φ|ψ〉q =

∫

Aq

φ∗(x)ψ(x)dx , (8)

2 For the definition of R
(1)
mn(c, x) see [11]. An extensive discussion of this special function

can be found in [17–19].
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and norm ||ψ||q =
√

〈ψ|ψ〉q . Initially, we consider the linear mapping

Ĝkq : Hq → Hq, defined by

(Ĝkqψ)(x) =

∫

Aq

gk(x− x′)ψ(x′)dx′ , (9)

with the convolution kernel

gk(x) = e(i/~)kx sin(∆k
2~
x)

πx
. (10)

This kernel is continuous, bounded and gk(x) = g∗k(−x), i.e. the operator

Ĝkq is self-adjoint. Then, we obtain the following representation of (6)

Pk,q(∆k |∆q;ψ) =
〈ψ|Ĝkqψ〉q
〈ψ|ψ〉q

. (11)

On the other hand, the operator norm of Ĝkq in Hq is formally given by

||Ĝkq||q = sup
ψ∈H\{0}

|〈ψ| Ĝkq ψ〉q|
〈ψ|ψ〉q

, (12)

and simply obtains the least upper bound of the measurement probabil-
ity (6). A substantial step for the computation of ||Ĝkq||q is given by the
following:

Lemma 1. For every q, k,∆q and ∆k, we receive the identity

||Ĝkq||q = ||Ĝ00||0 . (13)

Proof. We consider the translation T̂q defined by (T̂qψ)(x) = ψ(x − q) and

the unitary transformation Ûk with (Ûkψ)(x) = e(i/~)k xψ(x). Then, by
using the identities

〈ψ|Ĝkqψ〉q = 〈ϕkq|Ĝ00ϕkq〉0 , (14)

〈ψ|ψ〉q = 〈ϕkq|ϕkq〉0 , (15)

with ϕkq = (ÛkT̂q)
−1ψ, there is the following reformulation of (12)

||Ĝkq||q = sup
ϕ∈(ÛkT̂q)−1H\{0}

|〈ϕ| Ĝ00 ϕ〉0|
〈ϕ|ϕ〉0

. (16)

By using H = ÛkT̂qH the lemma is proven.
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Now, as Ĝ00 is a compact and self-adjoint linear operator, there is a real
eigenvalue with modulus equal to || Ĝ00||0. It is easy to show that Ĝ00 is

positive definite on H0 and || Ĝ00||0 is equal to the maximal eigenvalue of

Ĝ00. According to (9) and (10), the eigenvalues of Ĝ00 must satisfy the
following homogeneous Fredholm integral equation of the second kind

λnψn(x) =
1

π

1
∫

−1

sin(π2 ξ(x− y))

x− y
ψn(y)dy , |x| ≤ 1 , (17)

in which the single parameter, ξ, appears instead of ∆q and ∆k separately.
From standard theory we know that (17) has solutions in L2([−1, 1]) only for
a discrete set of eigenvalues, λ0 ≥ λ1 ≥, . . . and that as n→ ∞, lim λn → 0.
It should be noted that both the ψn(x) and λn depend on the parameter ξ.
A detailed mathematical analysis of Eq. (17), and some asymptotic expan-
sions for prolate spheroidal wave functions are given in [20]. Corresponding
to each eigenvalue λn(ξ) there is a unique solution ψn(x) = S0n(πξ/2, x)
called angular prolate spheroidal wave function3. They are continuous func-
tions of ξ for ξ ≥ 0, and are orthogonal in (−1, 1). Moreover, they are
complete in L2([−1, 1]). The corresponding eigenvalues are related to a sec-
ond set of functions called radial prolate spheroidal functions, which differ
from the angular functions only by a real scale factor. Applying the notation
of Flammer [19] the eigenvalues are

λn(ξ) = ξ
[

R
(1)
0n (πξ/2, 1)

]2
, (18)

with n = 0, 1, 2, . . . These eigenvalues are non-degenerate for ξ > 0 and one
can prove that λ0 > λ1 > · · · > 0. Thus, the largest eigenvalue is λ0(ξ) and
we obtain

||Ĝ00||0 = λ0(ξ) (19)

corresponding to the statement of the theorem. 2

Various algorithms for the numerical computation of the prolate sphe-
roidal functions are discussed in [21, 22]. Most of the standard methods
involve an expansion of Legendre polynomials for small values and expan-
sion in Bessel functions in the neighborhood of infinity. In Fig. 1, we see
the monotonically increasing behavior of λ0(ξ). For small values of ξ, the
behavior of λ0(ξ) is given by

λ0(ξ) = ξ

[

1 −
(

πξ

6

)2

+ O(ξ4)

]

, (20)

3 A number of books [17–19] treat the prolate wave functions in detail.



594 T. Schürmann

with λ0(ξ) ∼ ξ for ξ → 0. Actually, the leading term of this expansion is

equal to the trace of Ĝkq, which is, according to Mercer’s theorem, given by

Tr( Ĝkq) = ξ , (21)

and λ0(ξ) can never exceed the trace. An alternative upper bound of λ0(ξ) is

obtained by the Hilbert–Schmidt-norm of Ĝkq. The computation is straight-
forward by applying the ordinary integral representation

||Ĝkq||HS =







∫

Aq

∫

Aq

|gk(x− x′)|2dxdx′







1
2

, (22)

and according to (10) we immediately obtain the expression4

||Ĝkq||HS =
1

π
[2πξSi(2πξ) − Cin(2πξ) + cos(2πξ) − 1]

1
2 . (23)

This bound is slightly tighter than the trace, and it is non-trivial for ξ ≤ 1.37.
Instead, for large values of ξ an asymptotic expansion of λ0(ξ) is given by
the following expression [23]

λ0(ξ) = 1 − π
√

8ξe−πξ
[

1 − 3π

64
ξ + O(ξ−2)

]

, (24)

whereas the convergence behavior is mainly determined by the exponential
damping factor5.

On the other hand, empirically we found that the function erf(
√
π

2 ξ) is
proceeding slightly above λ0(ξ), as we can see in Fig. 1. Moreover, it pre-
serves the property to vanish for ξ = 0 with slope 1, and it is monotonically
increasing with an upper bound of 1. Numerically we found, that the max-
imum of the deviation from λ0(ξ) is less than 1% and is localized in the
neighborhood of ξ ≈ 1.48. We have not been able to falsify the inequality

λ0(ξ) ≤ erf(
√
π

2 ξ) and thus conjecture it to be a proper upper bound for all
ξ ≥ 0.

The vertical line ξ = 1 in Fig. 1 is the ordinary dividing line (‘unit step’)
of Heisenberg corresponding to the relation (1). Instead, according to the
least upper bound λ0(ξ), we additionally consider probabilistic aspects of
the measurement process. Consequently, no measurement event with con-
ditional probability above λ0(ξ) does exist. According to the monotonic

4 The sine-integral is Si(x) =
R x

0

sin(t)
t

dt, respectively, Cin(x) =
R x

0

1−cos(t)
t

dt, see [11].
5 The area between λ0(ξ) and 1 is finite and we numerically obtain the value

R

∞

0
(1 − λ0(ξ)) dξ = 0.65077(5).
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behavior of λ0(ξ), such an exclusion occurs for both ξ < 1 and ξ ≥ 1.
For instance, measurement events with precisions ∆k∆q = h and probabil-
ities greater than λ0(1) = 0.78 are impossible6. Furthermore, for precisions
with ∆k∆q = ~ = h/2π, as applied in the textbook of Landau and Lifs-
chitz ([24], p. 45), the least upper bound of the measurement probability
is merely λ0(

1
2π ) = 0.16. In fact, for the constitution of a proper measure-

ment apparatus, higher values of λ0(ξ) should be preferred, e.g. a bound
λ0(ξ) ≥ 0.98 is corresponding to the necessary condition ∆k∆q ≥ 2h.

The case of minimum uncertainty in (2) is achieved for Gaussian state
functions saturating the lower limit of the ordinary uncertainty principle, i.e.

σxσp = ~/2. According to our theorem, the bound λ0(ξ) can not be attained
by the measurement probability (6) in this case. Instead, it is reached for the

prolate angular spheroidal eigenfunction, ψ0(x) = S
(1)
00 (πξ2 , x), corresponding

to the maximum eigenvalue λ0(ξ) (see theorem).

Actually, the least upper bound is just as valid for measuring processes
which are carried out in reversed order. We obtain the corresponding condi-
tional probability by the change of the projectors Ex̂(Aq) and Ep̂(Bk) in (6).
Then, the derivation is done in the momentum representation and is iden-
tical with the original derivation in the position representation, except for
the sign of the imaginary unit. Due to the independence of the norm of q
and k (see lemma), the bounds are same as before.

Furthermore, a generalization of our results to consecutive position mea-
surements with finite time-delay is possible. In this case we consider two
successive position measurements at q and q′ with time-delay t > 0, and
the corresponding precisions are ∆q and ∆q′. In analogy to our lemma, the
norm of the appropriate operator is independent of q and q′. Therefore, we
obtain the same bounds as before except that we have to replace the param-

eter ξ by ξ̃ = m
t

∆q∆q′

h in (18) and (19), where m is the mass of the particle.
The latter might be interesting as spin-measurements in the Stern–Gerlach
experiment are principally produced by two consecutively position measure-
ment. In this case, ∆q corresponds to the gap of the pols of the magnet
where the particle emerges from, and ∆q′ is given by the domain of the
screen where the spin of the particle is red as ‘up’ or ‘down’. But if the time
interval t of the two measuring events is so big that the inequality ξ̃ ≪ 1 is
valid, this is a clear indication that there is an essential disturbance of the
measurement result caused by the measurement device. On the other hand,
too small values of t might lead to the problem, that no sufficient separation
between the two spin directions is produced. Therefore, it seems interesting
to reexamine these experiments in more detail.

6 This value might be a hint for the necessity of the notation “∼” in Heisenberg’s
original inequality (1).
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In summary, we considered Heisenberg’s concern to establish a quantita-
tive expression for the minimum amount of unavoidable momentum distur-
bance caused by any position measurement. We proposed to apply the con-
ditional probability of consecutive position and momentum measurements.
As our main result, we derived a tight upper bound of this probability. This
bound is independent of the state vector, and is just as valid for measuring
processes which are carried out in reversed order.
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