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Total cross-sections of the halo nuclei in both the zero- and the finite-
ranges are calculated at energy range of 25–800 MeV/n, by using the carbon
nuclei as a probe. The calculations are based on the Optical Limit Approxi-
mation (OLA) of the Glauber theory and are done for Li, Be and B isotopes
using the finite and the zero range interactions. We found that the total
cross-sections depend slightly on the nuclear density. On the other hand,
there is a discrepancy between the calculated results of both ranges in the
surface region of the reaction probability. The theoretical results for the
zero- and the finite-range are compared with experimental data. We found
that the zero-range predictions are consistent with experimental data more
than the finite-range.

PACS numbers: 24.10.–i, 24.10.Ht, 25.60.Dz, 21.45.+v

1. Introduction

Nuclear physicists discovered twenty years ago that some of the lightest
nuclei can have a matter radius as large as those found in the heaviest natu-
rally occurring elements [1]. This was explained by weakly bound nucleons
that form a dilute cloud around a central nuclear core [2]. Such a structure
is called a neutron halo.

These extended nuclei behave very differently from ordinary ones. Nor-
mal nuclei are difficult to excite or break apart, but halo nuclei are fragile
objects. They are larger than normal nuclei and interact with them more
easily as well. In fact, the halo is a quantum phenomenon that does not obey
the laws of classical physics. A schematic picture for the structure of the
two-neutron halo nucleus 11Li compared to the nucleus of lead-208, which
has almost 20 times more nuclear particles, is shown in Fig. 1.
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Fig. 1. Comparison between the halo nucleus 11Li and the stable nucleus 208Pb.

The study of nuclei far from the valley of stability is an emerging frontier
field in nuclear physics. The study of exotic nuclei provides new and exciting
opportunities for probing the details of the nuclear force and understanding
exactly how nuclei are put together and how they react. Furthermore, the
properties of exotic nuclei are key for understanding the production of the
elements. Additionally, the study of exotic nuclei is essential in many fields
of astrophysics, where they are used to model stars, supernova, X-flares and
all the cosmic cauldrons where the elements were created.

Up to now much effort has been made to the study of neutron halo
structure, such as the discovery of neutron halo nuclei 6,8He, 11Li, 11,14Be
[3] and the recent work on 19C [4,5]. At the same time, some work has been
performed on proton halo nuclei, e.g. 8B and 17Ne. Due to Coulomb effect,
the formation of proton halo is more difficult and complicated compared to
neutron halo structure.

Experimental study of unstable nuclei has considerably advanced via the
technique of using secondary radioactive beams. The quantities measured
in the study include various inclusive cross-sections, for example, reaction or
interaction cross-sections, nucleon-removal cross-sections, Coulomb breakup
cross-sections and momentum distributions of a fragment.

These quantities have played a pivotal role in revealing the nuclear struc-
ture of unstable nuclei, particularly halo structure near the drip line [6]. The
total reaction cross-section (σR) is one of the most fundamental quantities
characterizing the nuclear reactions as well as for probing for nuclear struc-
ture details.

Several methods are available to study the total reaction cross section,
such as the multi-step scattering theory of Glauber [7], the transport model
method of Ma et al. [8] and the semi-empirical formula of Kox et al. [9] and
Shen et al., [10] etc. For the first one, because of its simplicity, the optical
limit approximation (OLA) of the Glauber approach is the most common
used method [7]. The optical phase in the OLA is given by a functional of
the densities of the projectile and the target.



Comparison Between Zero-Range and Finite-Range Calculations . . . 673

The aim of this work is to calculate the total reaction cross-sections in
the zero-range and finite-range for 12C, 8−17B, 7−14Be and 6−9,11Li isotopes
incident on a 12C target in the energy range of 25–800MeV/n. It should
be noted that this work is motivated by the comments of the referee of our
previous paper [11].

The out line of this paper is as follows: in Section 2 we briefly discuss
the formalism used in our calculations. Section 3 shows the results. Finally
we present the summary in Section 4.

2. Eikonal approximation of the Glauber theory

Within the Eikonal approximation, the trajectory of the projectile is
approximated by a straight line, while the Adiabatic approximation neglects
the excitation energies of the colliding nuclei. These approximations are
needed to derive a simple, tractable expression for the scattering amplitude.
Under these approximations the scattering amplitude is given by
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where q is the momentum transferred from the target to the projectile,
b a two-dimensional impact-parameter vector perpendicular to the z-direction

and s
(P)
i is the projection onto the x–y-plane of the nucleon position vector

relative to the projectile’s c.m., r
(P)
i − R

(P )
c.m..

The wave function Ψ
(P )
α denotes the projectile’s intrinsic state specified

by a quantum number α with its c.m. part being dropped (α = 0 stands for

the ground state). Similarly, the target state is denoted by Ψ
(T)
β . Thus, f00

stands for the elastic scattering amplitude. See, for example, Refs. [7,12]
for more details.

The phase-shift function χNN in Eq. (1) is a basic ingredient for the
scattering amplitude. It describes the NN scattering and is related to the
NN potential VNN by

χNN (b) = −

1

ηϑ

+∞
∫

−∞

dz VNN (b + zẑ) , (2)

where ϑ is the asymptotic velocity of the relative motion between the pro-
jectile and the target and ẑ is a unit vector in the z-direction. The NN

potential contains complicated spin–isospin dependence, so χNN in general
becomes an operator acting in that space. The use of such an operator in
Eq. (1) is extremely involved, and here it is treated as just a function by
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ignoring the spin–isospin dependence as is usually done. The NN profile
function ΓNN (b) is introduced and often parameterized in the form [13]

ΓNN (b) = 1 − eiχNN (b) =
1 − iα

2π
ωσNNe−ωb2 , (3a)

ΓNN (b) =
1 − iα

4πβ
σNNe−b2/2β (finite − range) , (3b)

ΓNN (b) =
1 − iα

2
σNNδ(b) (zero − range) . (3c)

Here σNN is the total NN cross section and the parameters α and ω are
determined so as to fit the NN elastic differential cross section as well as
the NN reaction cross section at relevant energy.

To get the elastic scattering amplitude f00 we need to calculate the phase-
shift function χ(b)
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The above matrix element contains a multi-dimensional integration,
which is obviously not easy to perform in general. Recently, it has been
demonstrated [14] that the phase-shift function can be evaluated by Monte
Carlo method without approximation. However, for simplicity the optical
limit approximation is routinely used. In the following, we explain the opti-
cal limit approximation.

2.1. The optical limit approximation

The optical limit approximation makes it possible to calculate the optical
phase through the densities of the projectile and the target as follows

eiχ
OLA

(b) = exp
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, (5)

where s1(s2) is the projection of r1(r2) in x–y plane, ρ
P
(r1) and ρ

T
(r2) are

the densities of the projectile and target, respectively.
The needed input to the above equation are the densities of the projectile

and the target and the values of the NN -parameters. The densities which
we used here were taken from [15], while the values of the parameters were
taken from [16].

For the finite-range, we use Eq. (3b) for the expression of the NN profile
function, while we use Eq. (3c) for the zero-range.
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2.2. Reaction cross section in the Eikonal approximation

The Eikonal model provides a convenient framework for calculating inte-
grated cross-sections for a variety of processes involving peripheral collisions
between composite projectiles and stable targets. The reaction cross sec-
tion for a projectile-target collision is calculated by integrating the reaction
probability with respect to the impact parameter b

σR =
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where the phase shift function χ is obtained from Eq. (5). Here, we define
the reaction probability as
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3. Results and discussion

The total reaction cross-sections for 12C + 12C at different energies from
25 to 800MeV/n are calculated. Results for both the finite-range and the
zero-range are presented. In Fig. 2, we compared the finite-range and the
zero-range calculations with the experimental data from Ref. [9].

As can be seen from the figure there is a good agreement between the ex-
perimental data and the zero-range calculations, conversely the finite-range
overestimates the experimental data in the region of 100–300MeV/n.
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Fig. 2. Comparison between the reaction cross-sections calculated for 12C + 12C

at different energies with the finite-range (dashed line) and zero-range (solid line).

The experimental data are taken from [9].
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In Fig. 3, the total reaction cross-sections for 14Be incident on a 12C
target (left panel) and for 11Be incident on a 12C target (right panel), in
case of the finite-range and the zero-range calculations are compared.

Both 11Be and 14Be are halo nuclei, from the calculations the difference
between the zero-range and the finite-range at 25MeV/n are 234mb and
241mb while at 800MeV/n are 37mb and 39mb, respectively. By comparing
these values with those of 12C + 12C which are 236mb at 25MeV/n and
39mb at 800MeV/n, we found that the difference between the finite-range
and the zero-range did not depend on the system. Rather it depends only
on the energy. The finite range overestimated the zero range by 16% and
5% at 25MeV/n and 800MeV/n, respectively.
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Fig. 3. Comparison between the reaction cross-sections calculated for 11Be + 12C

(right panel) and 14Be + 12C (left panel) at different energies with the finite-range

(solid line) and the zero-range (dashed line).

In Fig. 4 we compared the total reaction cross-sections for 7−14Be inci-
dent on a 12C target in the case of finite-range and zero-range calculations
at fixed energy 25MeV/n (left panel) and at 800MeV/n (right panel). In
both cases, there was a difference about to be fixed.

The reaction cross-sections in case of the finite-range exceeded that in the
case of zero-range, this result supports what we found in Fig. 3. As shown in
Figs. 2, 3 and 4, the results with finite-range interaction are systematically
larger than those of zero-range one. This behavior could be understood as
follows: The factor β of finite-range in Eq. (5) increased the surface part
of the density and since the reaction cross section depends mostly on the
surface, so the reaction cross section increased.

To see this effect, we plot in Fig. 5 the reaction probability for 12C + 12C
for both zero-range and finite-range cases. Thus, it seems reasonable to argue
that the reaction probability with finite-range increases in the surface and
that comes in-line with the course of our discussion.

Moreover, it is interesting to see in what region of the reaction probability
the difference between 12Be and 14Be occurs, since the structure of 14Be is
12Be + n + n.
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Fig. 4. The reaction cross-sections for 7−14Be +12C calculated at 25 MeV/n (left

panel) and at 800 MeV/n (right panel). Dashed line is for the zero-range while

solid line is for the finite-range calculation.
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Fig. 5. The reaction probability for 12C + 12C in case of the finite-range and the

zero-range calculated at energy of 25 MeV/n.

In Fig. 6, we plot the reaction probability of both 12Be and 14Be as
a function of the impact parameter at 25MeV/n. As one can see, the dif-
ference appears in the surface region. This is simply because the difference
between 12Be and 14Be is a two neutron in the surface.

The effect of the density on the reaction cross section is discussed in
Fig. 7, where we compare the reaction probability in the case of two densities
“Relativistic Mean Field (RMF) and the Extension of this formalism with
field theory motivated effective Lagrangian approach (E-RMF)” mentioned
in Ref. [15]. The upper graph compares the reaction probability for 14Be +
12C reaction at energy of 25MeV/n for the two densities.
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The lower graph compares the reaction probability for 17B + 12C reaction
at energy of 25MeV/n for the two densities. We have chosen this energy to
maximize the difference between the reaction probability for both systems.
As we see, there is almost no difference between the two densities. This is
why we have used only one density in our calculations.

Fig. 8 compares the finite-range and the zero-range calculations with the
experimental values (when available) for 8−17B, 7−14Be and 6−9, 11Li isotopes
incident on a 12C target.
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In the first graph, the finite-range calculations are greater than the
zero-range ones by about 39mb. The experimental values agree with the
finite-range calculations for 8B and more than the zero-range calculations
by 26mb, while for 12B the experimental values agree with the zero-range
calculations but they exceed the finite-range calculations by 48mb.

For 13−15B, the experimental values are less than the zero-range cal-
culations by 31, 27 and 36mb, respectively, while they are less than the
finite-range calculations by 71, 67 and 76mb, respectively. However, for
17B they are greater than the finite-range calculations by 30mb and greater
than the zero-range calculations by 72mb. The second graph shows an in-
crement in the finite-range calculations by about 37mb than the zero-range
calculations.

The experimental values harmonize well with both calculations for
7,9,12Be. While for 10Be the experimental values are consistent with the zero-
range calculations, but are less than the finite-range calculations by 43mb.
Concerning 11Be, the experimental values are greater than the finite-range
calculations by 38mb and exceed the zero-range calculations by 75mb. For
the last isotope 14Be, the experimental values exceed the finite-range calcu-
lations by 102mb and exceed the zero-range calculations by 142mb. In the
third graph, the finite-range calculations outstrip the zero-range calculations
by about 33mb. The experimental values are in good agreement with both
the finite-range and the zero-range calculations for 7,8Li and agree with the
finite-range calculations for 6Li, but overstep the zero-range calculations by
32mb. As for 9Li the experimental values go in-tandem with the zero-range
calculations but they are less than the finite-range calculations by 41mb.

The experimental values for 11Li go beyond the finite-range calculations
by 90mb which overtake the zero-range calculations by 36mb.

4. Summary

We have calculated the reaction cross-sections of some light exotic nuclei
using the optical limit approximation of Glauber. We have used both finite-
range and zero-range interactions. We found that zero-range interaction
gives good fitting to the experimental data better than finite-range. As we
go from high energy to low energy there is a sudden decrease in the reaction
cross-sections. The zero-range calculations explain that this behavior is due
to the finite range parameter beta, which is not well determined. These
calculations support our previous finding in Ref. [11]. In addition, we found
that the difference between the zero-range and the finite-range is in the
surface region of the reaction probability. The reaction cross-sections depend
little on the nuclear density. Finally, we found a good agreement between
our calculations and the experimental data at high energies.
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