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We introduce the alternate social networks (ASN) model to study the
epidemic threshold of SIS epidemic. The alternate social networks consist
of a family network and a public network, mimicking the human contacts
during some time (e.g. nighttime) and other time (e.g. daytime) respec-
tively. Both the family network and the public network are constructed by
a set of sub networks which can exhibit small-world properties, scale-free
degree distribution or the household structure, representing various types
of local interactions among social groups in modern society. Simulations
show that the ASN has the essential characteristics of social networks, and
the local fully connected structures (households) as well as the existence of
local structures (publics) in the public network are two dominating ingredi-
ents for the epidemic threshold. Moreover, results show that the epidemic
threshold in ASN is independent of the initial condition and the system
size.

PACS numbers: 89.75.Fb, 89.75.Hc, 87.23.Ge, 87.19.Xx

1. Introduction

Classical mathematical models for the spread of a disease often ignore
the patterns and structures of social and spatial interactions within a popu-
lation [1]. However, it has been found recently that many social and natural
systems share some important organising principles uncovered in the frame-
work of complex network research [2–7], where the vertices represent the
elements and the edges pairwise interactions between elements. They typi-
cally exhibit two distinct properties, the scale-free (SF) connectivity distri-
butions [8] and the small-world (SW) properties [9]. These efforts dedicated
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to the structure of the networks help us understand the dynamics of the
networks, which in its turn have a strong impact on the dynamics on the
networks. Particularly interesting example where the interaction network
plays capital role in the dynamics is the case of disease spreading. The ex-
tensive study of network-based models of epidemic spreading has given us
valuable insights of how diseases spread [10–16].

The concept of thresholds, which is of important guiding significance to
the disease eradication and vaccination, is a central part of the theoretical
study of infectious diseases. In mathematical epidemiology [1], the epidemic
threshold is a standard element, responsible for many of the standard con-
clusions drawn in epidemic modelling. Recently, the investigation of the
susceptible-infected-susceptible (SIS) model on random SF networks find
the absence of an epidemic threshold and its associated critical behaviour,
which implies that random SF networks are prone to the spreading and
the persistence of infections at whatever spreading rate the epidemic agents
possess [17]. The clustering in random SF networks cannot restore a finite
epidemic threshold [18]. Actually, it has been found that a SF degree distri-
bution P (k) ∼ k−γ with 2 < γ ≤ 3 in unstructured networks with assortative
or disassortative mixing is a sufficient condition for a null epidemic thresh-
old in the thermodynamic limit, and the degree correlations result therefore
irrelevant for the epidemic spreading picture in these SF networks [19]. It
has also been shown that for finite-size networks, finite thresholds for the
spreading of an epidemic are always found [20, 21]. Moreover, research in-
dicates that epidemic propagation depends equally on the infection scheme
as well as the network structure, which says connectivity-dependent infec-
tion schemes can yield threshold effects even in scale-free networks where
they would otherwise be unexpected [22]. Comparing this with the absence
of a finite threshold in networks with purely random wiring, the study of
SIS epidemic model in highly clustered SF networks suggests that high clus-
tering (modularity) and degree correlations protect SF networks against the
spreading of viruses, which means the existence of a finite epidemic threshold
in these networks in the limit of infinite system size [23].

However, most of these investigations have been performed on the so-
called scale-free networks, where some important factors, such as network
hierarchy and the network evolution [11–16] are ignored, which have impor-
tant influence on the epidemic threshold. In modern society, daily human
activities are marked by strong habits with little day-to-day variety [24].
For instance, students will go to school in mornings, frequently contact with
their classmates and teachers, and stay home with their parents after school;
adults will go to their workplaces on time and stay there until off duty. In
order to account for these interaction patterns, researchers [25–32] have paid
increasing attention to the influence of the local structures in social networks
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on the epidemic spreading. Others [33, 34] considered the case that a com-
mon set of nodes belong to two different networks. But in these work the
influence of the household structure and the network hierarchy on the epi-
demic threshold has not been investigated yet. In this paper, we introduce
the alternate social networks to model the potentially infective contacts, and
we adopt the SIS model as a description of epidemic spreading in a closed fi-
nite population, focusing on the study of epidemic threshold in the alternate
social networks. Studies show that the ASN has the essential characteristics
of social networks, especially the local fully connected structures (household)
and the high clustering coefficient, which were found to be two dominating
ingredients for the epidemic threshold.

2. The model

The alternate social networks model (ASN) is depicted in Fig. 1, which
consists of two sub models: the public network model (PN) and the family
network model (FN). We consider a closed finite population of N individ-

Family Network

(Households)

Some time 

(nighttime)

Another time 

(daytime)

Public Network

(Publics)

Hospital

School Workplace

Shopping Mall

Fig. 1. Schema of the alternate social networks. The family network and the public

network are formed during some time (e.g. nighttime) and another time (e.g.

daytime), respectively. Dots represent individuals and lines between dots represent

contacts between individuals that could potentially lead to disease transmission.

Each household in the family network is fully connected, while in the public network

each sub network can be a small-world or a scale-free network. For the family

network, the size of sub networks is uniformly distributed, while for the public

network, it is drawn from a power-law distribution (see text).

uals, which is in our model randomly partitioned into several subgroups,
namely publics or households according to different time. For simplicity,
it is assumed that each subgroup is isolated from others, so only contacts
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between individuals in the same subgroup are allowed. These subgroups can
be modelled by sub networks with a certain topology. The set of sub net-
works formed during some time (e.g. daytime) and during another time (e.g.
nighttime) are then referred to as the public network (PN) and the family
network (FN), respectively. For the FN, the size Nfn of the sub networks is
uniformly distributed in the interval [2, 6], while for the PN the size Npn of
the sub networks is drawn from the power-law distribution P (Npn) ∼ N−4

pn

in the range [50, 150] according to the fact that the size distribution of work-
groups has power-law form [11]. In this way, the population is modelled in
turn by FN, each sub network of which is fully connected, and PN, of which
the sub network can be a small-world network (SWN), a scale-free network
(SFN), or some other network models. In this paper, we have considered
two cases:

• Case A: All sub networks of PN are SFNs;

• Case B: All sub networks of PN are SWNs.

For Case A, each SFN has been generated by BA model in [8]: (i) Start from
an initial network of m fully interconnected nodes. (ii) At each time step,
a new node with m edges that link to m different old nodes is added into
the system. The connection probability of a new node to already present
node i is given by Π(ki) = ki/

∑

j jkj . Finally, a network with an average

degree 〈k〉 = 2m is generated, and the expected degree distribution follows
a power law P (k) = 2m2k−3 in the thermodynamic limit.

For Case B, each SWN has been generated by WS model in [9]: (i) Start
from a one dimensional ring lattice with desired size satisfying the periodic
boundary condition and connect each node to its 〈k〉 = 2m neighbours;
(ii) Rewire each edge of the lattice with probability p, ignoring the self-
connection and duplication of edges.

With this method of modelling of the social interactions, the ASN can
exhibit some essential characteristics of real social networks, such as small-
world topology of connections, scale-free distribution of degree (for case A),
a large clustering coefficient, a hierarchical structure and the network evolu-
tion (change from PN to FN, and so on). It should be noted that the ASN
can be extended to take into account more factors to model the real contact
networks. For example, it may be a more feasible way to model the public
network by taking a mixture of Case A and B, where the SFN will be used
to model the subgroup if there is some super-spreaders.

The epidemic spreading is modelled using the standard susceptible-
infected-susceptible (SIS) mechanism [1]. Each individual can be in either
a susceptible or an infected state. We start with an initial density ρ0 of
infected individuals. The dynamics of the model are such that at every time
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step: (1) Susceptible individuals become infected with probability λ if at
least one of the neighbours is infected. (2) Infected vertices, on the other
hand, recover and become susceptible again with probability one. Although
this simple epidemic dynamics is inpractical in real world and also different
from the normal one in which the infection probability is dependent on the
density of infected individuals, it is feasible to study the epidemic threshold,
as we can see in [23].

Here, we define the network active time n for PN and FN, which means
that the epidemic system will be continuously updated n time-steps when
the network (PN or FN) is active. Thus, the above spreading mechanism will
be iterated for np time-steps on PN, then for another nf time-steps on FN,
and so on. This process can be readily iterated in numerical simulations
until the system reaches its stationary state or the epidemic dies out. It
should be noted that the time step in our model is different from most
epidemic simulation models where the time step is assumed to be equivalent
to one 24-hour period in the real world. Although this time step in our
model may be unreasonable in real world, it is easy to implemented and
still effective for qualitative study of the epidemic threshold according to
our research. Moreover, it allows us to study the different roles of PN and
FN by tuning the network active time n. Actually, one can easily extend the
spreading mechanism to a practical form by taking the time step as micro
time step (thus one 24-hour period is divided into several micro time steps)
and changing a bit the updating rules (1) and (2).

3. Results

Extensive numerical simulations have been performed in this section,
with synchronous dynamics used. In order to study the SIS model in ASN,
we first generate the network using the algorithm described in the preceding
section for both settings of Cases A and B, with N = 104, [ap, bp] = [50, 150],
and [af , bf ] = [2, 6]. For Case A, PN shows a power law degree distribution
with the exponent being in the interval 2 < λ < 3. Analysis based on a
fit yields an exponent λ = 2.58 ± 0.02 for m = 5. For Case B, we take
p = 0.01 as the rewiring probability. Initially, a fraction of randomly se-
lected individuals ρ0 = 0.1% is infected, and then we update individuals’
state synchronously in turn on PN for np time-steps and on FN for nf time-
steps until the system relax into steady state where the prevalence ρ attains
its stationary value. It is worth recalling that results are collected over 200
independent simulations, each of which corresponds to a different realization
of the network and different initially infected individuals and the prevalence
in the stationary state is computed as the average over all surviving tri-
als. The results obtained are depicted in Fig. 2 where the stationary state
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prevalence has been drawn as a function of the spreading rate λ for different
values of the average connectivity. Only when λ is increased above a value
λc is a significant prevalence observed for both of Cases A and B. The effect
of the topological properties of Case A becomes clear when comparing the
shape of the prevalence curves with that obtained for BA model with m = 5.
In the later case no change of behaviour is apparent as the prevalence and
its slope varies smoothly when λ is increased. The average connectivity can
strongly affect the epidemic spreading, such as the epidemic threshold and
the prevalence. It also can be found that Case A is much like Case B when
regarding the shape of the prevalence curves, and the prevalence value of ρ
for them is much lower than those obtained for BA and WS models.
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Fig. 2. Prevalence (fraction of infected individuals in the stationary state) as

a function of the spreading rate λ for (a) Case A with m = 3 (squares), 5 (cir-

cles), and 7 (diamonds), and BA model with m = 5 (solid curve), (b) Case B

with m = 3 (squares), 5 (circles), and 7 (diamonds), and WS model with m = 5

(solid curve). The other parameters are N = 104, ρ0 = 0.1%, p = 0.01, np = 1,

nf = 1,[ap, bp] = [50, 150], [af , bf ] = [2, 6].

In order to understand the role of the topology we consider the cluster-
ing coefficient [9], which is defined as follows. Consider a node i with total
degree ki. Between the ki nodes that i is linked with, at most ki(ki − 1)/2
links are possible. Let Ci denote the fraction of links that actually exist
among the neighbours of i. The clustering coefficient C is the average of Ci

taken over all N nodes i in the network. Note that all links are considered
as bidirectional when calculating the clustering coefficient. Here, C is cal-
culated only for PN due to the fact that FN is just a group of independent
fully connected households. Fig. 3 shows that for Cases A and B the clus-
tering coefficient C towards a high stationary value as the network size N
is increased. For the sake of comparison, in Fig. 3 the clustering coefficient
of the BA model and WS model are plotted as well, which can be instead
quantitatively described by [35]:
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Fig. 3. Dependence of the clustering coefficient C on the size of network of (a) PN

(Case A) (circles) and the BA model (squares), (b) PN (Case B) (circles) and the

WS model (squares). The other parameters are m = 5, p = 0.01, [ap, bp] = [50, 150].

Results are averaged over 200 independent simulations, each of which corresponds

to a different realization of the network.

C =
m2(m + 1)2

4(m − 1)

[

ln

(

m + 1

m

)

−
1

m + 1

]

[ln(N)]2

N
, (1)

and [36]:

C(p) =
3(〈k〉 − 2)

4(〈k〉 − 1)
(1 − p)3 , (2)

respectively. Thus the Cases A and B generate networks with a higher
clustering coefficient than the corresponding BA and WS models. This result
indicates that dividing the whole population into subgroups will result in
a network with high clustering coefficient. Further analysis finds that the
value of clustering coefficient for Cases A and B towards a higher value as the
average connectivity increases (Fig. 4). From Fig. 2 we can see the epidemic
threshold is strongly related with the average connectivity. These results
suggest that high clustering of the ASN can protect the network against
the spreading of diseases. It should be pointed out that the high clustering
coefficient in our model is rooted in the existence of local structure (sub
network) in the network, which is different from the work [23], where the
network model is the so-called structured scale-free network.

Another important parameter is the network active time n. By tuning
this parameter, one can study the different influences of the PN and FN on
the epidemic spreading. Two configurations have been considered: (1) np

varies while nf fixed (Fig. 5(a)); (2) nf varies with np fixed (Fig. 5(b)). It can
be found that the network is more prone to the spreading of disease when
np is changed from 1 to 3, but no obvious change observed for higher value
of np. Contrarily, the increase in nf can effectively protect the network
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Fig. 4. Dependence of the clustering coefficient C on the parameter m for PN

with (a) Case A, (b) Case B. The other parameters are N = 104, p = 0.01,

[ap, bp] = [50, 150]. Results are averaged over 200 independent simulations, each of

which corresponds to a different realization of the network.
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Fig. 5. Prevalence as a function of the spreading rate λ for Case A, with (a) np = 1

(squares), 3 (circles), 5 (diamonds), 7 (triangles), and nf fixed to 1. (b) nf = 1

(squares), 3 (circles), 5 (diamonds), 7 (triangles), and np fixed to 1. The other

parameters are N = 104, ρ0 = 0.1%, p = 0.01, m = 5, [ap, bp] = [50, 150], and

[af , bf ] = [2, 6].

against the epidemic spreading. In Fig. 6 we plot the threshold value of
spreading rate λ as a function of the parameter nf , which show that large
nf can effectively prevent the disease spreading. These results imply that
staying at home can greatly reduce the risk of being infected. Moreover, it
brings to us that the fully connected structures (households) that coexist
with the large SF or SW sub networks is another dominating ingredient
for the epidemic threshold. This result allows claiming that although SF
networks are measured in real societies the existence of FN or households
that are fully disconnected from each other prevents the spreading of the
disease across the whole network, which is in contrast to the previously
reported behaviour on single SF network.
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Fig. 6. Threshold value of spreading rate λ as a function of the parameter nf for

the Case A, with N = 104, np = 1, ρ0 = 0.1%, m = 5, [ap, bp] = [50, 150], and

[af , bf ] = [2, 6].

Finally, we studied the influence of the initial condition on the epidemic
spreading by setting ρ0 = const. and ρ0 = 1/N . In both cases, the preva-
lence curves are the same regardless of the initial condition of ρ0. This
indicates that the value of epidemic threshold and the prevalence is inde-
pendent of the initial condition. We also have investigated the finite-size
effect on the epidemic spreading and found that the epidemic threshold for
our model is independent of the system size or the size distribution of PN
over a considered range of values.

4. Conclusions

This paper introduces the alternate social networks (ASN) of human in-
teractions to study the dynamics of the SIS epidemic. The ASN consists of
a family network (FN) and a public network (PN), to model the human in-
teractions during nighttime and daytime, respectively. In the current study,
two versions of ASN, Cases A and B, have been considered. The networks
generated by Case A still follow a power law degree distribution with the
exponent being in the interval 2 < γ < 3, but with a high clustering coef-
ficient regardless of the system size, that is, the small-world properties are
restored. Thus, the ASN model has the essential characteristics of real social
networks, including the small-world property (large clustering coefficient),
scale-free distribution of degree (for case A), a hierarchical structure and the
network evolution.

Our simulations show that the high clustering of the ASN can protect
the network against the spreading of diseases, and also make Case A much
like the Case B. However, it should be pointed out that the high clustering
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coefficient in our model is rooted in the existence of local structures (sub
networks) in the PN, even when the sub networks are generated by the BA
model, which is different from the work [23], where the network model is the
so-called structured scale-free network.

Moreover, we found that the PN is more prone to the epidemic spreading
than the FN, which suggested that the fully connected structures (house-
holds) that coexist with the large SF or SW sub networks is another dom-
inating ingredient for the epidemic threshold. This result allows claiming
that although SF networks are measured in real societies the existence of
FN or households that are fully disconnected from each other prevents the
spreading of the disease across the whole network, which is in contrast to
the previously reported behaviour on single SF network.

Finally, our results show that the existence or not of an epidemic thresh-
old for the SIS model on the ASN does not dependent on the initial condition
and is irrelevant with the finite-size effect.
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