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In the present paper we study the creation of massless scalar particles
from the quantum vacuum due to the dynamical Casimir effect by oscillat-
ing cavities with cubic and cylindrical geometry. To the first order of the
amplitude we derive the expressions for the number of the created particles.
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1. Introduction

The Casimir effect is regarded as one of the most striking manifestation
of vacuum fluctuations in quantum field theory. The presence of reflecting
boundaries alters the zero-point modes of a quantized field, and results in the
shifts in the vacuum expectation values of quantities quadratic in the field,
such as the energy density and stresses. In particular, vacuum forces arise
acting on constraining boundaries. The particular features of these forces de-
pend on the nature of the quantum field, the type of spacetime manifold and
its dimensionality, the boundary geometries and the specific boundary con-
ditions imposed on the field. Since the original work by Casimir in 1948 [1]
many theoretical and experimental works have been done on this problem
(see, e.g., [2–5] and references therein). The Casimir effect can be viewed
as a polarization of vacuum by boundary conditions. A new phenomenon,
a quantum creation of particles (the dynamical Casimir effect) occurs when
the geometry of the system varies in time. In two dimensional spacetime
and for conformally invariant fields the problem with dynamical boundaries
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can be mapped to the corresponding static problem and hence allows a com-
plete study [2, 6]. In higher dimensions the problem is much more compli-
cated and is solved for some simple geometries. The vacuum stress induced
by uniform acceleration of a perfectly reflecting plane is considered in [7].
The corresponding problem for a sphere expanding in the four-dimensional
spacetime with constant acceleration is investigated by Frolov and Sere-
briany [8, 9] in the perfectly reflecting case and by Frolov and Singh [10]
for semi-transparent boundaries. Particle creation from the quantum scalar
vacuum by expanding or contracting spherical shell with Dirichlet boundary
conditions is considered in [11]. In another paper the case is considered when
the sphere radius performs oscillation with a small amplitude and the expres-
sion are derived for the number of created particles to the first order of the
perturbation theory [12]. A new application of the dynamical Casimir effect
has recently appeared in connection with the suggestion by Schwinger [13]
that the photon production associated with changes in the quantum elec-
trodynamic vacuum state arising from a collapsing dielectric bubble could
be relevant for sono-luminescence (the phenomenon of light emission by a
sound-driven gas bubble in a fluid [14]). The possibility of particle produc-
tion due to space-time curvature has been discussed by Schrodinger [15],
while other early work is due to DeWitt [16] and Imamura [17]. The first
thorough treatment of particle production by an external gravitational filed
was given by Parker [18, 19].

In the present paper we study the creation of massless scalar particles
from the quantum vacuum due to the dynamical Casimir effect by oscillating
cavities with cubic and cylindrical geometry.

2. Quantum scalar field inside a cubic with time-dependent walls

Consider a massless scalar field satisfying Dirichlet boundary condition
on the surface of a cubic with time-dependent walls

(

∆ − ∂2

∂t2

)

uk (x, t) = 0 , uk|boundaries = 0 . (1)

we expand the corresponding eigenfunctions for the interior region in a series
with respect to the instantaneous basis:

uk (x, t) =
∑

p

Q
(k)
p (t)ϕp (x, t) , (2)

where

ϕp (x, t)=

√

8

Lx (t)Ly(t)Lz (t)
sin

(

pxπx

Lx (t)

)

sin

(

pyπy

Ly (t)

)

sin

(

pzπz

Lz (t)

)

. (3)
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Substituting (3) into field equation (1) we arrive at an infinite set of coupled
differential equations

∑

p

{

ϕp

[

Q̈
(k)
p + ω2

pQp

]

+ 2Q̇
(k)
p ϕ̇p + Q

(k)
p ϕ̈p

}

= 0 , (4)

where overdot stands for the time derivative. Let us multiply this equation
by ϕ⋆

j and integrate over the region inside a cubic at a given moment t.
Using the orthonormality relation

∫

ϕpϕ⋆
jd

3x = δpj (5)

this yields

Q̈
(k)
p + ω2

pQ
(k)
p = −2

∑

j

Q̇
(k)
j

∫

ϕ̇jϕ
⋆
pd3x −

∑

j

Q
(k)
j

∫

ϕ̈jϕ
⋆
pd3x , (6)

where we have introduced notations

gjp = −
∫

ϕ̇jϕ
⋆
pd3x , g

(1)
jp = −

∫

ϕ̈jϕ
⋆
pd3x (7)

with integrations are over the inside region of the cavity. By making use of
the completeness condition for eigenfunction (3) we obtain following relation
between these coefficients

g
(1)
jp

=
∂

∂t
gjp +

∑

s

gjsgps . (8)

Then we can write

gjp = −
∫

(

∂ϕj

∂Lx

L̇x +
∂ϕj

∂Ly

L̇y +
∂ϕj

∂Lz

L̇z

)

ϕ⋆
pd3x

= λ1g1pj + λ2g2pj + λ3g3pj (9)

where

g1pj = Lx

∫

∂ϕj

∂Lx

ϕ⋆
pd3x , λ1 =

L̇x

Lx

,

g2pj = Ly

∫

∂ϕj

∂Ly

ϕ⋆
pd3x , λ2 =

L̇y

Ly

,

g3pj = Lz

∫

∂ϕj

∂Lz

ϕ⋆
pd3x , λ3 =

L̇z

Lz

,

gipj = −gipj .
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Thus from equation (6) we obtain

Q̈
(k)
p + ω2

pQ
(k)
p = 2





∑

j

(λ1g1pj + λ2g2pj + λ3g3pj) Q̇
(k)
j





+
∑

j

(

λ̇1g1pj + λ̇2g2pj + λ̇3g3pj

)

Q
(k)
j

, (10)

where we have neglected the second term in relation (8). The field operator
in the Heisenberg representation may be expanded in terms of the corre-
sponding eigenfunctions

φ (x, t) =
∑

k

akuk(x, t) + a
†
ku∗

k(x, t) . (11)

We assume that all the sides of the cavity move in the time range 0 < t < T
with the initial conditions

Q
(k)
p (0) =

1√
2ωk

δpk , Q̇
(k)
p (0) = −i

√

ωk

2
δpk . (12)

ain
p and a

† in
p are creation and annihilation operators in the “in” region (t > 0).

a out
p and a

† out
p are those of the “out” region (t > T ), these two sets are related

by the Bogoliubov transformation as follows

aout
p =

∑

k

a in
k αkp + a

† in
k β⋆

kp . (13)

Now we must obtain αkp and βkp. If the walls of the cavity for t > T return
to their initial positions the right side of the equation (10) vanishes thus its
solution is

Q
(k)
p (t > T ) = A

(k)
p eiωpt + B

(k)
p e−iωpt (14)

and we obtain [20]

αkp =
√

2ωp B
(k)
p , βkp =

√

2ωp A
(k)
p . (15)

The number of photons created in the mode p is the average value of a
†out
p aout

p

with respect to the initial vacuum state

〈Np〉 = 〈0 in| a†out
p a out

p |0 in〉 =
∑

k

2ωp

∣

∣

∣
A

(k)
p

∣

∣

∣

2
. (16)



Particle Creation in Oscillating Cavities with Cubic and . . . 775

We assume the motion of the sides to be as

Lx (t) = Lx (1 + ε sin (Ωt)) ,

Ly (t) = Ly (1 + ε sin (Ωt)) ,

Lz (t) = Lz (1 + ε sin (Ωt)) , (17)

where ε ≪ 1. By substituting in equation (10) we obtain

Q̈
(k)
p + ω2

pQ
(k)
p = 2ε

[

(

πpx

Lx

)2

+

(

πpy

Ly

)2

+

(

πpz

Lz

)2
]

sin (Ωt) Q
(k)
p

− εΩ2 sin (Ωt)
∑

j

gpjQ
(k)
j

+ 2εΩ cos (Ωt)
∑

j

gpjQ̇
(k)
j , (18)

where we have used following relations

λ1 =
L̇x

Lx

=
LxεΩ cos (Ωt)

Lx (1 + ε sin (Ωt))
≈ εΩ cos (Ωt) , λ̇1 =−εΩ2 sin (Ωt) . (19)

It is well known that a naive perturbative solution of these equations in
powers of ε breaks down after a short amount of time, of order (εΩ)−1 .
This happens for those particular values of the external frequency such that
there is a resonant coupling with the eigenfrequencies of the static cavity. In
this situation, to find a solution valid for longer times (of order (ε−2Ω−1))
we use the MSA technique [20,21]. We introduce a second time scale τ = εt

and expand Q
(k)
p to first order in ε as follows

Q
(k)
p = Q

(k)(0)
p (t, τ) + εQ

(k)(1)
p (t, τ ) . (20)

The derivatives with respect to t are

Q̇
(k)
p = ∂tQ

(k)(0)
p + ε

[

∂τQ
(k)(0)
p + ∂tQ

(k)(1)
p

]

, (21)

Q̈
(k)
p = ∂2

t Q
(k)(0)
p + ε

[

2∂tτQ
(k)(0)
p + ∂2

t Q
(k)(1)
p

]

, (22)

with the initial conditions

Q
(k)(0)
p (0) =

1
√

2ωp

δpk , Q̇
(k)(0)
p = −i

√

ωp

2
δpk . (23)



776 M.R. Setare, H.T. Dinani

To zeroth order in ε we obtain

Q
(k)(0)
p (t, τ) = A

(k)
p (τ) eiωpt + B

(k)
p (τ) e−iωpt . (24)

By the initial conditions we obtain

A
(k)
p (τ = 0) = 0 , B

(k)
p (τ = 0) =

1
√

2ωp

δpk . (25)

To first order in ε we have

∂2
t Q

(k)(1)
p +ω2

pQ
(k)(1)
p =−2∂2

τtQ
(k)(0)
p +2

[

(

πkx

Lx

)2

+

(

πky

Ly

)2

+

(

πkz

Lz

)2
]

× sin (Ωt)Q
(k)(0)
p −Ω2 sin (Ωt)

∑

j 6=p

gpjQ
(k)(0)
j +2Ω cos (Ωt)

∑

j 6=p

gpj∂tQ
(k)(0)
j ,

where
gpj = g1pj + g2pj + g3pj .

In MSA technique for preventing secularities we must set the coefficients of
e±iωpt to zero. By doing this we obtain

dA
(k)
p

dτ
= −

[

π2p2
x

2ω2
pL2

x

+
π2p2

y

2ω2
pL2

y

+
π2p2

z

2ω2
pL2

z

]

Bk
p δ (2ωp − Ω)

+
∑

j

(

−ωj +
Ω

2

)

δ (−ωp − ωj + Ω)
Ω

2ωp

gpjB
(k)
j

+
∑

j

[(

ωj+
Ω

2

)

δ (ωp−ωj − Ω)+

(

ωj +
Ω

2

)

δ (ωp−ωj + Ω)

]

× Ω

2ωp

gpjA
(k)
j , (26)

dB
(k)
p

dτ
= −

[

π2p2
x

2ωpL2
x

+
π2p2

y

2ωpL2
y

+
π2p2

z

2ωpL2
z

]

A
(k)
p δ (2ωp − Ω)

+
∑

j

(

−ωj +
Ω

2

)

δ (−ωp − ωj + Ω)
Ω

2ωp

gpjA
(k)
j

+
∑

j

[(

ωj+
Ω

2

)

δ (ωp−ωj−Ω)+

(

ωj−
Ω

2

)

δ (ωp−ωj+Ω)

]

× Ω

2ωp

gpjB
(k)
j

.

(27)
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If Ω = 2ωp and if we assume |ωp ± ωj| 6= Ω, that is ωj − ωp 6= 2ωp which
means that we do not have coupling between the mode p and the other
modes the equations (26)and (27) reduce to

dA
(k)
p

dτ
=

−ωp

2
B

(k)
p ,

dB
(k)
p

dτ
=

−ωp

2
A

(k)
p . (28)

The solutions to the above equations are

B
(k)
p =

1
√

2ωp

δpk cosh
(ωp

2
τ
)

,

A
(k)
p = − 1

√

2ωp

δpk sinh
(ωp

2
τ
)

. (29)

From equation (16) we obtain for the mean number of created photons

〈Np〉 = sinh2
(ωp

2
τ
)

. (30)

3. Quantum scalar field inside a cylinder

with time-dependent surface

In the previous section we discussed particle creation in a cubical box
with time dependent walls. In this section we consider a cylinder and discuss
particle creation in this geometry. In this case we have

ϕp (x, t) =

√

2

Lz (t)
sin

(

pzπz

Lz (t)

)

vp⊥
(x⊥) (31)

where

vp⊥
(x⊥) =

1
√

πR (t) Jn (ynm)
√

1 − n2
/

ynm

Jn

(

ynm ρ

R (t)

)

einφ . (32)

By substituting the above relations into equation (1) we obtain

Q̈
(k)
p + ω2

pQ
(k)
p = 2





∑

j

(λ1g1pj + λ2g2pj) Q̇
(k)
j





+
∑

j

(

λ̇1g1pj + λ̇2g2pj

)

Q
(k)
j , (33)
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where

ωp = ωnmpz
=

√

(

ynm

R (t)

)2

+

(

pzπ

Lz (t)

)2

,

λ1 =
L̇z

Lz

, g1pj = Lz

∫

d3x
∂ϕp

∂Lz

ϕ⋆
j

λ1 =
Ṙ

R
, g1pj = R

∫

d3x
∂ϕp

∂R
ϕ⋆

j .

If we assume the time dependency of the radius and the length of the cylinder
as follows

Lz (t) = Lz [1 + ε sin (Ωt)] , R (t) = R [1 + ε sin (Ωt)] . (34)

from equation (33) we have

Q̈
(k)
p + ω2

pQ
(k)
p = 2ε

(ynm

R

)2
sin (Ωt) Q(k)

p + 2ε
(pzπ

L

)2
ε sin (Ωt) Q

(k)
p

− εΩ2 sin (Ωt)
∑

j

(g1pj + g2pj)Q
(k)
j

+ 2εΩ cos (Ωt)
∑

j

(g1pj + g2pj) Q̇
(k)
j . (35)

Similar to the previous section we use MSA technique to solve this equation.
Thus we write

Q
(k)
p = Q

(k)(0)
p (t, τ ) + εQ

(k)(1)
p (t, τ) . (36)

As in the previous section to zeroth order in ε we obtain

Q
(k)(0)
p (t, τ ) = A(k)

p (τ)eiωpt + B(k)
p (τ)e−iωpt (37)

and to the first order in ε we obtain for Q
(k)(1)
p the following equation

∂2
t Q

(k)(1)
p + ω2

pQ
(k)(1)
p = −2∂2

τtQ
(k)(0)
p

+ 2

[

(
ynm

R
)2 + (

pzπ

Lz

)2
]

sin(Ωt)Q
(k)(0)
p

−Ω2 sin (Ωt)
∑

j 6=p

(g1pj + g2pj)Q
(k)(0)
j

+ 2Ω cos (Ωt)
∑

j 6=p

(g1pj+g2pj) ∂tQ
(k)(0)
j , (38)
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setting the coefficients of e±iωpt to zero we obtain

dA
(k)
p

dτ
= −

[

π2p2
z

2ωpL2
+

y2
nm

2ωpR2

]

B
(k)
p δ (2ωp − Ω)

+ other terms similar to the cubical case , (39)

and

dB
(k)
p

dτ
= −

[

π2p2
z

2ωpL2
+

y2
nm

2ωpR2

]

A
(k)
p δ (2ωp − Ω)

+ the same as the above equation . (40)

Again for the case of Ω = 2ωp and |ωp ± ωj| 6= Ω we obtain the same
equations as in the previous section

dA
(k)
p

dτ
= −ωp

2
B

(k)
p ,

dB
(k)
p

dτ
= −ωp

2
A

(k)
p . (41)

Thus for the mean number of created photons we obtain

〈Np〉 = sinh2
(ωp

2
τ
)

. (42)

4. Conclusion

In this paper we discussed the particle creation from cubical and cylin-
drical geometries by considering Dirichlet boundary conditions. Following
the previous works by one of authors [11, 12] and also the work by Dalvit
et al. [22] here we consider all the walls of the cavity to be time dependent.
By using MSA technique and assuming the resonance case we derived the
mean number of photons created during the motion of the walls of the cav-
ity. One of the difficulties in detection the particles created in the dynamical
Casimir effect is the low number of particles created [23], therefore, consider-
ing all the walls of the cavity maybe useful from this point of view. We also
predict interesting phenomena if we consider different oscillating frequencies
for the walls of the cavity.
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