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1. Introduction

Nowadays, information is easily being stored in form of huge matri-
ces, and random matrix theory, in particular the spectral analysis, provides
a powerful tool in the study of multivariate analysis of several array process-
ing applications, ranging from telecommunication [1], through genomics [2]
to finances and economy [3]. A typical problem is the analysis of covari-
ance matrices, i.e. ensembles of the Wishart type [4]. Standard inference
methodologies linking estimators to “true” covariance matrices are based on
relation between corresponding spectral densities of both ensembles [5]. Very
recently, a new conceptual idea was proposed [6], enhancing the inference
methodology by exploiting the properties of the fluctuations of eigenvalues.
This progress was possible due to new results for two-point Green’s func-
tion for Wishart ensemble. First, Bai and Silverstein [7] obtained this result
using two-dimensional complex integral representation. Then, Speicher and
collaborators [8] obtained more general result, introducing so-called freeness
of the second kind, a notable extension of the free random variable con-
cept [9, 10]. Despite the final result for correlator for the Wishart ensemble
is simple, mathematical tools leading to this result are quite involved and
may not be well known among the practitioners. The main aim of this note
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is to provide a simple re-derivation of the two-point Green’s function for the
Wishart ensemble, using standard tools of Random Matrix Theory. In the
first chapter we introduce diagrammatic technique and we re-derive known
results for one-point and two-point Green’s functions for Gaussian Unitary
Ensemble. In the second chapter, we parallel this construction in the case of
Wishart ensemble, providing final formulae. We also point the connection
of the final result to universality properties, noticed some time ago by one
of the authors [11].

2. One and two-point Green’s functions

We are interested in one- and two-point spectral densities, in the limit
when the dimension N of the matrices tends to infinity. Corresponding
distributions are defined as

ρ(λ) =
1

N

〈

N
∑

i=1

δ(λ − λi)

〉

, (1)

ρ(λ, λ
′

) =
1

N2

〈

N
∑

i,j

δ(λ − λi)δ(λ
′ − λj)

〉

c

, (2)

where 〈AB〉c = 〈AB〉−〈A〉〈B〉 for any A, B and averaging 〈. . .〉 is performed
over the ensemble of matrices N × N matrices H drawn with probability
measure

P (H)dH = e−NTrV (H)dH (3)

with some potential V (H) defining the type of randomness considered.
It is usually convenient to define so-called Green’s functions, and then

use them to extract corresponding spectral densities.
We define one-point Green’s function as

G(z) =
1

N

〈

Tr
1

z − H

〉

(4)

and two-point Green’s function as

G(z,w) =
1

N2

〈

Tr
1

z − H
Tr

1

w − H

〉

c

. (5)

Corresponding spectral distributions are easy to reconstruct from the dis-
continuities of the Green’s functions, using the relation

lim
ǫ→0

1

λ ± iǫ
= P

1

λ
∓ iπδ(λ) . (6)
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Indeed,

− 1

2πi
(G(+) − G(−)) =

1

N
〈Tr δ(λ − H)〉 =

1

N

〈

N
∑

i=1

δ(λ − λi)

〉

= ρ(λ) (7)

and similarly

ρc(λ, λ
′

) = − 1

4π2
(G(+,+) − G(+,−) + G(−,−) − G(−,+)) , (8)

where we introduced the shorthand notation

± ≡ lim
ǫ→0

z|z=λ±iǫ (9)

for generic complex z.
In order to calculate one and two-point Green’s functions for Wishart

ensemble in the large N limit, we apply diagrammatic method, following
general prescription proposed in [13]. We would like to stress, that despite
being apparently a perturbative method, the structure of the planar graphs
that contribute allow for a resummation of the whole perturbative series and
give the full exact result in the planar limit.

3. Diagrammatic technique — GUE ensemble

In this section we recall well-known results for one-point and two-point
Green’s functions for Gaussian Unitary Ensemble, following diagrammatic
technique [13]. In this way we introduce the necessary notation which will
allow us later to repeat easily similar calculation in the case of the Wishart
ensemble.

A starting point of our analysis is the expression allowing for the recon-
struction of the Green’s function from all the moments 〈TrHn〉,

G(z) =
1

N

〈

Tr
1

z−H

〉

=
1

N

∑

n

1

zn+1
〈TrHn〉

=
1

N

〈

Tr

[

1

z
+

1

z
H

1

z
+

1

z
H

1

z
H

1

z
+· · ·

]〉

. (10)

We exploit the diagrammatic method to evaluate efficiently the sum of the
moments on the right hand side. Note, that in general this series expansion is
convergent only in a neighborhood of z = ∞. So the results of the diagram-
matic calculation apply directly only there. For hermitian random matrices
this however does not pose a problem, since the eigenvalues lie only on some
intervals on the real axis, the Green’s functions are holomorphic functions
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of one or more complex variables except some cuts, and we can reconstruct
the Green’s function everywhere by analytical continuation.

For illustration, let us consider well-known case of a random hermitian
ensemble with Gaussian distribution. We introduce a generating function
with a matrix source J :

Z(J) =

∫

dHe−
N

2
TrH2+TrH J . (11)

All the moments follow from Z(J),

〈TrHn〉 =
1

Z(0)
Tr

(

∂

∂J

)n

Z(J)
∣

∣

∣

J=0
(12)

and are straightforward to calculate, since in our case the partition function
reads Z(J) = exp 1

2N
TrJ2.

However, instead of calculating all the moments individually alike by the
Wick theorem, we could draw them using “Feynman rules” derived from our
generating function, and perform a resummation of all relevant graphs. The
“propagator” reads

〈Ha
b Hc

d〉 =
1

Z(0)

∂2Z(J)

∂Jb
a∂Jd

c

∣

∣

∣

∣

J=0

=
1

N
δc
bδ

a
d . (13)

The 1/z in (10) is represented by a horizontal straight line. We depict the
“Feynman” rules in Fig. 1.

Fig. 1. Large N “Feynman rules” for GUE.

The diagrammatic expansion of Green’s function in the large N limit is
visualized in Fig. 2. Each “propagator” brings a factor of 1/N , and each loop
a factor of N , therefore only planar graphs survive the large N limit. Intro-
ducing the self-energy Σ comprising the sum of all one-particle irreducible

Fig. 2. Diagrammatic expansion of Green’s function (4) for Gaussian ensemble.
The 2nd and 4th graphs are “rainbow” graphs contributing to the self-energy Σ .



Diagrammatic Approach to Fluctuations in the Wishart Ensemble 803

graphs (rainbow-like), the Green’s function reads

G(z) =
1

z
+

1

z
Σ (z)

1

z
+

1

z
Σ (z)

1

z
Σ (z)

1

z
+ . . . =

1

z − Σ (z)
. (14)

This equation is represented diagrammatically as a geometric series (cf. fi-
gure 3). In the large N limit the equation for the self energy Σ , follows from
resumming the rainbow-like diagrams of Fig. 2. The resulting equation

Fig. 3. Green’s function expressed in terms of self-energy Σ .

Fig. 4. Schwinger–Dyson equation for GUE.

(“Schwinger–Dyson” equation of Fig. 4) encodes pictorially the structure of
these graphs and reads

Σ =
1

N
TrG1N = G . (15)

Equations (14) and (15) give immediately G(z−G) = 1, so the normalizable
solution for the Green’s function reads

G(z) =
1

2

(

z −
√

z2 − 4
)

(16)

which, via the discontinuity (cut) leads to Wigner’s semicircle for the distri-
bution of the eigenvalues for hermitian random matrices

ρ(λ) =
1

2π

√

4 − λ2 . (17)

We have put a priori arbitrary variance equal to 1, one can easily recover
more general result via rescaling λ → 2λ/a, so the spectrum is localized on

interval [−a, a] and normalized density reads 2
√

a2 − λ2/πa2.
Same technique we can apply in the case of the two-point Green’s func-

tion. We express Green’s function (5) as

G(z,w) = ∂z∂w

〈

1

N2
Tr log(z − H)Tr log(w − H)

〉

c

, (18)
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and we expand the logarithms, getting

G(z,w) = ∂z∂w

∞
∑

n=1

∞
∑

k=1

1

znwk

〈

1

Nn
TrHn 1

Nk
TrHk

〉

c

. (19)

Let us first consider “diagonal” contributions coming from n = k. The
corresponding graph can be represented as a wheel diagram, when outer
rim corresponds e.g. to 1/z lines, and inner rim to 1/w, and rungs are
just double lines depicted in Fig. 1. Since 〈TrHnTrHn〉c = n for Gaussian
variables, the diagram splits into n disconnected sectors. Resummation of
diagonal contributions gives therefore

N2G(z,w)|diag = −∂z∂w log

(

1 − 1

zw

)

. (20)

The non-diagonal contributions can in general contribute in two-ways. First,
they can modify bare line 1/z(1/w) by arbitrary insertions of self-energies
Σ , corresponding to replacement of the 1/z by G(z) (1/w by G(w)). Sec-
ond, they can in general modify the elementary rung, by replacing the dou-
ble line by some general, two-particle irreducible kernel Γ (z,w), as repre-
sented graphically in figure 5. Interference between these two contributions
is forbidden by the large N (planarity) argument. Therefore in general, the
mandala-like diagram yields the result [13]

N2G(z,w) = −∂z∂w log(1 − G(z)G(w)Γ (z,w)) . (21)

Fig. 5. Two-point correlator for GUE ensemble: sample diagonal contribution for
n = 6 (left), “dressed” general contribution for n = 6 (right).

In the case of Gaussian Unitary Ensemble, the two-point irreducible kernel
Γab,cd = 1/Nδcbδad, since potential V (H) is only quadratic and does not

involve “interaction” terms Hk, for k > 2. Therefore the final result for
two-point correlator in case of the GUE reads

GGUE(z,w) =
1

N2
∂z∂w log(1 − G(z)G(w)) (22)
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This simple result hides deep universality properties. First, let us note
that two-point Green’s function is rephrased in terms of one-point Green’s
functions only, a point observed for GUE already by [14]. This feature is the
consequence of deep universality, noticed first by [11]. Let us rewrite this
result using an explicit form of the Green’s function, i.e. Wigner semicircle
spanned on the interval (−a, a). Then

G(z,w) =
1

4(z − w)2

(

z2 + w2 − 2a2

√

(z2 − a2)(w2 − a2)

)

− 1

4
√

(z2 − a2)(w2 − a2)
.

(23)
The power of universality argument stems from the fact, that this result is
valid for any symmetric potential V (H), provided the spectrum is localized
on one-cut. In other words, the dependence of the detailed form of the
potential comes solely via the endpoints ±a.

Another way of rephrasing this universality is to rewrite above equation
using “Schwinger–Dyson” equation G(z)(z − G(z)) = 1 Since

1

G(z)
− 1

G(w)
=

G(w) − G(z)

G(z)G(w)
(24)

above relation allows to write Green’s function as

N2G(z,w) = −∂z∂w log
G(w) − G(z)

z − w
G(z)G(w) . (25)

So universality also means [15], that two-point correlator, modulo irrele-
vant factorized terms depends solely on the universal kernel of the form

log G(w)−G(z)
z−w

.
Explicit differentiation leads to another form

G(z,w) =
G′(z)G′(w)

(G(z) − G(w))2
−
(

1

z − w

)2

. (26)

This form has also an interesting interpretation — could be viewed as a con-
sequence of the freeness of the second kind, introduced recently by Speicher
and collaborators [8]. Note that from geometric point of view this kernel
has a form of Bergmann kernel, suggesting further links of universality to
differential geometry [16].

4. Complex Wishart ensemble

We parallel now diagrammatic construction for GUE in case of the com-
plex Wishart N by N ensemble where H = V †V , where V is N by M
matrix. We can assume m = M/N larger than 1, and we will work in the
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limit when both N,M tend to infinity keeping the ratio constant. Note also
that the case of M by M ensemble H ′ = V V † is basically equivalent to the
case considered - due to cyclic properties of the trace all the moments of H
and H ′ are identical, and the only spectral difference comes from the fact
that H ′ ensemble has precisely (M − N) trivial algebraic zero eigenvalues
comparing to ensemble H. Since now matrices V come always in pairs, we
denote basic building block

〈

V a
k V ∗b

l

〉

= 1
N

δabδkl, where a, b = 1, . . . N and
k, l = 1, . . . M . Corresponding graph is presented in Fig. 6. To distinguish
lines carrying N entries from lines carrying M entries we introduced “dashed
propagators” in the case of the second type of lines. All other features are
similar comparing to Gaussian case. As in the previous case, Green’s func-
tion is expressed via one-particle irreducible self energy Σ (z) as a geometric
series (Fig. 3), i.e.

G(z) =
1

z −Σ (z)
. (27)

Fig. 6. “Feynman” rule for Wishart propagator.

Self-energy comes from resummation of the rainbow diagrams, repre-
sented in Fig. 7. So we read

Σ (z) ≡ mF (z) , (28)

where m comes from the dashed loops inside the rainbows. Finally, equa-
tion for F (z) is represented diagrammatically in figure 8, therefore depicted
iteration written in algebraic way yields

F (z) = 1 + F (z)G(z) . (29)

From (27,28,29) we get quadratic equation

zG2(z) + (m − z − 1)G(z) − 1 = 0 (30)

so normalizable solution reads

G(z) =
1

2z

(

z + 1 − m −
√

(m − 1 − z)2 − 4z
)

(31)
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and spectral distribution reads

ρ(λ) =
1

2π

√

(λ − λ−)(λ+ − λ)

λ
, (32)

where λ± = (
√

m ± 1)2. This is indeed Pastur–Marchenko result [12].

Fig. 7. Sample graphs contributing to self-energy in the case of Wishart ensemble.

Fig. 8. Schwinger–Dyson equation for Wishart ensemble.

The case of two-point correlator is equally simple. We can use general
formula (5), we have only to see what is the two-point irreducible part Γ .
From the diagrammatic representation of the rung presented in Fig. 9 we
read Γ (z,w) = mF (z)F (w), so two-point correlator for Wishart reads

G(z,w) = −∂z∂w log

(

1 − m
G(z)

1 − G(z)

G(w)

1 − G(w)

)

, (33)

where we used that F = 1/(1−G). Sample diagonal and “dressed” diagrams
are depicted in Fig. 10. Using Schwinger–Dyson equation for G(z)

1

G(z)
= z − m

1 − G(z)
(34)

and similar for G(w), one can easily realize (by subtracting formulae (34)
for z and w variables), that the argument of the logarithm is given (modulo
irrelevant factorized terms) by the universal kernel, and final formula is
identical functionally to the considered previously case of the GUE, and
two-point correlator for the Wishart has the form

G(z,w) =
G′(z)G′(w)

(G(z) − G(w))2
−
(

1

z − w

)2

. (35)
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Fig. 9. Two-point irreducible kernel in case of Wishart ensemble.

Fig. 10. Sample (left) and general (right) “mandala” graph for two-point correlator
for Wishart ensemble.

It is interesting that this explicit result for two-point Green’s function for
Wishart ensemble was obtained in mathematical literature only very re-
cently [7]. Recently, it was also derived as a consequence of the freeness of
the second kind [8]. We would like to point, that this result can be also
obtained as a trivial (holomorphic) reduction of the case of more involved
two-point correlators for non-hermitian ensembles considered in [18]. Again,
the universal form is another consequence of the AJM universality. This ob-
servation allows to generalize the analysis of fluctuations to the case when
Wishart ensemble is correlated, i.e. we consider Gaussian measure of the
type [17]. As long as we consider one-cut solutions, the dependence of corre-
lations enters solely via the endpoints, as a consequence of AJM universality.
One can check this point via direct, although more painful method, i.e. re-
peating the above calculation in the case of modified diagrams corresponding
to correlated Wishart distributions.

5. Conclusions

We have presented a fast derivation for the two-point correlations for the
Wishart ensemble. As a next step we are planning to check, to what extent
the knowledge of two-point correlations improves cleaning signals from noise
for large sets of data gathered for real complex systems.

This work was partially supported by the Marie Curie TOK Grant
MTKD-CT-2004-517186 “Correlations in Complex Systems”(COCOS).
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