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In this paper the wave equation for massless conformal scalar field in
an Einstein’s n-dimensional universe is solved and the eigen frequencies are
obtained. The special case for o = 4 is recovered and the results are in
exact agreement with those obtained in literature.
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1. Introduction

As it was shown in the literature, several physical systems require vari-
ous approaches which differ from the classical ones [1-6]. It is believed that
the dimension of space plays an important role in quantum field theory, in
the Ising limit of quantum field theory, in random walks and in Casimir ef-
fect [4]. The path integral of a relativistic particle in arbitrary dimensional
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space was analyzed |7, 8], and some authors have considered the relation-
ship between the eigenstates of a hydrogen atom and harmonic oscillator
of arbitrary dimension [9] and the construction of coherent states defined
in a finite-dimensional Hilbert space [10-12]. It is worthwhile to mention
that the experimental measurement of the dimensional a of our real world
is given by a = (3 £1076) [1,2]. The fractional value of o agrees with the
experimental physical observations that in general relativity, gravitational
fields are understood to be geometric perturbations in our space-time [13],
rather than entities residing within a flat space-time. In [3| it was proved
that the current discrepancy between theoretical and experimental values
of the anomalous magnetic moment of the electron could be resolved if the
dimensionality of space a is & = 3 — (5.3 £2.5) x 1077,

Many of the investigations into low dimensional semiconductors have
used a mathematical bases introduced in [2|, namely where a generalization
of the Laplace operator on this space was obtained.

On the other hand, recent progress includes the description of a singleco-
ordinate momentum in this fractional dimensional space based on general-
ized Wigner commutation relations [14] and presenting a possible realization
of parastatistics [15].

In this paper the definition of the generalized Laplace in n-dimensional
space was used to obtain the wave functions and the eigen frequencies of
massless conformal scalar field in an Einstein’s n-dimensional universe.

2. Scalar field equation in n-dimensional space

The starting point is scalar field equation in an Einstein’s universe [16,17]
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where r represents the Einstein’s universe radius and V? is the Laplacian in
n-dimensional fractional space with the generalized polar coordinates (r =
const.,f1,60s,...,04_2,¢) of R™. This Laplacian is defined as follows [18,19]
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and the range of the variables are as follows

0<0;<m, (1<j<a-2), 0<¢p<2m. (3)



Solutions of Massless Conformal Scalar Field . .. 889

The operator A is the Laplace-Beltrami operator on the unit sphere S*~!
represented as
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The equation (1) is separable and let us consider ¢ as follows
@(T = COHSt., 01, 92, e ,904—2, gb, t) = R(r)@(@l) T(@Q, ce ,Qa_Q, qb)T(t),

(5)
having in mind that for Einstein’s universe r is constant.
Assuming T'(t) = e~*!, equation (1) reduces to the following two equa-

tions A(67) )
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+ (Wr?—1) ¢ =0. (7)

Since the eigenvalues of A are I(I + o — 2) [18,19], equation (7), leads to
obtain the following two separate equations:
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To solve equation (8), let us consider
x = cos by, 6(01) — X(x). (10)

Taking into account (10) we obtain at the following differential equation

2
(1—m2)2%—(a—1)x(1—x2)(z—f
+ [ =) (1-2%) —l(l+a-3)] X =0. (11)

By studying the solution of equation (11) around the end points +1 and
after calculations, we can look at the solution X (z) in the form

X(x)=Co(1-22)"C(). (12)

The substitution of equation (12) into (11) yields

d*C ac
2 _
where A is defined as
A= —r?2—l(l+a-2). (14)
A series solution of C'(x),
C(z) = Zakxk+ﬁ, (15)
k=0

gives the recursion relation and the indicial equations respectively as

trre [+ B8)k+8—-1)+ (a+20— 1)k — A]

an [(k+a+ D)k +a+2) ’ (16)

the indicial equations are
apB(B—1) = 0, (17)
aB(B+1) = 0. (18)

From (16), the solution is analytic at = £1 and the series solution (15)
is a finite polynomial if

A=KE +1) +k(a+20-1), (19)
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where £’ is some integer. Equation (19) can be put in the form
K +DE +14+a—2) =w?? 1. (20)
Defining a new integer
n==~k+1, n=20,1,2,... [<n, (21)

we obtain the massless conformal scalar field in an Einstein’s n-dimensional
universe frequency as

11
w:\/"("Jrff )+ oo (22)

For four dimensional space, a = 4, we have

b n=1,23,.... (23)

w=—
r

The solution of equation (13) is obtained as

(@) = P @), (24)

n,l n—l

where C’i:?/ 2_1(:13) are Gegenbauer polynomials [20] with the orthogonality
found via the following integral

/1 (1- 332)>\ CNx)Co (x)da = 6y (2n¥§2 i i;\ljgnll— - (25)
1
The solution ©(f;) is calculated as
02,(01) = Co(sin' 1) CL 3> (cos 1) . (26)
The general solution of equation (1) is given by
b = Co(sin' 0,)C 9 (cos 0))2(0, . .., 0 — )Mt (27)

We observed that for @ = 4 the solution (27) is the same as obtained in
[16,17].
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3. Conclusion

We have introduced the solutions of wave equation for massless conformal
scalar field in an Einstein’s universe with n-dimensional space. Using the
convergence conditions on the series solution of the angular equation (8)
we obtained the eigen frequencies. It is interesting to note that the eigen
frequencies w have integer values n for only 4 dimensional Einstein’s universe.

This work is partially supported by the Scientific and Technical Research
Council of Turkey.
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