SOLUTIONS OF MASSLESS CONFORMAL SCALAR FIELD IN AN n-DIMENSIONAL EINSTEIN SPACE

Sami I. Muslih
Department of Physics, Al-Azhar University, Gaza, Palestine
smuslih@ictp.trieste.it
Dumitru Baleanu ${ }^{\dagger}$
Department of Mathematics and Computer Sciences
Faculty of Arts and Sciences
Cankaya University 06530, Ankara, Turkey
dumitru@cankaya.edu.tr, baleanu@venus.nipne.ro

Eqab M. Rabei
Physics Department, Mutah University, Karak, Jordan
eqabrabei@yahoo.com
(Received March 5, 2007; revised version received January 24, 2008)

In this paper the wave equation for massless conformal scalar field in an Einstein's n-dimensional universe is solved and the eigen frequencies are obtained. The special case for $\alpha=4$ is recovered and the results are in exact agreement with those obtained in literature.

PACS numbers: 11.25.Hf

1. Introduction

As it was shown in the literature, several physical systems require various approaches which differ from the classical ones [1-6]. It is believed that the dimension of space plays an important role in quantum field theory, in the Ising limit of quantum field theory, in random walks and in Casimir effect [4]. The path integral of a relativistic particle in arbitrary dimensional

[^0]space was analyzed $[7,8]$, and some authors have considered the relationship between the eigenstates of a hydrogen atom and harmonic oscillator of arbitrary dimension [9] and the construction of coherent states defined in a finite-dimensional Hilbert space [10-12]. It is worthwhile to mention that the experimental measurement of the dimensional α of our real world is given by $\alpha=\left(3 \pm 10^{-6}\right)[1,2]$. The fractional value of α agrees with the experimental physical observations that in general relativity, gravitational fields are understood to be geometric perturbations in our space-time [13], rather than entities residing within a flat space-time. In [3] it was proved that the current discrepancy between theoretical and experimental values of the anomalous magnetic moment of the electron could be resolved if the dimensionality of space α is $\alpha=3-(5.3 \pm 2.5) \times 10^{-7}$.

Many of the investigations into low dimensional semiconductors have used a mathematical bases introduced in [2], namely where a generalization of the Laplace operator on this space was obtained.

On the other hand, recent progress includes the description of a singlecoordinate momentum in this fractional dimensional space based on generalized Wigner commutation relations [14] and presenting a possible realization of parastatistics [15].

In this paper the definition of the generalized Laplace in n-dimensional space was used to obtain the wave functions and the eigen frequencies of massless conformal scalar field in an Einstein's n-dimensional universe.

2. Scalar field equation in n-dimensional space

The starting point is scalar field equation in an Einstein's universe [16, 17]

$$
\begin{equation*}
\nabla^{2} \Phi-\frac{\partial^{2}}{\partial t^{2}} \Phi-\frac{\Phi}{r^{2}}=0 \tag{1}
\end{equation*}
$$

where r represents the Einstein's universe radius and ∇^{2} is the Laplacian in n-dimensional fractional space with the generalized polar coordinates $(r=$ const., $\left.\theta_{1}, \theta_{2}, \ldots, \theta_{\alpha-2}, \phi\right)$ of R^{n}. This Laplacian is defined as follows $[18,19]$

$$
\begin{equation*}
\nabla^{2} u=r^{1-\alpha} \frac{\partial}{\partial r}\left(r^{\alpha-1} \frac{\partial u}{\partial r}\right)+\frac{\Lambda u}{r^{2}} \tag{2}
\end{equation*}
$$

and the range of the variables are as follows

$$
\begin{equation*}
0 \leq \theta_{j} \leq \pi, \quad(1 \leq j \leq \alpha-2), \quad 0 \leq \phi \leq 2 \pi \tag{3}
\end{equation*}
$$

The operator Λ is the Laplace-Beltrami operator on the unit sphere $S^{\alpha-1}$ represented as

$$
\begin{align*}
\Lambda u= & \sum_{k=1}^{\alpha-2}\left(\prod_{j=1}^{k} \sin \theta_{j}\right)^{-2}\left(\sin \theta_{k}\right)^{k+3-\alpha} \frac{\partial}{\partial \theta_{k}}\left(\sin ^{\alpha-k-1} \theta_{k} \frac{\partial u}{\partial \theta_{k}}\right) \\
& +\left(\prod_{j=1}^{\alpha-2} \sin \theta_{j}\right)^{-2} \frac{\partial^{2} u}{\partial \phi^{2}} \tag{4}
\end{align*}
$$

The equation (1) is separable and let us consider Φ as follows

$$
\begin{equation*}
\Phi\left(r=\text { const., } \theta_{1}, \theta_{2}, \ldots, \theta_{\alpha-2}, \phi, t\right)=R(r) \Theta\left(\theta_{1}\right) \Upsilon\left(\theta_{2}, \ldots, \theta_{\alpha-2}, \phi\right) T(t) \tag{5}
\end{equation*}
$$

having in mind that for Einstein's universe r is constant.
Assuming $T(t)=e^{-i \omega t}$, equation (1) reduces to the following two equations

$$
\begin{gather*}
\frac{\Lambda(\Theta \Upsilon)}{r^{2}}+\left(\omega^{2}-\frac{1}{r^{2}}\right) \Theta \Upsilon=0 \tag{6}\\
\frac{1}{\sin ^{2} \theta_{1}}\left(\prod_{j=2}^{\alpha-2} \sin \theta_{j}\right)^{-2} \frac{\partial^{2} \Theta \Upsilon}{\partial \phi^{2}}+\left(\sin \theta_{1}\right)^{4-\alpha} \frac{\partial}{\partial \theta_{1}}\left(\sin ^{\alpha-2} \theta_{1} \frac{\partial \Theta \Upsilon}{\partial \theta_{1}}\right) \\
+\sum_{k=2}^{\alpha-2}\left(\prod_{j=2}^{\alpha-2} \sin \theta_{j}\right)^{-2}\left(\sin \theta_{k}\right)^{k+3-\alpha} \frac{\partial}{\partial \theta_{k}}\left(\sin ^{\alpha-k-1} \theta_{k} \frac{\partial \Theta \Upsilon}{\partial \theta_{k}}\right) \\
+\left(\omega^{2} r^{2}-1\right) \Phi \Upsilon=0 \tag{7}
\end{gather*}
$$

Since the eigenvalues of Λ are $l(l+\alpha-2)[18,19]$, equation (7), leads to obtain the following two separate equations:

$$
\begin{align*}
& \sin ^{2} \theta_{1} \frac{d^{2} \Theta}{d \theta_{1}^{2}}+(\alpha-2) \cos \theta_{1} \sin \theta_{1} \frac{d \Theta}{d \theta_{1}} \\
& +\left(\omega^{2} r^{2}-1\right) \sin ^{2} \theta_{1}-l(l+\alpha-3) \Theta=0 \tag{8}\\
& \sum_{k=2}^{\alpha-2}\left(\prod_{j=2}^{\alpha-2} \sin \theta_{j}\right)^{-2}\left(\sin \theta_{k}\right)^{k+3-\alpha} \frac{\partial}{\partial \theta_{k}}\left(\sin ^{\alpha-k-1} \theta_{k} \frac{\partial \Theta \Upsilon}{\partial \theta_{k}}\right) \\
& +\left(\prod_{j=2}^{\alpha-2} \sin \theta_{j}\right)^{-2} \frac{\partial^{2} \Upsilon}{\partial \phi^{2}}+l(l+\alpha-3) \Upsilon=0 \tag{9}
\end{align*}
$$

To solve equation (8), let us consider

$$
\begin{equation*}
x=\cos \theta_{1}, \quad \Theta\left(\theta_{1}\right) \rightarrow X(x) . \tag{10}
\end{equation*}
$$

Taking into account (10) we obtain at the following differential equation

$$
\begin{align*}
& \left(1-x^{2}\right)^{2} \frac{d^{2} X}{d x^{2}}-(\alpha-1) x\left(1-x^{2}\right) \frac{d X}{d x} \\
& +\left[\left(\omega^{2}-r^{2}\right)\left(1-x^{2}\right)-l(l+\alpha-3)\right] X=0 . \tag{11}
\end{align*}
$$

By studying the solution of equation (11) around the end points ± 1 and after calculations, we can look at the solution $X(x)$ in the form

$$
\begin{equation*}
X(x)=C_{0}\left(1-x^{2}\right)^{l / 2} C(x) . \tag{12}
\end{equation*}
$$

The substitution of equation (12) into (11) yields

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} C}{d x^{2}}-(\alpha+2 l-1) x \frac{d C}{d x}+A C=0 \tag{13}
\end{equation*}
$$

where A is defined as

$$
\begin{equation*}
A=\omega^{2}-r^{2}-l(l+\alpha-2) . \tag{14}
\end{equation*}
$$

A series solution of $C(x)$,

$$
\begin{equation*}
C(x)=\sum_{k=0}^{\infty} a_{k} x^{k+\beta}, \tag{15}
\end{equation*}
$$

gives the recursion relation and the indicial equations respectively as

$$
\begin{equation*}
\frac{a_{k+2}}{a_{k}}=\frac{[(k+\beta)(k+\beta-1)+(\alpha+2 l-1) k-A]}{[(k+\alpha+1)(k+\alpha+2)]}, \tag{16}
\end{equation*}
$$

the indicial equations are

$$
\begin{align*}
& a_{0} \beta(\beta-1)=0, \tag{17}\\
& a_{1} \beta(\beta+1)=0 . \tag{18}
\end{align*}
$$

From (16), the solution is analytic at $x= \pm 1$ and the series solution (15) is a finite polynomial if

$$
\begin{equation*}
A=k^{\prime}\left(k^{\prime}+1\right)+k^{\prime}(\alpha+2 l-1), \tag{19}
\end{equation*}
$$

where k^{\prime} is some integer. Equation (19) can be put in the form

$$
\begin{equation*}
\left(k^{\prime}+l\right)\left(k^{\prime}+l+\alpha-2\right)=\omega^{2} r^{2}-1 \tag{20}
\end{equation*}
$$

Defining a new integer

$$
\begin{equation*}
n=k^{\prime}+l, \quad n=0,1,2, \ldots . \quad l \leq n \tag{21}
\end{equation*}
$$

we obtain the massless conformal scalar field in an Einstein's n-dimensional universe frequency as

$$
\begin{equation*}
\omega=\frac{\sqrt{n(n+\alpha-2)+1}}{r}, \quad n=0,1,2, \ldots \tag{22}
\end{equation*}
$$

For four dimensional space, $\alpha=4$, we have

$$
\begin{equation*}
\omega=\frac{n}{r}, \quad n=1,2,3, \ldots \tag{23}
\end{equation*}
$$

The solution of equation (13) is obtained as

$$
\begin{equation*}
C_{n, l}^{\alpha}(x)=C_{n-l}^{l+\alpha / 2-1}(x) \tag{24}
\end{equation*}
$$

where $C_{n-l}^{l+\alpha / 2-1}(x)$ are Gegenbauer polynomials [20] with the orthogonality found via the following integral

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right)^{\lambda} C_{n}^{\lambda}(x) C_{n^{\prime}}^{\lambda}(x) d x=\delta_{n, n^{\prime}} \frac{2 \Gamma(n+2 \lambda+1)}{(2 n+2 \lambda+1) \Gamma(n+1)} \tag{25}
\end{equation*}
$$

The solution $\Theta\left(\theta_{1}\right)$ is calculated as

$$
\begin{equation*}
\Theta_{n, l}^{\alpha}\left(\theta_{1}\right)=C_{0}\left(\sin ^{l} \theta_{1}\right) C_{n-l}^{l+\alpha / 2-1}\left(\cos \theta_{1}\right) \tag{26}
\end{equation*}
$$

The general solution of equation (1) is given by

$$
\begin{equation*}
\Phi=C_{0}\left(\sin ^{l} \theta_{1}\right) C_{n-l}^{l+\alpha / 2-1}\left(\cos \theta_{1}\right) \Omega\left(\theta_{2}, \ldots, \theta_{\alpha}-2\right) e^{i m \phi} e^{-i \omega t} \tag{27}
\end{equation*}
$$

We observed that for $\alpha=4$ the solution (27) is the same as obtained in [16, 17].

3. Conclusion

We have introduced the solutions of wave equation for massless conformal scalar field in an Einstein's universe with n-dimensional space. Using the convergence conditions on the series solution of the angular equation (8) we obtained the eigen frequencies. It is interesting to note that the eigen frequencies ω have integer values n for only 4 dimensional Einstein's universe.

This work is partially supported by the Scientific and Technical Research Council of Turkey.

REFERENCES

[1] K.G. Willson, Phys. Rev. D7, 2911 (1973).
[2] F.H. Stillinger, J. Math. Phys. 18, 1224 (1977).
[3] A. Zeilinger, K. Svozil, Phys. Rev. Lett. 54, 2553 (1985).
[4] C.M. Bender, K.A. Milton, Phys. Rev. D50, 6547 (1994).
[5] C. Palmer, P.N. Stavrinou, J. Phys. A: Math. Gen. 37, 6987 (2004).
[6] M.A. Lohe, A. Thilagam, J. Phys. A: Math. Gen. 37, 6181 (2004).
[7] C. Grosche, F. Steiner, J. Math. Phys. 36, 2354 (1995).
[8] D. Lin, J. Phys. A: Math. Gen. 30, 3201 (1997).
[9] G. Zeng, K. Su, M. Li, Phys. Rev. A50, 4373 (1994); G. Zeng, S. Zhou, S. Ao, F. Jiang, J. Phys. A: Math. Gen. 30, 1175 (1997).
[10] L. Kuang, F.X. Chen, Phys. Rev. A50, 4228 (1994); Phys. Lett. A186, 8 (1994).
[11] A. Miranowicz, K. Piatek, R. Tanas, Phys. Rev. A50, 3423 (1994).
[12] B. Roy, P. Roy, J. Phys. A: Math. Gen. 31, 1307 (1998).
[13] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, Freeman, San Francisco 1973.
[14] A. Matos-Abiague, J. Phys. A: Math. Gen. 34, 11059 (2001).
[15] S. Jing, J. Phys. A: Math. Gen. 31, 63 (1998).
[16] L.H. Ford, Phys. Rev. D11, 3370 (1975).
[17] N.D. Birrel, P.C. Davies, Quantum Fields in Curved Space, Cambridge 1984.
[18] S. Al-Jaber, Nuovo Cim. B110, 993 (1995).
[19] N. Shimakura, Partial Differential Operators of Elliptic Type, Translations of Mathematical Monographs, Vol. 99 (American Mathematical Society) 1992.
[20] P.M. Morse, H. Feshbach, Methods of Theoretical Physics: Part I, New York: McGraw-Hill 1953.

[^0]: ${ }^{\dagger}$ On leave of absence from Institute of Space Sciences, P.O.Box, MG-23, R 76900, Magurele-Bucharest, Romania.

