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The task of Monte Carlo simulation of the evolution of the parton
distributions in QCD and of constructing new parton shower Monte Carlo
algorithms requires new way of organizing solutions of the QCD evolution
equations, in which quark–gluon transitions on the one hand and quark–
quark or gluon–gluon transitions (pure gluonstrahlung) on the other hand,
are treated separately and differently. This requires certain reorganization
of the iterative solutions of the QCD evolution equations and leads to what
we refer to as a hierarchic iterative solutions of the evolution equations. We
present three formal derivations of such a solution. Results presented here
are already used in the other recent works to formulate new MC algorithms
for the parton-shower-like implementations of the QCD evolution equations.
They are primarily of the non-Markovian type. However, such a solution
can be used for the Markovian-type MCs as well. We also comment briefly
on the relation of the presented formalism to similar methods used in other
branches of physics.

PACS numbers: 12.38.–t, 12.38.Bx, 12.38.Cy

1. Introduction to the problem

The standard QCD evolution equation

∂tDk(t, x) =
∑

j

Pkj(t, ·) ⊗ Dj(t, ·)(x) ,

f(·)⊗g(·)(x) ≡

1
∫

0

dx1dx2δ(x−x1x2)f(x1)g(x2)≡

1
∫

x

dx2

x2
f
( x

x2

)

g(x2) , (1)
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describes response of the parton distribution function (PDF) Dk(t, x) to
a change of the large energy scale Q = exp(t). Variable x is identified as
a fraction of the hadron momentum carried by parton of the type k (quark,
gluon). Evolution kernel P is calculable within perturbative QCD.

The above evolution equation (1) is an important ingredient in many
QCD perturbative calculations. It can be solved using variety of the numer-
ical methods, including Monte Carlo method. The knowledge of Dk(t0, x) at
certain initial t0, is required for solving evolution equation at other t > t0.
The initial PDF is fitted to experimental data.

The principal aim of this work is to derive the following analytical solu-
tion of the above QCD evolution equations

Dk(t, x) =

1
∫

0

dz′dx0G
B
kk(t, t0, z

′)Dk(t0, x0)δ(x − z′x0) +

∞
∑

n=1

1
∫

0

dx0

×
∑

kn−1,...,k1,k0

[

n
∏

j=1

t
∫

t0

dtjΘ(tj − tj−1)

] 1
∫

0

dz′n+1

[

n
∏

i=1

1
∫

0

dz′idzi

]

×GB
kk(t, tn, z′n+1)

[

n
∏

i=1

PA
kiki−1

(ti, zi)G
B
ki−1ki−1

(ti, ti−1, z
′
i)

]

×Dk0(t0, x0)δ

(

x − x0

n
∏

i=1

zi

n+1
∏

i=1

z′i

)

, kn = k , (2)

where we have isolated flavour conserving (bremsstrahlung) part of the ker-
nel1 PB

kj ≡ δkjPkk from the total kernel, Pkj = PA
kj+PB

kj , and GB
kk(t1, t0, z) is

the solution of the following simplified evolution equation, similar to Eq. (1),

∂tG
B
kk(t, t0, z) = PB

kk(t, ·) ⊗ GB
kk(t, t0, ·)(z) , (3)

see Section 2.2.2 for the details. The boundary condition is GB
kk(t0, t0, z) =

δ(1 − z). See also Fig. 1 for graphical representation.
It is important to provide formal proof of Eq. (2), because it is a critical

ingredient in several new Monte Carlo algorithms of the non-Markovian type
described in Refs. [1] and [2], and possibly in other works as well.

Let us now explain in details notation used in Eqs. (1)–(3). In function
Dk(t, x) variable 1 ≥ x ≥ 0 is the fraction of the hadron momentum carried
by the parton of the type k = G, qi, q̄i, i.e. gluon, quark or antiquark, at
the high energy scale Q, conveniently translated into the “evolution time”

1 Since PA
kk = 0, only flavour changing indices ki 6= ki−1 enter in the flavour sum in

Eq. (2).
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Fig. 1. Kinematics in the 2-level emission tree of Eq. (2).

variable t = lnQ. In QCD the PDF represents the wave function of the
hadron close to the light-cone. See Ref. [3] for an expert discussion on
the precise meaning of PDF in QCD, in a wide context of the so-called
factorization theorems [4–6] in the gauge Quantum Field Theories.

In this work we shall restrict ourselves to the most common QCD evo-
lution equations of the DGLAP type [7], with the kernel splitting functions
incorporating the QCD coupling constant (for the sake of the simplicity of
notation)

Pkj(t, z) =
α(t)

π
Pkj(t, z) . (4)

The QCD kernel functions are singular, with singularities of the type
(ln(1 − z)n/(1 − z))+. We shall typically regularize them with the help
of an explicit small infrared (IR) cutoff parameter ε as follows:

Pkj(t, z) = −Pδ
kk(t, ε)δkjδ(1 − z) + PΘ

kj(t, z) ,

PΘ
kj(t, z) = Pkj(t, z)Θ(1 − z − ε) . (5)

The infinitesimal parameter ε can be t-dependent, without any loss of gener-
ality in the following treatment. The important Sudakov formfactor Φk(t, t0)
is directly related to the virtual part of the kernels:

Φk(t, t0) =

t
∫

t0

dt′Pδ
kk(t

′, ε) . (6)

Finally the (bremsstrahlung-type) auxiliary distribution

GB
kk(t, t0, z) = δ(1 − z)e−Φk(t,t0)
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+
∞
∑

n=1

[ n
∏

i=1

t
∫

t0

dtiΘ(ti − ti−1)

1
∫

0

dzi

]

e−Φk(t,tn)

×

[ n
∏

i=1

PΘ
kk(ti, zi)e

−Φk(ti,ti−1)

]

δ(z −

n
∏

i=1

zi) (7)

is an iterative2 solution of the flavour-diagonal evolution equation of Eq. (3).
See also Fig. 2 for graphical representation of the above gluonstrahlung
segment of the evolution.
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Fig. 2. Kinematics in the pure bremsstrahlung emission tree of Eq. (7).

2. The solutions

If our only aim was to prove the correctness of Eq. (2) as a solution
of Eq. (1), then the simplest approach would be just to substitute it into
this equation and check with a little bit of algebra that indeed it is the
solution. Our aims are however more general: (i) to derive Eq. (2) in a more
systematic way, (ii) to understand better its relation to the other widely
known and used iterative solutions of Eq. (1), (iii) to prove that its exclusive
content, in terms of the fully differential distribution in all variables ti and zi,
i = 1, 2, ..., n, for each n, is exactly the same as in other iterative solutions,
commonly used in the MC approaches.

Having all the above in mind, let us proceed methodically, first with
deriving solution of the evolution of Eq. (1), in terms of a time-ordered ex-
ponential, widely used in the literature. Next, we shall present first example
of the derivation of Eq. (2) by means of reorganizing the evolution equation
and solving it once again. Then, we shall present second example of the
derivation, in which the above time-ordered exponential is algebraically re-
organized (transformed) into Eq. (2). Finally the third derivation of Eq. (2)
based on straightforward reorganization of the multiple sums and integrals
will be included in the Appendix.

2 We shall explain in the next section why we call it “iterative”.
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2.1. Time-ordered exponential

The solution of Eq. (1) can be established quickly and rigorously, for
instance by means iteration, as a time-ordered exponential of the kernel
operator P in the vector (linear) space indexed by one continuous variable
x and one discrete k. More precisely, Eq. (1) in a more compact matrix
notation reads

∂tD(t) = P (t)D(t) , (8)

and its solution in the same compact matrix notation is given by

D(t) = exp





t
∫

t0

P (t′)dt′





T

D(t0) = GP (t, t0)D(t0) , (9)

where we employ the following well known time-ordered exponential evolution
operator

GH(t, t0) = G(H; t, t0) = exp





t
∫

t0

H(t′)dt′





T

= I +

∞
∑

n=1

n
∏

i=1

t
∫

t0

dtiθti>ti−1H(ti) , (10)

for t ≥ t0. Here and in the following we define
∏n

i=1 Ai ≡ AnAn−1 . . . A2A1.
Formula (10) is familiar to all readers of the Quantum Mechanics textbooks3.
We define function θx>y to be equal 1 when x > y and equal 0 otherwise.

The compact solution of Equation (9), can be translated into more tra-
ditional integro-tensorial notation, with explicit sums and integrals:

Dk(t, x) =









exp





t
∫

t0

dt′P (t′, ·)⊗









T

D(t0, ·)







k

= Dk(t0, x) +
∞
∑

n=1

∑

kn−1...k1k0

1
∫

0

dx0

×

[ n
∏

j=1

t
∫

t0

dtjθtj>tj−1

1
∫

0

dzjPkjkj−1
(zi)

]

×Dk0(t0, x0)δx=x0
Qn

i=1 zi
, (11)

3 However, we do not require H to be hermitian and G to be unitary.
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where δx=y ≡ δ(x − y). We realize, that the above formula, although rig-
orous and very elegant, is useless for any practical evaluations, because it
contains polynomials of the negative and singular terms coming from prod-
ucts of −Pδδ(1 − z) factors. In principle these inconvenient terms can be
resummed (exponentiated) with the help of the direct but tedious algebra
on the multiple flavour indices and z-integrals, in a similar way, as in the
Appendix, to re-sum another part of the kernel. In the following section we
shall do it using more elegant methods.

Having defined the time ordered exponential evolution operator GH , let
us quote its basic features and extend its definition for the latter use. The
well known rule4

GH(t, tx)GH(tx, t) = GH(t, t0) , t ≥ tx ≥ t0 (12)

helps to manipulate products of the time-ordered exponents. We may also
define the inverse operator for the “backward evolution” (t < t0) as follows

GH(t0, t) ≡ G
−1
H (t, t0) , t < t0 , (13)

where the inverse operator is constructed using G
−1
H (t, t0) ≡ G(−H)(t, t0).

The algebraic proof that G
−1
H (t, t0)GH(t, t0) = I , using Eq. (10), we leave to

the reader. The matrix elements of G
−1 can be non-positive and highly sin-

gular. With help of the above definition validity of Eq. (12) can be extended
to any tx.

2.2. Derivation by reorganizing evolution equation

In the following we show how to resume singular Pδ terms by going back
to the evolution equation, reorganizing it and solving it once again. We are
going to show this standard trick in a detail, because, subsequently, we shall
generalize it to the case of an arbitrary part of the kernel (instead of the Pδ

part). It is essentially a warm-up example.

2.2.1. Resumming virtual part of the kernel — warm-up example

Inserting explicitly regularized kernel, our evolution equation takes the
following form

∂tDk(t, x) = −Pδ
kk(t) Dk(t, x) +

∑

j

PΘ
kj(t, ·) ⊗ Dj(t, ·)(x) . (14)

4 Chapman–Kolmogorov–Smoluchowski–Einstein relation, see Ref. [8,9].
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It can be transformed into

∂t

(

eΦk(t,t0)Dk(t, x)
)

=
∑

j

eΦk(t,t0)PΘ
kj(t, ·)e

−Φj (t,t0) ⊗ eΦj(t,t0)Dj(t, ·)(x) .

(15)
This integro-differential form is exposed in the QCD textbooks, see Ref. [10],
and is also used in the numerical evaluation (evolution) of PDFs using non-
Monte Carlo methods, for instance Ref. [11]. Changing slightly notation the
above is transformed into

∂tD̃k(t, x) =
∑

j

P̃Θ
kj(t, ·) ⊗ D̃j(t, ·)(x) ,

D̃k(t, x) ≡ exp(Φk(t, t0))Dk(t, x) ,

P̃Θ
kj(t, z) ≡ exp(Φk(t, t0))P

Θ
kj(t, z) exp(−Φj(t, t0)) , (16)

or in an equivalent compact matrix formulation it reads

∂tD̃(t) = P̃
Θ
(t)D̃(t) . (17)

The time ordered solution

D̃(t) = exp





t
∫

t0

P̃
Θ
(t′)dt′





T

D̃(t0) = G
P̃

Θ(t, t0) D̃(t0) (18)

of the evolution equation is widely known and exploited routinely in many
practical evaluations of solutions of the QCD evolution. It is usually written
in the traditional integro-tensorial representation similarly as Eq. (11), in
terms of the initial D(t0) and the product of PΘ, taking the following familiar
shape:

Dk(t, x) = e−Φk(t,t0)Dk(t0, x)

+

∞
∑

n=1

∑

k0,...,kn−1

[ n
∏

i=1

t
∫

t0

dtiΘ(ti − ti−1)

1
∫

0

dzi

]

×e−Φk(t,tn)

1
∫

0

dx0

[ n
∏

i=1

PΘ
kiki−1

(ti, zi)e
−Φki−1

(ti,ti−1)

]

×Dk0(t0, x0)δ

(

x − x0

n
∏

i=1

zi

)

. (19)
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Trivial identity
e−Φi(ti,t0)eΦi(ti−1,t0) = e−Φi(ti,ti−1) (20)

was also employed. The above solution of the evolution equation is used as
a basic formula in the Monte Carlo evaluation of the PDFs using Markovian
MC algorithms, see for example Ref. [2]. We shall refer to this solution as
non-hierarchic iterative solution of the evolution equation.

Let us remind the reader, that in the above warm-up exercise we have
resummed the relatively simple component PB

jk(t, z) = −δjkP
δ
kk(t)δ(1−z) of

the evolution kernel, which was completely diagonal, both in k and in z. In
this special case G

−1
PB is trivially calculable, contrary to more general case

of non-diagonal PB discussed in the following.
Let us now come back to our principal aim, proving Eq. (2), where less

trivial component of the kernel will be isolated/resummed.

2.2.2. Resuming gluonstrahlung — the real thing

In order to prove Eq. (2), we need to resum (exponentiate) the following
part of the kernel

PB
jk(t, z) = δjkPkk(t, z) = −δjkP

δ
kk(t)δ(1 − z) + δjkP

Θ
kk(t, z) , (21)

which is diagonal in the flavour indices, but not in z. This part of the kernel
is always IR divergent and generates multiple gluon emission process, that
is gluonstrahlung. The remaining flavour-changing part of the full kernel
is defined as PA = P − PB . The original full evolution equation and its
solution read

∂D(t) =
(

P
A(t) + P

B(t)
)

D(t) ,

D(t) = exp





t
∫

t0

(

P
A(t′) + P

B(t′)
)

dt′





T

D(t0) . (22)

At this point, the G-function of Eq. (7) can be identified with the following
operator

GB(t, t0) ≡ GP B (t, t0) = exp





t
∫

t0

P
B(t′)dt′





T

, (23)

where
∂tGB(t, t0) = P

B(t)GB(t, t0) , (24)

see also Eq. (3).
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In order to derive Eq. (2) we proceed analogously as in the derivation
of Eq. (19); we shall introduce GB(t, t0) in the evolution equation, similarly
as we have introduced exp (Φk(t, t0)). The main complication will be in
the non-commutative nature of GB(t, t0). Let us introduce in the evolution
equation an auxiliary PDF

D̃(t) = G
−1
B (t, t0)D(t) , D(t) = GB(t, t0) D̃(t) , (25)

getting after the differentiation

GB(t, t0) ∂D̃(t) +
(

∂GB(t, t0)
)

D̃(t) =
(

P
A(t) + P

B(t)
)

GB(t, t0) D̃(t) .

(26)
After inserting Eq. (24) we obtain

GB(t, t0)∂D̃(t) + P
B(t)GB(t, t0)D̃(t) =

(

P
A(t) + P

B(t)
)

GB(t, t0)D̃(t) .

(27)
The term proportional to P

B gets eliminated

GB(t, t0)∂D̃(t) = P
A(t)GB(t, t0)D̃(t) . (28)

and we return to the usual evolution equation

∂D̃(t) = P̃
A
(t)D̃(t) , P̃

A
(t) ≡ G

−1
B (t, t0) P

A(t)GB(t, t0) , (29)

with the usual solution

D(t) = GB(t, t0) exp





t
∫

t0

P̃
A
(t′)dt′





T

D(t0) . (30)

The last step on the way to Eq. (2) is elimination of the operator

G
−1
B (t, t0) being part of P̃ . The reason for that is that G

−1 is not well
suited for any numerical evaluation, especially of the MC type, due to alter-
nating sign in the exponential expansion, hence it is better to eliminate it
from the final result. It is done with the help of the following identity

GB(t, t0) exp





t
∫

t0

P̃
A
(t′)dt′





T

= GB(t, t0)+

∞
∑

n=1





n
∏

i=1

t
∫

t0

dtiθti>ti−1GB(ti+1, ti)P
A(ti)



GB(t1, t0) ,(31)

where tn+1 ≡ t. This identity is derived rather easily by inspecting each
n-th term in the expansion of the time ordered exponent and applying the
following relation5 (analogous to Eq. (20))

5 See Eqs. (12)–(13) and the accompanying discussion.
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GB(ti+1, t0)G
−1
B (ti, t0)=GB(ti+1, ti)GB(ti, t0)G

−1
B (ti, t0)=GB(ti+1, ti)

(32)
for each pair GBG

−1
B sandwiched between adjacent P

A’s. The final solution
reads

D(t) = GB(t, t0) D(t0)

+

∞
∑

n=1





n
∏

i=1

t
∫

t0

dtiθti>ti−1GB(ti+1, ti)P
A(ti)



GB(t1, t0)D(t0) . (33)

When translated into the integro-tensorial notation, the above formula turns
out to be identical with our target Eq. (2). In this way we have completed
its derivation.

It is now obvious why Eq. (2) we call a hierarchic solution of the evo-
lution equation. It is because its components GB are solutions of another
simpler evolution equation (gluonstrahlung) of its own. Higher level evolu-
tion embeds lower level simpler evolution as a building block.

2.3. Derivation by reorganizing time-ordered exponential

A disadvantage of the derivation presented above is that it exploits the
inverse evolution operator G

−1, which is in a general case difficult to define
properly, while it drops out from the final result of Eqs. (2) or (33) anyway.
The natural question is therefore whether we could derive Eq. (2) without
introducing the operator G

−1 in the intermediate stages of the proof.
Furthermore, going back to the modified evolution equation and solving

it once again obscures the relation between variables (ki, zi) in the non-
hierarchic solution of Eq. (19) on one hand and the hierarchic one of Eq. (2)
on the other hand. Such a relation is relevant for parton shower applications;
in the following we shall, therefore, present an alternative example of the
derivation of Eq. (9) without explicit use of the inverse evolution operator
G

−1. In such a case, the relation between variables (ki, zi) in Eq. (19) and
Eq. (2) can be traced back (recovered) more easily.

The following derivation will be strongly reminiscent to a derivation of
identity F (x, y) = exp(x + y) = exp(x) exp(y) by means of the Taylor ex-
pansion6 with respect y i.e. F (x, y) =

∑∞
n=0(x

n/n!)∂n
x F (x, y)|x=0.

Let us introduce slightly modified evolution operator

G
′
H

(t, t0) = G
′(H ; t, t0) = G(H ; t, t0) θt≥t0 , (34)

6 Note that such a derivation is almost equivalent to a direct multiplication of the
infinite sums for exp(x) and exp(y), but more transparent algebraically.
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where G was already defined as the time-ordered exponential in Eq. (10).
The additional θ-factor ensuring t ≥ t0 will make the following algebra more
compact. We define H = Hλ = B +λA (we shall set λ = 1 at the very end
of calculation). The whole derivation relies on the following identity

∂λG
′
H

(t, t0) =

t
∫

t0

dt1G
′
H

(t, t1)A(t1)G
′
H

(t1, t0) , (35)

which can be derived using definition of Eq. (10), and reorganizing all inte-
grations over ti’s. The second derivative follows trivially:

∂2
λG

′
H(t, t0)=

t
∫

t0

dt1dt2G
′
H(t, t2)A(t2)G

′
H(t2, t1)A(t1)G

′
H(t1, t0)

+

t
∫

t0

dt1dt2G
′
H

(t, t1)A(t2)G
′
H

(t1, t2)A(t1)G
′
H

(t2, t0)

= 2!

t
∫

t0

dt2dt1G
′
H

(t, t2)A(t2)G
′
H

(t2, t1)A(t1)G
′
H

(t1, t0) , (36)

and the n-th derivative is

∂n
λG

′
Hλ

(t, t0) = n!
n
∏

i=1

( t
∫

t0

dtiG
′
Hλ

(ti+1, ti)A(ti)

)

G
′
Hλ

(t1, t0) , (37)

where tn ≡ t. Now, let us use Taylor expansion

G
′
Hλ

(t, t0) = G
′
Hλ=0

(t, t0) +

∞
∑

0

λn

n!
∂n

λG
′
Hλ

(t, t0)
∣

∣

∣

λ=0
. (38)

Noticing that G
′
Hλ

(ti+1, ti)|λ=0 = G
′
B

(ti+1, ti), we obtain

G
′
Hλ

(t, t0) = G
′
B(t, t0) +

∞
∑

n=1

λn
n
∏

i=1

( t
∫

t0

dtiG
′
B(ti+1, ti)A(ti)

)

G
′
B(t1, t0) .

(39)
We may set λ = 1 at this point.
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Identifying A = P
A, G

′
H

= G
′
P A+P B and G

′
B

= G
′
P B we obtain more

familiar identity

G
′
P A+P B(t, t0) =

{

I +

∞
∑

n=1

n
∏

i=1

(

t
∫

t0

dtiG
′
B(ti+1, ti)P

A(ti)

)

}

G
′
B(t1, t0) ,

(40)
where, as previously, we define G

′
X(ti, tj) = GX(ti, tj)θti>tj , which leads

immediately to Eqs. (9) and (2). In this way we have completed the second
proof of Eq. (2) — this time without any reference to backward evolution
operator G

−1.

2.4. Straightforward derivation

In addition to two elegant proofs of Eq. (2) presented in the previous Sec-
tions, we include in Appendix third proof, which relies on a rather straight-
forward method — it starts from Eq. (33) and through tedious reorganiza-
tion of the sums over flavour indices (change of the summation order) and
relabeling of the variables transforms it into Eq. (2). The advantage of this
third proof is that relation between integration and summation variables in
both formulas is exposed in a manifest way. This might be useful in the
construction of the exclusive MC model of the parton shower type.

3. Discussion

We are fully aware, of course, that all three derivations of Eq. (2), shown
in this work represent a well established mathematical formalism, very simi-
lar to that in use in the Quantum Mechanics, theory of Markovian processes
and renormalization group in the Quantum Field Theory. We did not add
much to the development of the corresponding area of mathematics. Rather,
our main aim was to customize this known formalism to the specific needs of
solving the QCD evolution (also numerically), such that solution of Eq. (2)
and the other similar ones are obtained in an effortless and rigorous way.
Having all this in mind, let us comment on certain selected aspects of the
presented formalism, on their possible refinements, extensions and applica-
tions. We shall concentrate mainly on two points:

• Extension to beyond-DGLAP evolutions in QCD, like CCFM and oth-
ers.

• Possible application in the Markovian MCs and the related question
of the momentum sum rules and normalization of PDFs.
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3.1. Extensions beyond DGLAP evolution

In our definitions of the evolution of PDFs Eqs. (1)–(2) and the rest of
the paper we have restricted ourself to DGLAP type [7] evolution, leading-
logarithmic (LL) version or its next-to-LL extensions. This restriction is
however inessential and the validity of our derivations can be extended to
a more general evolution equation

∂tDk(t, x) =
∑

j

1
∫

x

duKkj(t, x, u)Dj(t, u) , (41)

in which the dependency of the generalized kernel K(t, x, u) is more general
than only through the ratio z = x/u. The above more general evolution
equation is used for instance in the CCFM-type models7 of PDF [12]. The
DGLAP case of Eq. (2) is obviously covered by Eq. (41), with the following
identification

Kkj(t, x, u) =
1

x
Pkj

(

t,
x

u

)

=
α(t)

π

1

x
Pkj

(

t,
x

u

)

. (42)

The compact matrix notation used in the time-ordered exponentials can
easily accommodate multiplications of the kernels K(t, x, u) such that all
relevant algebra in the previous sections remains unchanged. Let us only
indicate how the product of two kernels gets redefined

(P (t2)P (t1))kj(x, u) =
∑

j′

1
∫

x

du′Kkj′(t2, x, u′)Kj′j(t1, u
′, u) . (43)

The reader can easily verify that the rest of the compact matrix algebra in
our derivations remains unchanged.

3.2. Sum rules and Markovianization

As already mentioned, results of this work were instrumental in the mod-
elling QCD evolution using non-Markovian type Monte Carlo techniques in
Refs. [13] and [14]. The corresponding MC programs simulate DGLAP and
CCFM class evolutions.

However, the solution Eq. (2) may be also used to construct an interesting
example of the Markovian MC in which single step in the Markovian chain
is a Markovian process of its own. Without going into fine details, let us

7 It is also closer to the spirit of the parton shower MC and unintegrated PDFs.
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indicate how this can be done. To this end we have to invoke momentum
sum rule

∑

k

1
∫

0

dxxDk(t, x) = 0 , (44)

and reorganize slightly Eq. (2). Staying for simplicity with the DGLAP case
(LL and beyond) the above sum rule determines virtual part of the kernel

Pδ
jj(t, ε) =

∑

k

1
∫

0

dz zPΘ
kj(t, z) . (45)

The above is used to set up properly Markovian MC and in particular to
split Sudakov formfactor Φk(t) into bremsstrahlung part and the rest (flavour
changing part)

Φk(t, t0) = ΦA
k (t, t0) + ΦB

k (t, t0) ,

ΦB
k (t, t0) =

t
∫

t0

dt′
1
∫

0

dzzPΘ
kk(t

′, z) ,

ΦA
k (t, t0) =

t
∫

t0

dt′
∑

j,j 6=k

1
∫

0

dz zPΘ
jk(t

′, z) . (46)

By means of pulling out ΦA
k (t) and multiplying both sides of Eq. (2) by

x, we obtain the following formula suitable for a Markovian MC

xDk(t, x) =

1
∫

0

dz′dx0U
B
kk(t, t0, z

′)x0Dk(t0, x0)δ(x − z′x0) +
∞
∑

n=1

1
∫

0

dx0

×
∑

kn−1,...,k1,k0

[

n
∏

j=1

t
∫

t0

dtjΘ(tj − tj−1)

] 1
∫

0

dz′n+1

[

n
∏

i=1

1
∫

0

dz′idzi

]

× UB
kk(t, tn, z′n+1)

[

n
∏

i=1

e
−ΦA

ki−1
(ti,ti−1)

ziP
A
ki,ki−1

(ti, zi)

× UB
ki−1ki−1

(ti, ti−1, z
′
i)

]

x0Dk0(t0, x0)

× δ

(

x − x0

n
∏

i=1

zi

n+1
∏

i=1

z′i

)

, kn = k , (47)
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where

UB
kk(t1, t0, z) ≡ eΦA

k
(t1,t0)zGB

kk(t1, t0, z) , (48)

and GB
kk is given by Eg. (7). The evolution operator U obeys nice “unitarity”

rule
∫

dzUB
kk(t, t0, z) = 1 (49)

for any t, t ≥ t0, in addition to the usual boundary condition UA
kk(t0, t0, z) =

δ(1 − z).
Eq. (47) can be now used to define hierarchic (nested) Markovian Monte

Carlo algorithm. The normalized probability distribution of the forward
Markovian step in the flavour-changing upper level Markovian process reads:

ω(ti, xi, ki|ti−1, xi−1, ki−1) = ω(ti, ziz
′
ixi−1, ki|ti−1, xi−1, ki−1)

= (1 − δkiki−1
)e

−ΦA
ki−1

(ti,ti−1)
ziP

A
kiki−1

(zi)z
′
iU

B
ki−1ki−1

(ti, z
′
i|ti−1) ,

∞
∫

ti−1

dti
∑

ki

1
∫

0

dzi

1
∫

0

dz′iω(ti, ziz
′
ixi−1, ki|ti−1, xi−1, ki−1) ≡ 1 . (50)

For the lower level bremsstrahlung process one may use standard Markovian
MC technique of Ref. [1].

Let us discuss selected details of the above scenario. Here, all ki and ti,
i = 1, 2, ...n can be generated before generation of any z-variables in a sepa-
rate Markovian algorithm with the stopping rule being the usual condition
tn+1 ≥ t. (See Ref. [1] for more details on the the Markovian class MC algo-
rithms.) Variables zi of the flavour-changing kernels can also be generated
at this early stage.

The interesting question is: how and when do we generate z′i according to
gluonstrahlung operator UB

ki−1ki−1
(ti, z

′
i|ti−1)? If we have known an analyt-

ical (even approximate) representation of this function, or its precise value
from the look-up tables, then we could readily generate them before entering
into MC simulation of the bremsstrahlung subprocess. That would lead us
to the use of the constrained MC of Refs. [13–15] for the bremsstrahlung
segments. Alternatively, z′i may come out from a separate Markovian MC
module simulating gluonstrahlung sub-process starting at ti−1 and stopping
at ti, with the normalized probability distribution of single Markovian step
defined in Ref. [1]. In this latter case we would have simulated in the MC
a hierarchic system of Markovian processes, with the master flavour-changing
Markovian process and many Markovian subprocesses, each of them imple-
menting pure bremsstrahlung, flavour conserving, emissions.
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The above hierarchic Markovian MC scheme, although quite interesting,
seems to have no immediate practical importance. However, it may find
applications in some future works.

4. Summary

The basic aim of this paper is to provide solid technical foundation to
other works in the area of the Monte Carlo simulation of the evolution of
PDFs and parton shower in QCD. Our basic result is the solution of the
evolution equation of Eq. (2), which was proved algebraically using three
methods. Its primary application is construction of the constrained MC
algorithms of Ref. [13]. In addition, we also describe application of such
a solution in the Markovian MC algorithm. Although we are aware of many
interesting relation of the discussed problems and solutions to other areas in
physics, we did not attempt to elaborate on that too much, in order to keep
the paper compact and transparent. Let us mention also, that our solution
can be used many times leading to a nested structure with several levels of
the hierarchy.

We would like to thank W. Płaczek for useful discussions and reading the
manuscript. We thank for warm hospitality of the CERN PH/TH division
were part of this work was done.

Appendix A

Combinatorial proof

We are going to show how to transform non-hierarchic solution in
Eq. (19) (with resummed virtual corrections) into hierarchic solution in
Eq. (2) (with resummed gluonstrahlung) using straightforward method of
changing summation order and relabeling integration variables.

The critical point in isolating two levels in the evolution, flavour-changing
transitions and gluonstrahlung, will be the change of the summation order in
Eq. (2), such that one is able to resum separately the pure bremsstrahlung
segments obeying ki = ki−1. These segments will form (many) functions
GB

kk, as defined in Eq. (7). The corresponding transformation of the sum-
mation order (indexing) looks schematically as follows

∞
∑

n=0

∑

kn−1...,k1k0

tknkn−1...k1k0 =
∞
∑

n=0

∑

kn−1...,k1k0
kn 6=kn−1 6=...6=k1 6=k0

∞
∑

jn,jn−1...j0=1

t
k
(jn)
n ...k

(2)
n k

(1)
n k

(jn−1)

n−1 ...k
(2)
n−1k

(1)
n−1......k

(j1)
1 ...k

(2)
1 k

(1)
1 k

(j0)
0 ...k

(2)
0 k

(1)
0

, (A.1)
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where we have k
(jr)
r = . . . = k

(2)
r = k

(1)
r and the purpose of the upper index

in this context is simply to show that the same index k is repeated jr times.

On the other hand variables z
(m)
r and τ

(m)
r , r = 1, 2, . . . , n, m = 1, 2, . . . , jr

are truly different (independent), with the upper index truly differentiating
them.

The aim is now to show that one can factorize out the functions GB
kk and

identify precisely the remaining functions and integrations. Employing the
above index transformation in the product of the P-functions we obtain

{Pknkn
(t

(n)
jn

, z
(n)
jn

) . . . Pknkn
(t

(n)
2 , z

(n)
2 )}Pknkn−1(t

(n)
1 , z

(n)
1 )

. . .

. . . . . . Pk1k1(t
(2)
2 , z

(2)
2 )}Pk2k1(t

(2)
1 , z

(2)
1 )

{Pk1k1(t
(1)
j1

, z
(1)
j1

) . . . Pk1k1(t
(1)
2 , z

(1)
2 )}Pk1k0(t

(1)
1 , z

(1)
1 )

{Pk0k0(t
(0)
j0

, z
(0)
j0

) . . . Pk0k0(t
(0)
2 , z

(0)
2 )Pk0k0(t

(0)
1 , z

(0)
1 )} , (A.2)

where curly bracket embrace the diagonal elements Pkk, to be collected into
the GB

kk-functions; the remaining, nondiagonal ones, are now clearly isolated.
Each Pki,ki−1

, ki 6= ki−1 in Eq. (19) is accompanied by an exponential
factors. All of them (including the first one which does not belong to any P)
are now reorganized as follows:

eΦkn (t,t
(n)
n )

eΦkn (t
(n)
n ,t

(n)
jn−1) . . . eΦkn (t

(n)
2 ,t

(n)
1 )e

Φkn−1
(t

(n)
1 ,t

(n−1)
jn−1

)

. . .

e
Φk1

(t
(1)
j1

,t
(1)
j1−1)

. . . eΦk1
(t

(1)
2 ,t

(1)
1 )e

Φk0
(t

(1)
1 ,t

(0)
j1

)

e
Φk0

(t
(0)
j1

,t
(0)
j1−1)

. . . eΦk0
(t

(0)
2 ,t

(0)
1 )eΦk0

(t
(0)
1 ,t0)

= eΦkn (t,t
(n)
1 )eΦkn−1

(t
(n)
1 ,t

(n−1)
1 ) . . . eΦk1

(t
(2)
1 ,t

(1)
1 )eΦk0

(t
(1)
1 ,t0) , (A.3)

where all factors entering into products in GB
kk-functions are shown inside

the curly brackets in Eq. (A.2). Together with the flavour-changing P’s, the
above exponential form-factors look as follows:

eΦkn (t,t
(n)
1 ) Pknkn−1(z

(n)
1 )eΦkn−1

(t
(n)
1 ,t

(n−1)
1 )

. . .Pk2k1(z
(2)
1 )eΦk1

(t
(2)
1 ,t

(1)
1 )Pk1k0(z

(1)
1 )eΦk0

(t
(1)
1 ,t0) . (A.4)

The other diagonal P’s will enter into GB
kk-functions.
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In this rather sketchy way we have shown that indeed Eq. (19) can be
transformed into Eq. (2) by means of the straightforward reorganization of
multiple sums and integrals. (More systematic proof would require complet-
ing mathematical induction with respect to n.)
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