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The algorithm evaluating the overlap integrals for the numerical atomic
orbitals is presented. The general class of atomic orbitals is discussed,
where the radial part of the atomic orbital is represented as a piecewise
polynomial and the angular part is a complex spherical harmonic. The
molecular problem is reduced to the diatomic case, which is solved in prolate
spheroidal coordinate system. In the prolate spheroidal coordinates, the
overlap integral is reduced to the integral over the polygon. The application
of the piecewise polynomial representation of the radial part further reduces
the complexity of the problem. Finally, it is shown that the integral can
be obtained analytically for s, p, d orbitals.

PACS numbers: 31.25.–v, 31.15.–p, 71.15.–m

1. Introduction

The main result of Density Functional Theory (DFT) states that ev-
ery physical/chemical property of the molecular system can be expressed as
the functional of the electron density [1, 2]. In order to obtain the electron
density Kohn–Sham eigenvalue problem must be solved. For molecular sys-
tems Kohn–Sham equation can be solved by Linear Combination of Atomic
Orbitals (LCAO) method. This method reduces the Kohn–Sham eigenfunc-
tion problem to generalized algebraic eigenproblem Hc = λSc, where the
elements of matrix S are the overlap integrals between the atomic orbitals.
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The evaluation complexity of the elements of matrix S strongly depends
on the chosen atomic orbitals. If cartesian GTO are selected, then the proce-
dure is almost elementary [3]. If STO or B-type atomic orbitals are selected
then the evaluation procedure is more involved [4,5]. Moreover, the selection
of the proper atomic orbitals has important impact on the accuracy of the
obtained results, like binding energy [1]. There is a common agreement, that
the application of STO gives more accurate results than the application of
GTO, if the same number of the atomic orbitals are applied [1]. Since the
cost of the algebraic eigenproblem scales as N3, where N is a number of the
atomic orbitals [6], then the small number of the atomic orbitals saves the
computational time. In order to obtain high accuracy with the small num-
ber of the atomic orbital in LCAO method, the numerical atomic orbitals
has been proposed [7, 8]. The radial part of the numerical orbital does not
have any analytical form and can be represented as a sequence of the points
interpolated by cubic splines [6].

1.1. Fourier transform method

The Fourier transform was successfully applied to evaluate the overlap
integrals between STO [5,9] and BTO [4]. This method was also applied to
evaluate the overlap integral between NTO [8]. Let us denote by ψ(r) and
ψ̄(k) the atomic orbital and its Fourier transform related each other by the
equation [10]:

ψ̄(k) =
1

(2π)3/2

∫

ψ(r) exp(−ik · r)dr . (1)

The Fourier transform method is based on the convolution theorem [10],
which transforms the overlap integral between the atomic orbitals ψa(r),
ψb(r), separated by vector q, to the integral in the reciprocal space:

∫

ψ†
a(r)ψb(r − q)dr =

∫

ψ̄†
a(k)ψ̄b(k) exp(−ik · q)dk , (2)

where † denotes the conjugate complex. Let us assume that the atomic or-
bital is a product of the radial part and the complex spherical harmonic:
ψ(r) = R(r)Y m

ℓ (r̂), where r ≡ (r, r̂). Then, based on the Rayleigh’s for-
mula [11]

exp(±ix · y) = 4π
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

(±i)ℓjℓ(xy)Y
m†
ℓ (x̂)Y m†

ℓ (ŷ) (3)
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relating a plane wave with the spherical harmonics, the three dimensional
integral (1) is reduced to one dimensional integral:

ψ̄(k) = (−i)ℓ
√

2/πY m
ℓ (k̂)

∞
∫

r=0

r2R(r)jℓ(kr)dr , (4)

where jℓ(x) denotes the spherical Bessel function [11]. Substituting Eqs. (3)
and (4) into Eq. (2), the overlap integral is transform to the sum of the
one-dimensional integrals (see Ref. [8, 9] for details). Thus, the problem is
reduced from three dimensional to one dimensional. However, due to the
presence of the spherical Bessel functions jℓ(kr), the integrand in Eq. (4) is
highly oscillating function for large k and causes the numerical instability as
was discussed in Ref. [4, 12, 13]. This algorithm is implemented in SIESTA
program [8].

1.2. Presented method

The method outlined above, as well the algorithm developed by Delley [7]
and Becke [14], evaluates the overlap integral between two atomic orbital
with arbitrary radial part. However, the algorithms evaluate the overlap
integral approximately, they do not return the exact results.

The purpose of the present manuscript is to described the algorithm
which exactly (i.e. analytically) evaluates the overlap integral between atomic
orbitals with the radial part represented by the piecewise polynomial. The
performance of the algorithm is secondary aspect. It has been demonstrated
that the piecewise polynomial approximation gives accurate results in Den-
sity Functional Theory (DFT) if applied to free atom [15, 16]. Thus, this
kind of the atomic orbitals can be applied to represent the molecular orbitals
in LCAO approach. Therefore, based on the present algorithm the accuracy
of the approximated algorithms can be assessed. Typically, the performance
and the accuracy of approximated algorithms have been assessed based on
the analytical results of GTO [17], STO [4], BTO [5] and their linear com-
binations. This algorithm extends the class of the atomic orbitals with the
analytically available overlap integrals.

In the present paper we propose the exact algorithm based on the prolate
spheroidal coordinate system. The prolate spheroidal coordinates have been
successfully applied to evaluate the molecular integrals between STO [18–23].
Although, the method described in Ref. [18–23] is designed for diatomic
molecules, it can be applied to any molecular system, if the rotations of the
complex spherical harmonics [24–26] are used.

The outline of the manuscript is as follows. In the first part the necessary
definitions are given and the diatomic case is discussed. The analytical
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results for atomic orbitals with piecewise polynomial radial part is fully
described. In the second part the rotation and the reflection of the complex
spherical harmonics are applied to reduce the general case, which occurs in
the molecular systems, to the case presented in the first part of the paper.

2. Diatomic molecule

In this section the application of the prolate spheroidal coordinate system
to diatomic molecules is described.

2.1. Prolate spheroidal coordinate system

Let us create the prolate spheroidal coordinate system, E , based on two
spherical coordinate systems with specific mutual orientation [27–29]. Let
us denote two spherical coordinate systems with origins at points A and
B by Sa and Sb. The system Sa is right-handed and the system Sb is
left-handed. The XOY plane of Sa is parallel to the XOY plane of Sb.
Moreover, the Y OZ planes of Sa and Sb are common and the axes Z of
both systems have the opposite directions. Let us define a point r ∈ R

3 and
denote its coordinates in Sa by (ra, θa, ϕa) and in Sb by (rb, θb, ϕb). Then,
due to the mutual orientation of Sa and Sb, the azimuth angles are identical
ϕa = ϕb = ϕ, see Fig. 1.

Fig. 1. Relative position of two spherical coordinate systems Sa and Sb. The foci of

prolate spheroidal coordinate are located at A and B. Azimuth angles are identical

ϕa = ϕb = ϕ.

Let q be the distance between A and B. The coordinates of the point
r ∈ R

3 in the prolate spheroidal coordinates system, E , with foci located at
A and B are denoted as (ξ, η, ϕ). The coordinates belong to the following
ranges: ξ ∈ [1,∞] and η ∈ [−1, 1] and ϕ ∈ [0, 2π]. Moreover, the coordinate
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ϕ in E is equal to the coordinate ϕ in Sa and Sb. The relations between the
coordinates in Sa, Sb and the coordinates in E are as follows [27–29]:

Sa ↔ E , Sb ↔ E ,

ra(ξ, η; q) = (ξ + η)
q

2
, rb(ξ, η; q) = (ξ − η)

q

2
,

cos(θa(ξ, η)) =
(1 + ξη)

(ξ + η)
, cos(θb(ξ, η)) =

(1 − ξη)

(ξ − η)
. (5)

The volume element in E is defined by:

dr =
q3

8

(

ξ2 − η2
)

dξdηdϕ . (6)

2.2. Atomic orbital

An atomic orbital f(r) : R
3 7→ C centered at the origin of the spherical

coordinate system is a product of the radial part, R(r) : R 7→ R, and the
complex spherical harmonic:

f(r) = R(r)Y m
ℓ (θ, ϕ) . (7)

The complex spherical harmonic is defined according to Condon–Shortley
phase conventions [30]:

Y m
ℓ (θ, ϕ) = Nm

ℓ Pm
ℓ (cos(θ))eimϕ , (8)

where Nm
ℓ is a normalization factor:

Nm
ℓ = im+|m|

[

2ℓ+ 1

4π

(ℓ− |m|)!

(ℓ+ |m|)!

]1/2

(9)

and Pm
ℓ (x) is an associated Legendre functions defined by Legendre polyno-

mial Pℓ(x), for |x| ≤ 1:

P
|m|
ℓ (x) =

(

1 − x2
)|m|/2 d|m|

dx|m|
Pℓ(x) ≡

(

1 − x2
)|m|/2

P
(|m|)
ℓ (x) , (10)

Pℓ(x) = (2ℓℓ!)−1 d
ℓ

dxℓ

(

x2 − 1
)ℓ
, (11)

where P
(|m|)
ℓ (x) denotes the m-th derivative of the Legendre polynomial

Pℓ(x).
The radial part of the atomic orbital R(r) can be any smooth function,

like Gauss function, Slater function [1] or B-type function [5]. In the present
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paper we assume, that R(r) is a piecewise polynomial function. Moreover,
only the radial functions with the finite support are consider, i.e. functions,
which vanish outside the specific ball.

Let us define the atomic orbitals centered at the points A and B as:

fa(r) = Ra(ra)Y
ma

ℓa
(θa, ϕa) , fb(r) = Rb(rb)Y

mb

ℓb
(θb, ϕa) . (12)

If the spherical coordinates, defined by prolate coordinates, Eq. (5), are
inserted into the definition of the atomic orbitals, Eq. (12), we obtain:

f̃a(ξ, η, ϕ; q) = Nma

ℓa
Ra

(

(ξ+η)q
2

)

Pma

ℓa

(

1+ξη
ξ+η

)

eimaϕ , (13a)

f̃b(ξ, η, ϕ; q) = Nmb

ℓb
Rb

(

(ξ−η)q
2

)

Pmb

ℓb

(

1−ξη
ξ−η

)

eimbϕ , (13b)

where q is the distance between point A and B. In the present paper the
atomic orbitals with the finite support are considered. Let us denote by r∗a,
r∗b the support of fa(r), fb(r). Then, the atomic orbitals fa(r), fb(r) are
non zero only inside the balls Ba, Bb centered at A, B and radiuses r∗a, r

∗
b :

Ba = {v ∈ R
3 : |v − rA| ≤ r∗a} , Bb = {v ∈ R

3 : |v − rB| ≤ r∗b} , (14)

where rA, rB denote the coordinates of points A, B. Based on these defini-
tions and the relations between spherical and prolate spheroidal coordinate
systems, Eq. (5), the balls Ba, Bb in prolate spheroidal coordinate system
are:

B̃a = {(η, ξ, ϕ) ∈ [−1, 1] × [1,∞] × [0, 2π] : (ξ + η)q/2 ≤ r∗a} , (15)

B̃b = {(η, ξ, ϕ) ∈ [−1, 1] × [1,∞] × [0, 2π] : (ξ − η)q/2 ≤ r∗b} . (16)

The balls B̃a and B̃b in two dimensional domain (η, ξ) are depicted in Fig. 2.

It is seen that, B̃a and B̃b in domain (η, ξ) are the polygons. The center

of B̃a has the coordinates (η, ξ) = (−1, 1) and the center of B̃b has the

coordinates (η, ξ) = (1, 1). The polygon representing B̃a in plane (η, ξ) has

the vertices A, B, Ca and Da. The polygon representing B̃b in plane (η, ξ)
has the vertices A, B, Cb and Db. The coordinates of Ca, Da and Cb, Db

can be obtained from Eqs. (15) and (16). The lines passing through the pair
of points (Ca,Da) and the pair (Cb,Db) are defined by:

ξ + η =
2r∗a
q
, ξ − η =

2r∗b
q
. (17)

The vertices Ca, Cb lie on the vertical edges (η = −1 or η = 1) and have the
coordinates:

Ca(η, ξ) =

(

−1,
2r∗a
q

+ 1

)

, Cb(η, ξ) =

(

1,
2r∗b
q

+ 1

)

. (18)
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The position of vertices Da, Db depends on the relation between r∗a, r
∗
b and q:

Da(η, ξ) =







(

2 r∗a
q − 1, 1

)

if r∗a ≤ q ,
(

1, 2 r∗a
q − 1

)

if r∗a > q ,
(19a)

Db(η, ξ) =







(

1 − 2
r∗
b

q , 1
)

if r∗b ≤ q ,
(

−1, 2
r∗
b

q − 1
)

if r∗b > q .
(19b)

Ca

Ba

DaA B

(a) Cb

Db

Bb

BA

(b)

Fig. 2. (a) Ball B̃a, Eq. (15), in plane (η, ξ) of prolate coordinate system. (b) Ball

B̃b, Eq. (16), in plane (η, ξ) of prolate coordinate system. Both B̃a and B̃b are

polygons.

2.3. Overlap integral

For the atomic orbitals fa(r) and fb(r) with the finite support, the over-
lap integral is over the finite space, which is the intersection Ba ∩Bb of balls
defined by Eq. (14):

I(q) =

∫

R3

f †a(r)fb(r)dr =

∫

Ba∩Bb

f †a(r)fb(r)dr , (20)

where † denotes the conjugate complex. This integral can be expressed in
prolate spheroidal coordinate system. Substituting Eq. (13) and volume
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element, Eq. (6), into Eq. (20) we obtain:

I(q) =
q3

8

2π
∫

ϕ=0

1
∫

η=−1

∞
∫

ξ=1

f̃ †a(ξ, η, ϕ; q)f̃b(ξ, η, ϕ; q)(ξ2 − η2)dξdηdϕ

=
q3

8
Nma

ℓa
Nmb

ℓb
I1(q)I2 (21)

with

I1(q) =

1
∫

η=−1

∞
∫

ξ=1

α(ξ, η; q)dξdη =

∫

B̃a∩B̃b

α(ξ, η; q)dξdη (22)

and

I2 =

2π
∫

ϕ=0

ei(mb−ma)ϕdϕ = 2πδma,mb
, (23)

where δma,mb
is a Kronecker delta. The integrand in Eq. (22) is given by:

α(ξ, η; q) = Ra

(

(ξ+η)q
2

)

Pma

ℓa

(

1+ξη
ξ+η

)

Rb

(

(ξ−η)q
2

)

Pmb

ℓb

(

1−ξη
ξ−η

)

(ξ2 − η2) (24)

and the integration domain is the intersection of balls in prolate coordinate
system B̃a∩B̃b. Since I(q) is a product of I1(q) and I2, then based on Eq. (23)
the overlap integral is nonzero only for ma = mb. Moreover, due to the
application of prolate spheroidal coordinate system, the three dimensional
integral, Eq. (20), is reduced to two dimensional integral, Eq. (22).

If Ra(r) and Rb(r) are any smooth function, then the numerical in-
tegration must be performed to evaluate the integral I1(q). It has been
demonstrated [31], that the adaptive integration schema gives the accurate
results. In the following Sections we present the algorithm evaluating the
integral I1(q) analytically, when the radial part of the atomic orbitals are
polynomials and piecewise polynomials.

2.4. Polynomial approximation

Let us consider the case when the radial part of the atomic orbitals is
a polynomial. Since any polynomial

∑

k ckx
k is a linear combination of

monomials xk, the results for

Ra(ra) = rna

a , Rb(rb) = rnb

b , na, nb = 0, 1, 2, . . . (25)
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are only studied. Substituting Eq. (25) into Eq. (24) we get:

α(ξ, η; q) =
(q

2

)na+nb

(ξ + η)na+1(ξ − η)nb+1Pma

ℓa

(

1+ξη
ξ+η

)

Pmb

ℓb

(

1−ξη
ξ−η

)

. (26)

Due to Kronecker delta in Eq. (23), the overlap integral I(q) is only non
zero for ma = mb = m. Substituting this condition into Eq. (26) we get:

α(ξ, η; q) =
(q

2

)na+nb

(ξ + η)na+1(ξ − η)nb+1

(

(1 − η2)(ξ2 − 1)

ξ2 − η2

)|m|

×P
(|m|)
ℓa

(

1+ξη
ξ+η

)

P
(|m|)
ℓb

(

1−ξη
ξ−η

)

, (27)

where P
(|m|)
ℓ (x) denotes |m|-th derivative of Legendre polynomial, see

Eq. (10). In many practical applications s, p, d atomic orbitals are mainly
considered, i.e. ℓa, ℓb ≤ 2. For these cases, Eq. (27) simplifies considerably.
The explicit expressions for α(ξ, η; q) (2/q)na+nb are given in Table I. For
na, nb ≥ 1 the expressions in Table I are polynomials, hence the integral
∫∫

α(ξ, η; q)dξdη can be easily obtained. If na = 0 or nb = 0, then the
integral is expressed by log(·). If na = nb = 0 the integral is expressed by
tan−1(·). Thus, for each case listed in Table I the integral

∫∫

α(ξ, η; q)dξdη

TABLE I

Explicit expressions for α(ξ, η; q) (2/q)na+nb , Eq. (27), with radial functions being
the monomials Ra(ra) = rna

a and Rb(rb) = rnb

b
. Results are presented for ℓa, ℓb ≤ 2

and 0 ≤ m ≤ min{ℓa, ℓb}, what corresponds to s, p, d atomic orbitals.

(ℓa, ℓb,m) α(ξ, η; q) (2/q)na+nb

(0, 0, 0) (ξ − η)nb(ξ + η)na(ξ2 − η2)
(1, 0, 0) (ξ − η)nb+1(ξ + η)na(1 + ηξ)
(0, 1, 0) (ξ − η)nb(ξ + η)na+1(1 − ηξ)
(1, 1, 1) (ξ − η)nb(ξ + η)na(1 − η2)(ξ2 − 1)
(2, 0, 0) (ξ − η)nb+1(ξ + η)na−1[3 + 4ηξ − ξ2 + η2(3ξ2 − 1)]/2
(0, 2, 0) (ξ − η)nb−1(ξ + η)na+1[3 − 4ηξ − ξ2 − η2(1 − 3ξ2)]/2
(2, 1, 0) (ξ − η)nb(ξ + η)na−1(1 − ηξ)[3 + 4ηξ − ξ2 + η2(3ξ2 − 1)]/2
(1, 2, 0) (ξ − η)nb−1(ξ + η)na(1 + ηξ)[3 − 4ηξ − ξ2 + η2(3ξ2 − 1)]/2
(2, 1, 1) 3(ξ − η)nb(ξ + η)na−1(1 + ηξ)(1 − η2)(ξ2 − 1)
(1, 2, 1) 3(ξ − η)nb−1(ξ + η)na(1 − ηξ)(1 − η2)(ξ2 − 1)
(2, 2, 0) (ξ − η)nb−1(ξ + η)na−1[3 − 4ηξ − ξ2 + η2(3ξ2 − 1)]

×[3 + 4ηξ − ξ2 + η2(3ξ2 − 1)]/4
(2, 2, 1) 9(ξ − η)nb−1(ξ + η)na−1(1 − η2)(ξ2 − 1)(1 − ηξ)(1 + ηξ)
(2, 2, 2) 9(ξ − η)nb−1(ξ + η)na−1(1 − η2)2(1 − ξ2)2
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can be obtained analytically. The required integrals can be obtained by
symbolic algebra packages like Mathematica (http://www.wolfram.com/)
or Maple (http://www.maplesoft.com/).

2.5. The intersection B̃a ∩ B̃b in (η, ξ) plane

In order to obtain the value of integral I(q) the intersection B̃a∩B̃b must
be explicitly given. The intersection Ba ∩ Bb, and hence the intersection
B̃a ∩B̃b, depends on the mutual relation of radius r∗a, r

∗
b and the inter-center

distance q. There are seven mutually exclusive cases listed below:

1. if r∗a + r∗b < q, then B̃a ∩ B̃b = ∅.

2. If r∗a ≥ r∗b + q, then B̃a ∩ B̃b = B̃b.

3. If r∗b ≥ r∗a + q, then B̃a ∩ B̃b = B̃a.

4. If r∗a ≤ q and r∗b ≤ q, then B̃a∩B̃b in plane (η, ξ) is a isosceles triangle,
see Fig. 3 (a), with vertices Da, Db and G.

5. If r∗a ≤ q and r∗b > q, then B̃a ∩ B̃b in plane (η, ξ) is a quadrilateral,
see Fig. 3 (b), with vertices Db, A, Da and G.

6. If r∗a > q and r∗b ≤ q, then B̃a ∩ B̃b in plane (η, ξ) is a quadrilateral,
see Fig. 3 (c), with vertices Db, B, Da and G.

7. If r∗a > q and r∗b > q, then B̃a ∩ B̃b in plane (η, ξ) is a pentagon, see
Fig. 3 (d), with vertices Db, A, B, Da and G.

Db Da

A B

(a)

(b)

A B

Da

Db

G

G

Db

Da

A B
(c)

(d)

A B

Da

Db

G

G

Fig. 3. Intersection B̃a ∩ B̃b in plane (η, ξ) denoted by hatched region. The inter-

section depends on the mutual relation of r∗
a
, r∗

b
and q: (a) r∗

a
≤ q and r∗

b
≤ q, (b)

r∗
a
≤ q and r∗

b
> q, (c) r∗

a
> q and r∗

b
≤ q, (d) r∗

a
> q and r∗

b
> q.
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The coordinates of vertices Ca, Cb, Da, Db are given by Eqs. (18) and
(19). The point G lies on the intersection of lines defined by Eq. (17) and
has the coordinates G(η, ξ) = ((r∗a − r∗b )/q, (r

∗
a + r∗b )/q). Since the inte-

gral
∫∫

α(ξ, η; q)dξdη and the intersection B̃a ∩ B̃b in (η, ξ) are determined,
then the integral I1(q) and hence the overlap integral I(q) for s, p, d atomic
orbitals with polynomial radial parts can be obtained analytically.

The results obtained in this Section for atomic orbital with polynomial
radial part are applied in the following Section, when the radial part of the
atomic orbital is represented as a piecewise polynomial function.

2.6. Piecewise polynomial functions

The piecewise polynomial function h(x) : [µ, ν] 7→ R is defined on the
partition µ = x0 < x1 < . . . < xN = ν, where N is the number of the
nodes in the partition [6]. On each interval [xj , xj+1] the function h(x) is
a polynomial. It has been demonstrated that polynomial approximation
is very powerful [32, 33] and has been successfully applied to the quantum
mechanical calculation in density functional framework [15].

Let us assume, that radial parts Ra(r), Rb(r) of the atomic orbitals

fa(r) = Ra(r)Y
ma

ℓa
(θ, ϕ) , fb(r) = Rb(r)Y

mb

ℓb
(θ, ϕ) (28)

are piecewise polynomials. Further, let us assume, that Ra(r) is defined on
the partition 0 = ra,0 < ra,1 < . . . < ra,Na

= r∗a and Rb(r) is defined on the
partition 0 = rb,0 < rb,1 < . . . < rb,Nb

= r∗b . The intervals [0, r∗a] and [0, r∗b ]
define the supports of the atomic orbitals and Na, Nb are the number of the
nodes in the partitions. Let us introduce the functions:

pa,i(r) =

{

wa,i(r) if r ∈ [ra,i−1, ra,i) ,
0 otherwise ,

(29a)

pb,j(r) =

{

wb,j(r) if r ∈ [rb,j−1, rb,j) ,
0 otherwise ,

(29b)

where wa,i(r), wb,i(r) are the polynomials defining the functions Ra(r),
Rb(r), on the intervals [ra,i−1, ra,i), [rb,j−1, rb,j), respectively. Since the sup-
ports of pa,i(r), pb,j(r) are disjointed, then the radial functions are repre-
sented as a sums:

Ra(r) =

Na
∑

i=1

pa,i(r) , Rb(r) =

Nb
∑

j=1

pb,j(r) . (30)
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Further, let us introduce the functions:

ua,i(r) =

{

wa,i(r) if r ∈ [0, ra,i) ,
0 otherwise ,

(31a)

ub,j(r) =

{

wb,j(r) if r ∈ [0, rb,j) ,
0 otherwise .

(31b)

The functions ua,i(r) and ub,j(r) are the polynomials on the intervals [0, ra,i),
[0, rb,j). Based on the above definitions and Eq. (29), we have:

pa,i(r) = ua,i(r) − ua,i−1(r) , pb,j(r) = ub,j(r) − ub,j−1(r) . (32)

Hence, the functions Ra(r) and Rb(r) can be represented as a sum and
difference of the polynomials defined on the finite intervals with the begin
at zero:

Ra(r) =

Na
∑

i=1

[ua,i(r)− ua,i−1(r)] , Rb(r) =

Nb
∑

j=1

[ub,j(r)− ub,j−1(r)] . (33)

Let us define two auxiliary atomic orbitals:

ga,i(r) = ua,i(ra)Y
ma

ℓa
(θa, ϕa) , gb,j(r) = ub,j(rb)Y

mb

ℓb
(θb, ϕb) . (34)

Then, the functions fa(r), fb(r), defined in Eq. (28), can be expressed as:

fa(r) =

Na
∑

i=1

[ga,i(r) − ga,i−1(r)] , fb(r) =

Nb
∑

j=1

[gb,j(r) − gb,j−1(r)] . (35)

Substituting Eq. (35) into the definition of I(q), Eq. (20), we obtain:

I(q) =
Na
∑

i=1

Nb
∑

j=1

∫

R3

[

g†a,i(r)gb,j(r) − g†a,i(r)gb,j−1(r)

−g†a,i−1(r)gb,j(r) + g†a,i−1(r)gb,j−1(r)
]

dr . (36)

Since the radial part of each atomic orbital occurred in the above equation
is a polynomial with the finite support starting at zero, then the algorithm
described in Section 2.4 can be applied. Thus, the overlap integral between
the atomic orbitals with the radial parts represented by the piecewise poly-
nomial functions in diatomic case are obtained analytically for ℓa, ℓb ≤ 2.
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3. Molecular systems

In the molecular systems the local, atomic coordinates have specific ori-
entation, which differs from the orientation discussed for the diatomic case.
In this section it is shown how to reduce the overlap integral defined for
general case to the diatomic case described in Section 2. Before we proceed,
the rotation and reflection of the complex spherical harmonics are outlined.

3.1. Rotation of complex spherical harmonics

The rotation of the complex spherical harmonics was described in
Refs. [24–26]. In these papers the rotation in R

3 space is defined by Eu-
ler angles. Let us denote a coordinates of point r in fixed and rotated
coordinate system as (r, θ, ϕ), (r, θ′, ϕ′), respectively. Then it was proved
that the relation holds:

Y m
ℓ (θ, ϕ) =

ℓ
∑

M=−ℓ

D
(ℓ)
M,m(α, β, γ)Y M

ℓ (θ′, ϕ′) , (37)

where the summation runs only over the magnetic quantum number M . The
expansion coefficients are so called Wigner D-matrix:

D
(ℓ)
M,m(α, β, γ) = e−iαMd

(ℓ)
M,m(β)e−iγm (38)

with

d
(ℓ)
M,m(β) = (−1)M−m

[

(ℓ+M)!(ℓ−M)!

(ℓ+m)!(ℓ−m)!

]1/2

×
kmax
∑

k=kmin

{

(−1)k
(

ℓ+m

k

)(

ℓ−m

ℓ−M − k

)

×
(

cos(β/2)
)2ℓ−M+m−2k(

sin(β/2)
)M−m+2k

}

, (39)

where kmin = max{0,m−M} and kmax = min{ℓ−M, ℓ+m}. For numerical

calculations, recursion relations of the d
(ℓ)
M,m(β) are important and can be

found if Ref. [25, 34, 35].

3.2. Reflection of complex spherical harmonics

Let us consider two coordinate systems with common axes OX, OY
and common plane XOY , one left-handed, SL, and one right-handed, SR.
Let us denote the coordinates of a point r in SR, SL by (x, y, z), (x̃, ỹ, z̃),
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respectively. Then, the relations (for cartesian and spherical coordinates)
hold:

x̃ = x , ỹ = y , z̃ = −z ,

r̃ = r , θ̃ = π + θ , φ̃ = φ . (40)

Since cos(π+θ) = − cos(θ), then based on the definition of complex spherical
harmonics, Eq. (8), one can prove:

Y m
ℓ (θ̃, ϕ̃) = Y m

ℓ (π + θ, ϕ) = (−1)ℓ+mY m
ℓ (θ, ϕ) . (41)

Thus, the complex spherical harmonic defined in SL is expressed by the
complex spherical harmonic defined in SR.

3.3. Reduction to diatomic case

Let us consider two atoms A and B in R
3 space. The atomic orbitals

for atom A and B are defined in their local spherical coordinate systems Sa

and Sb with origins located at A and B, respectively. The systems Sa and
Sb have parallel coordinate axes and the distance between A and B is q.
The pair of the coordinates systems Sa and Sb can be transformed to the
pair of the coordinate systems S ′

a and S ′
b constituting the prolate spheroidal

coordinate system (described in Section 2.1) by three transformations:

1. Rotate Sa around point A such that its Z axis align q.

2. Rotate Sb around point B such that its Z axis align q.

3. Change the rotated right-handed system Sb to the left-handed system.

Since the atomic orbital is a product of the radial part and the complex
spherical harmonic, Eq. (7), and the radial part does not change during the
transformations (1)–(3), then only complex spherical harmonics are trans-
formed.

Let us denote the coordinates of a point r in Sa, S
′
a as (ra, θa, ϕa) and

(ra, θ
′
a, ϕ

′
a). Identically, let us denote the coordinates of a point r in Sb,

S ′
b as (rb, θb, ϕb) and (rb, θ

′
b, ϕ

′
b). Further, let us denote the atomic orbitals

defined in Sa, Sb as

fma

ℓa
(r) = Ra(ra)Y

ma

ℓa
(θa, ϕa) , fmb

ℓb
(r) = Rb(rb)Y

mb

ℓb
(θb, ϕb) . (42)

Then, based on Section 3.1 and Section 3.2 we obtain:

Y ma

ℓa
(θa, ϕa) =

ℓa
∑

Ma=−ℓa

a
(ℓa)
Ma,ma

YMa

ℓa
(θ′a, ϕ

′
a) , (43)

Y mb

ℓb
(θb, ϕb) =

ℓb
∑

Mb=−ℓb

b
(ℓb)
Mb,mb

YMb

ℓb
(θ′b, ϕ

′
b) (44)
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with

a
(ℓa)
Ma,ma

= D
(ℓa)
Ma,ma

(α, β, γ) , (45a)

b
(ℓb)
Mb,mb

= (−1)ℓb+MbD
(ℓb)
Mb,mb

(α, β, γ) . (45b)

Let us denote by

hma

ℓa
(r) = Ra(ra)Y

ma

ℓa
(θ′a, ϕ

′
a) and hmb

ℓb
(r) = Rb(rb)Y

mb

ℓb
(θ′b, ϕ

′
b)

the atomic orbitals in S ′
a and S ′

b, respectively. Then, multiplying Eq. (43)
by Ra(ra) and multiplying Eq. (44) by Rb(rb), we obtain:

fma

ℓa
(r) =

ℓa
∑

Ma=−ℓa

a
(ℓa)
Ma,ma

hMa

ℓa
(r) , fmb

ℓb
(r) =

ℓb
∑

Mb=−ℓb

b
(ℓb)
Mb,mb

hMb

ℓb
(r) .

(46)
Substituting Eq. (46) into the definition of the overlap integral, Eq. (20), we
obtain:

∫

R3

fma†
ℓa

(r)fmb

ℓb
(r)dr3 =

ℓa
∑

Ma=−ℓa

a
(ℓa)†
Ma,ma

ℓb
∑

Mb=−ℓb

b
(ℓb)
Mb,mb

∫

R3

hMa†
ℓa

(r)hMb

ℓb
(r)dr3 .

(47)
Hence, the overlap integral between fma

ℓa
(r) and fmb

ℓb
(r) is a sum of the

overlap integrals between hMa

ℓa
(r) and hMb

ℓb
(r). Due to the mutual orientation

of S ′
a and S ′

b, the overlap integral between hMa

ℓa
(r) and hMb

ℓb
(r) atomic orbitals

can be evaluated in prolate spheroidal coordinate system. Since the overlap
integral between hMa

ℓa
(r) and hMb

ℓb
(r) is only non-zero for Ma = Mb = M ,

see Section 2.3, then the double sum reduce to the single sum:

∫

R3

fma†
ℓa

(r)fmb

ℓb
(r)dr3 =

Mmax
∑

M=Mmin

a
(ℓa)†
M,ma

b
(ℓb)
M,mb

∫

R3

hM†
ℓa

(r)hM
ℓb

(r)dr3 , (48)

where Mmin = max{−ℓa,−ℓb} and Mmax = min{ℓa, ℓb}.

4. Summary

In the present paper we discussed the algorithm evaluating of the overlap
integral of the atomic orbitals with the radial part represented as a piecewise
polynomial. The algorithm based on the prolate spheroidal coordinate sys-
tem was presented. First, the integration over R

3 was reduced to R
2, due to
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the application of the prolate spheroidal coordinates in diatomic case. Sec-
ond, the overlap integral was split into sum of the overlap integrals between
“thick spheres”. It was proved that the intersection of two “thick spheres” is
a polygon in prolate spheroidal coordinates. Moreover, the integrand func-
tion over the intersection can be calculated analytically for s, p, d atomic
orbitals. In the second part of the manuscript the general overlap integral is
described. The application of rotations and reflections reduced the general
case to diatomic case discussed in the first part of the paper. The presented
algorithm is exact and easy to implement, although applicable to broad class
of atomic orbitals useful in the molecular LCAO-DFT calculations.

I would like to thank S. Krukowski for fruitful discussions.
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